Skip to main content
Top
Published in: Journal of Scientific Computing 2/2022

01-08-2022

A Positivity Preserving, Energy Stable Finite Difference Scheme for the Flory-Huggins-Cahn-Hilliard-Navier-Stokes System

Authors: Wenbin Chen, Jianyu Jing, Cheng Wang, Xiaoming Wang

Published in: Journal of Scientific Computing | Issue 2/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this paper, we propose and analyze a finite difference numerical scheme for the Cahn-Hilliard-Navier-Stokes system, with logarithmic Flory-Huggins energy potential. In the numerical approximation to the singular chemical potential, the logarithmic term and the surface diffusion term are implicitly updated, while an explicit computation is applied to the concave expansive term. Moreover, the convective term in the phase field evolutionary equation is approximated in a semi-implicit manner. Similarly, the fluid momentum equation is computed by a semi-implicit algorithm: implicit treatment for the kinematic diffusion term, explicit update for the pressure gradient, combined with semi-implicit approximations to the fluid convection and the phase field coupled term, respectively. Such a semi-implicit method gives an intermediate velocity field. Subsequently, a Helmholtz projection into the divergence-free vector field yields the velocity vector and the pressure variable at the next time step. This approach decouples the Stokes solver, which in turn drastically improves the numerical efficiency. The positivity-preserving property and the unique solvability of the proposed numerical scheme is theoretically justified, i.e., the phase variable is always between -1 and 1, following the singular nature of the logarithmic term as the phase variable approaches the singular limit values. In addition, an iteration construction technique is applied in the positivity-preserving and unique solvability analysis, motivated by the non-symmetric nature of the fluid convection term. The energy stability of the proposed numerical scheme could be derived by a careful estimate. A few numerical results are presented to validate the robustness of the proposed numerical scheme.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Browder, F.: Nonlinear elliptic boundary value problems. Bull. Amer. Math. Soc. 69, 962–874 (1963)MathSciNetMATH Browder, F.: Nonlinear elliptic boundary value problems. Bull. Amer. Math. Soc. 69, 962–874 (1963)MathSciNetMATH
2.
go back to reference Cahn, J.W., Elliott, C.M., Novick-Cohen, A.: The Cahn-Hilliard equation with a concentration dependent mobility: Motion by minus the Laplacian of the mean curvature. Europ. J. Appl. Math. 7, 287–301 (1996)MathSciNetMATHCrossRef Cahn, J.W., Elliott, C.M., Novick-Cohen, A.: The Cahn-Hilliard equation with a concentration dependent mobility: Motion by minus the Laplacian of the mean curvature. Europ. J. Appl. Math. 7, 287–301 (1996)MathSciNetMATHCrossRef
3.
go back to reference Chen, W., Feng, W., Liu, Y., Wang, C., Wise, S.M.: A second order energy stable scheme for the Cahn-Hilliard-Hele-Shaw equation. Discrete Contin. Dyn. Syst. Ser. B 24(1), 149–182 (2019)MathSciNetMATH Chen, W., Feng, W., Liu, Y., Wang, C., Wise, S.M.: A second order energy stable scheme for the Cahn-Hilliard-Hele-Shaw equation. Discrete Contin. Dyn. Syst. Ser. B 24(1), 149–182 (2019)MathSciNetMATH
5.
go back to reference Chen, W., Jing, J., Wang, C., Wang, X., Wise, S.M.: A modified Crank-Nicolson scheme for the Flory-Huggin Cahn-Hilliard model. Commun. Comput. Phys. 31(1), 60–93 (2022)MathSciNetMATHCrossRef Chen, W., Jing, J., Wang, C., Wang, X., Wise, S.M.: A modified Crank-Nicolson scheme for the Flory-Huggin Cahn-Hilliard model. Commun. Comput. Phys. 31(1), 60–93 (2022)MathSciNetMATHCrossRef
6.
go back to reference Chen, W., Liu, Y., Wang, C., Wise, S.M.: An optimal-rate convergence analysis of a fully discrete finite difference scheme for Cahn-Hilliard-Hele-Shaw equation. Math. Comp. 85, 2231–2257 (2016)MathSciNetMATHCrossRef Chen, W., Liu, Y., Wang, C., Wise, S.M.: An optimal-rate convergence analysis of a fully discrete finite difference scheme for Cahn-Hilliard-Hele-Shaw equation. Math. Comp. 85, 2231–2257 (2016)MathSciNetMATHCrossRef
7.
go back to reference Chen, W., Wang, C., Wang, X., Wise, S.M.: Positivity-preserving, energy stable numerical schemes for the Cahn-Hilliard equation with logarithmic potential. J. Comput. Phys.: X 3, 100031 (2019)MathSciNet Chen, W., Wang, C., Wang, X., Wise, S.M.: Positivity-preserving, energy stable numerical schemes for the Cahn-Hilliard equation with logarithmic potential. J. Comput. Phys.: X 3, 100031 (2019)MathSciNet
8.
go back to reference Cheng, K., Wang, C., Wise, S.M.: An energy stable Fourier pseudo-spectral numerical scheme for the square phase field crystal equation. Commun. Comput. Phys. 26, 1335–1364 (2019)MathSciNetMATHCrossRef Cheng, K., Wang, C., Wise, S.M.: An energy stable Fourier pseudo-spectral numerical scheme for the square phase field crystal equation. Commun. Comput. Phys. 26, 1335–1364 (2019)MathSciNetMATHCrossRef
9.
go back to reference Copetti, M.I.M., Elliott, C.M.: Numerical analysis of the Cahn-Hilliard equation with a logarithmic free energy. Numer. Math. 63, 39–65 (1992)MathSciNetMATHCrossRef Copetti, M.I.M., Elliott, C.M.: Numerical analysis of the Cahn-Hilliard equation with a logarithmic free energy. Numer. Math. 63, 39–65 (1992)MathSciNetMATHCrossRef
10.
go back to reference Diegel, A., Wang, C., Wang, X., Wise, S.M.: Convergence analysis and error estimates for a second order accurate finite element method for the Cahn-Hilliard-Navier-Stokes system. Numer. Math. 137, 495–534 (2017)MathSciNetMATHCrossRef Diegel, A., Wang, C., Wang, X., Wise, S.M.: Convergence analysis and error estimates for a second order accurate finite element method for the Cahn-Hilliard-Navier-Stokes system. Numer. Math. 137, 495–534 (2017)MathSciNetMATHCrossRef
12.
go back to reference Dong, L., Wang, C., Wise, S.M., Zhang, Z.: A positivity-preserving, energy stable scheme for a ternary Cahn-Hilliard system with the singular interfacial parameters. J. Comput. Phys. 442, 110451 (2021)MathSciNetMATHCrossRef Dong, L., Wang, C., Wise, S.M., Zhang, Z.: A positivity-preserving, energy stable scheme for a ternary Cahn-Hilliard system with the singular interfacial parameters. J. Comput. Phys. 442, 110451 (2021)MathSciNetMATHCrossRef
13.
go back to reference Dong, L., Wang, C., Zhang, H., Zhang, Z.: A positivity-preserving, energy stable and convergent numerical scheme for the Cahn-Hilliard equation with a Flory-Huggins-deGennes energy. Commun. Math. Sci. 17, 921–939 (2019)MathSciNetMATHCrossRef Dong, L., Wang, C., Zhang, H., Zhang, Z.: A positivity-preserving, energy stable and convergent numerical scheme for the Cahn-Hilliard equation with a Flory-Huggins-deGennes energy. Commun. Math. Sci. 17, 921–939 (2019)MathSciNetMATHCrossRef
14.
go back to reference Dong, L., Wang, C., Zhang, H., Zhang, Z.: A positivity-preserving second-order BDF scheme for the Cahn-Hilliard equation with variable interfacial parameters. Commun. Comput. Phys. 28, 967–998 (2020)MathSciNetMATHCrossRef Dong, L., Wang, C., Zhang, H., Zhang, Z.: A positivity-preserving second-order BDF scheme for the Cahn-Hilliard equation with variable interfacial parameters. Commun. Comput. Phys. 28, 967–998 (2020)MathSciNetMATHCrossRef
15.
go back to reference Duan, C., Chen, W., Liu, C., Wang, C., Yue, X.: A second order accurate, energy stable numerical scheme for one-dimensional porous medium equation by an energetic variational approach. Commun. Math. Sci., (2022). Accepted and in press Duan, C., Chen, W., Liu, C., Wang, C., Yue, X.: A second order accurate, energy stable numerical scheme for one-dimensional porous medium equation by an energetic variational approach. Commun. Math. Sci., (2022). Accepted and in press
16.
go back to reference Duan, C., Liu, C., Wang, C., Yue, X.: Convergence analysis of a numerical scheme for the porous medium equation by an energetic variational approach. Numer. Math. Theor. Meth. Appl. 13, 1–18 (2020)MathSciNetMATHCrossRef Duan, C., Liu, C., Wang, C., Yue, X.: Convergence analysis of a numerical scheme for the porous medium equation by an energetic variational approach. Numer. Math. Theor. Meth. Appl. 13, 1–18 (2020)MathSciNetMATHCrossRef
17.
go back to reference E, W., Liu, J.-G.: Projection method III. Spatial discretization on the staggered grid. Math. Comp. 71, 27–47 (2002) E, W., Liu, J.-G.: Projection method III. Spatial discretization on the staggered grid. Math. Comp. 71, 27–47 (2002)
18.
19.
go back to reference Feng, W., Guan, Z., Lowengrub, J.S., Wang, C., Wise, S.M., Chen, Y.: A uniquely solvable, energy stable numerical scheme for the functionalized Cahn-Hilliard equation and its convergence analysis. J. Sci. Comput. 76(3), 1938–1967 (2018)MathSciNetMATHCrossRef Feng, W., Guan, Z., Lowengrub, J.S., Wang, C., Wise, S.M., Chen, Y.: A uniquely solvable, energy stable numerical scheme for the functionalized Cahn-Hilliard equation and its convergence analysis. J. Sci. Comput. 76(3), 1938–1967 (2018)MathSciNetMATHCrossRef
20.
go back to reference Feng, W., Salgado, A.J., Wang, C., Wise, S.M.: Preconditioned steepest descent methods for some nonlinear elliptic equations involving p-Laplacian terms. J. Comput. Phys. 334, 45–67 (2017)MathSciNetMATHCrossRef Feng, W., Salgado, A.J., Wang, C., Wise, S.M.: Preconditioned steepest descent methods for some nonlinear elliptic equations involving p-Laplacian terms. J. Comput. Phys. 334, 45–67 (2017)MathSciNetMATHCrossRef
21.
go back to reference Feng, W., Wang, C., Wise, S.M., Zhang, Z.: A second-order energy stable Backward Differentiation Formula method for the epitaxial thin film equation with slope selection. Numer. Methods Partial Differential Equations 34(6), 1975–2007 (2018)MathSciNetMATHCrossRef Feng, W., Wang, C., Wise, S.M., Zhang, Z.: A second-order energy stable Backward Differentiation Formula method for the epitaxial thin film equation with slope selection. Numer. Methods Partial Differential Equations 34(6), 1975–2007 (2018)MathSciNetMATHCrossRef
22.
go back to reference Feng, X.: Fully discrete finite element approximations of the Navier-Stokes-Cahn-Hilliard diffuse interface model for two-phase fluid flows. SIAM J. Numer. Anal. 44, 1049–1072 (2006)MathSciNetMATHCrossRef Feng, X.: Fully discrete finite element approximations of the Navier-Stokes-Cahn-Hilliard diffuse interface model for two-phase fluid flows. SIAM J. Numer. Anal. 44, 1049–1072 (2006)MathSciNetMATHCrossRef
23.
go back to reference Feng, X., Wise, S.M.: Analysis of a fully discrete finite element approximation of a Darcy-Cahn-Hilliard diffuse interface model for the Hele-Shaw flow. SIAM J. Numer. Anal. 50, 1320–1343 (2012)MathSciNetMATHCrossRef Feng, X., Wise, S.M.: Analysis of a fully discrete finite element approximation of a Darcy-Cahn-Hilliard diffuse interface model for the Hele-Shaw flow. SIAM J. Numer. Anal. 50, 1320–1343 (2012)MathSciNetMATHCrossRef
24.
go back to reference Guermond, J.L., Minev, P., Shen, J.: An overview of projection methods for incompressible flows. Comput. Methods Appl. Mech. Engrg. 195, 6011–6045 (2006)MathSciNetMATHCrossRef Guermond, J.L., Minev, P., Shen, J.: An overview of projection methods for incompressible flows. Comput. Methods Appl. Mech. Engrg. 195, 6011–6045 (2006)MathSciNetMATHCrossRef
25.
go back to reference Han, D.: A decoupled unconditionally stable numerical scheme for the Cahn-Hilliard-Hele-Shaw system. J. Sci. Comput. 66(3), 1102–1121 (2016)MathSciNetMATHCrossRef Han, D.: A decoupled unconditionally stable numerical scheme for the Cahn-Hilliard-Hele-Shaw system. J. Sci. Comput. 66(3), 1102–1121 (2016)MathSciNetMATHCrossRef
26.
go back to reference Han, D., Wang, X.: A second order in time, uniquely solvable, unconditionally stable numerical scheme for Cahn-Hilliard-Navier-Stokes equation. J. Comput. Phys. 290, 139–156 (2015)MathSciNetMATHCrossRef Han, D., Wang, X.: A second order in time, uniquely solvable, unconditionally stable numerical scheme for Cahn-Hilliard-Navier-Stokes equation. J. Comput. Phys. 290, 139–156 (2015)MathSciNetMATHCrossRef
27.
go back to reference Han, D., Wang, X.: Decoupled energy-law preserving numerical schemes for the Cahn-Hilliard-Darcy system. Numer. Methods Partial Differential Equations 32(3), 936–954 (2016)MathSciNetMATHCrossRef Han, D., Wang, X.: Decoupled energy-law preserving numerical schemes for the Cahn-Hilliard-Darcy system. Numer. Methods Partial Differential Equations 32(3), 936–954 (2016)MathSciNetMATHCrossRef
28.
go back to reference Harlow, F., Welch, J.: Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface. Phys. Fluids 8, 2182–2189 (1965)MathSciNetMATHCrossRef Harlow, F., Welch, J.: Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface. Phys. Fluids 8, 2182–2189 (1965)MathSciNetMATHCrossRef
29.
go back to reference Kay, D., Welford, R.: Efficient numerical solution of Cahn-Hilliard-Navier-Stokes fluids in 2D. SIAM J. Sci. Comput. 29, 2241–2257 (2007)MathSciNetMATHCrossRef Kay, D., Welford, R.: Efficient numerical solution of Cahn-Hilliard-Navier-Stokes fluids in 2D. SIAM J. Sci. Comput. 29, 2241–2257 (2007)MathSciNetMATHCrossRef
30.
go back to reference Kim, J.S., Kang, K., Lowengrub, J.S.: Conservative multigrid methods for Cahn-Hilliard fluids. J. Comput. Phys. 193, 511–543 (2003)MathSciNetMATHCrossRef Kim, J.S., Kang, K., Lowengrub, J.S.: Conservative multigrid methods for Cahn-Hilliard fluids. J. Comput. Phys. 193, 511–543 (2003)MathSciNetMATHCrossRef
31.
go back to reference Li, D., Tang, T.: Stability of the semi-implicit method for the Cahn-Hilliard equation with logarithmic potentials. Ann. Appl. Math. 37, 31–60 (2021)MathSciNetMATHCrossRef Li, D., Tang, T.: Stability of the semi-implicit method for the Cahn-Hilliard equation with logarithmic potentials. Ann. Appl. Math. 37, 31–60 (2021)MathSciNetMATHCrossRef
32.
go back to reference Li, X., Qiao, Z., Wang, C.: Convergence analysis for a stabilized linear semi-implicit numerical scheme for the nonlocal Cahn-Hilliard equation. Math. Comp. 90, 171–188 (2021)MathSciNetMATHCrossRef Li, X., Qiao, Z., Wang, C.: Convergence analysis for a stabilized linear semi-implicit numerical scheme for the nonlocal Cahn-Hilliard equation. Math. Comp. 90, 171–188 (2021)MathSciNetMATHCrossRef
33.
go back to reference Li, X., Qiao, Z., Wang, C.: Stabilization parameter analysis of a second order linear numerical scheme for the nonlocal Cahn-Hilliard equation. IMA J. Numer. Anal., (2022). Accepted and in press Li, X., Qiao, Z., Wang, C.: Stabilization parameter analysis of a second order linear numerical scheme for the nonlocal Cahn-Hilliard equation. IMA J. Numer. Anal., (2022). Accepted and in press
34.
go back to reference Liu, C., Shen, J.: A phase field model for the mixture of two incompressible fluids and its approximation by a Fourier-spectral method. Physica D 179, 211–228 (2003)MathSciNetMATHCrossRef Liu, C., Shen, J.: A phase field model for the mixture of two incompressible fluids and its approximation by a Fourier-spectral method. Physica D 179, 211–228 (2003)MathSciNetMATHCrossRef
35.
go back to reference Liu, C., Shen, J., Yang, X.: Decoupled energy stable schemes for a phase-field model of two-phase incompressible flows with variable density. J. Sci. Comput. 62(2), 601–622 (2015)MathSciNetMATHCrossRef Liu, C., Shen, J., Yang, X.: Decoupled energy stable schemes for a phase-field model of two-phase incompressible flows with variable density. J. Sci. Comput. 62(2), 601–622 (2015)MathSciNetMATHCrossRef
36.
go back to reference Liu, C., Wang, C., Wang, Y.: A structure-preserving, operator splitting scheme for reaction-diffusion equations with detailed balance. J. Comput. Phys. 436, 110253 (2021)MathSciNetMATHCrossRef Liu, C., Wang, C., Wang, Y.: A structure-preserving, operator splitting scheme for reaction-diffusion equations with detailed balance. J. Comput. Phys. 436, 110253 (2021)MathSciNetMATHCrossRef
37.
go back to reference Liu, C., Wang, C., Wise, S.M., Yue, X., Zhou, S.: A positivity-preserving, energy stable and convergent numerical scheme for the Poisson-Nernst-Planck system. Math. Comp. 90, 2071–2106 (2021)MathSciNetMATHCrossRef Liu, C., Wang, C., Wise, S.M., Yue, X., Zhou, S.: A positivity-preserving, energy stable and convergent numerical scheme for the Poisson-Nernst-Planck system. Math. Comp. 90, 2071–2106 (2021)MathSciNetMATHCrossRef
38.
go back to reference Liu, C., Wang, C., Wise, S.M., Yue, X., Zhou, S.: An iteration solver for the Poisson-Nernst-Planck system and its convergence analysis. J. Comput. Appl. Math. 406, 114017 (2022)MathSciNetMATHCrossRef Liu, C., Wang, C., Wise, S.M., Yue, X., Zhou, S.: An iteration solver for the Poisson-Nernst-Planck system and its convergence analysis. J. Comput. Appl. Math. 406, 114017 (2022)MathSciNetMATHCrossRef
39.
go back to reference Liu, Y., Chen, W., Wang, C., Wise, S.M.: Error analysis of a mixed finite element method for a Cahn-Hilliard-Hele-Shaw system. Numer. Math. 135, 679–709 (2017)MathSciNetMATHCrossRef Liu, Y., Chen, W., Wang, C., Wise, S.M.: Error analysis of a mixed finite element method for a Cahn-Hilliard-Hele-Shaw system. Numer. Math. 135, 679–709 (2017)MathSciNetMATHCrossRef
40.
41.
go back to reference Minty, G.: On a monotonicity method for the solution of non-linear equations in Banach spaces. Proc. Nat. Acad. Sci. 50, 1038–1041 (1963)MathSciNetMATHCrossRef Minty, G.: On a monotonicity method for the solution of non-linear equations in Banach spaces. Proc. Nat. Acad. Sci. 50, 1038–1041 (1963)MathSciNetMATHCrossRef
42.
go back to reference Qian, Y., Wang, C., Zhou, S.: A positive and energy stable numerical scheme for the Poisson-Nernst-Planck-Cahn-Hilliard equations with steric interactions. J. Comput. Phys. 426, 109908 (2021)MathSciNetMATHCrossRef Qian, Y., Wang, C., Zhou, S.: A positive and energy stable numerical scheme for the Poisson-Nernst-Planck-Cahn-Hilliard equations with steric interactions. J. Comput. Phys. 426, 109908 (2021)MathSciNetMATHCrossRef
43.
go back to reference Samelson, R., Temam, R., Wang, C., Wang, S.: Surface pressure Poisson equation formulation of the primitive equations: Numerical schemes. SIAM J. Numer. Anal. 41, 1163–1194 (2003)MathSciNetMATHCrossRef Samelson, R., Temam, R., Wang, C., Wang, S.: Surface pressure Poisson equation formulation of the primitive equations: Numerical schemes. SIAM J. Numer. Anal. 41, 1163–1194 (2003)MathSciNetMATHCrossRef
44.
go back to reference Samelson, R., Temam, R., Wang, C., Wang, S.: A fourth order numerical method for the planetary geostrophic equations with inviscid geostrophic balance. Numer. Math. 107, 669–705 (2007)MathSciNetMATHCrossRef Samelson, R., Temam, R., Wang, C., Wang, S.: A fourth order numerical method for the planetary geostrophic equations with inviscid geostrophic balance. Numer. Math. 107, 669–705 (2007)MathSciNetMATHCrossRef
45.
go back to reference Shen, J., Yang, X.: A phase-field model and its numerical approximation for two-phase incompressible flows with different densities and viscosities. SIAM J. Sci. Comput. 32, 1159–1179 (2010)MathSciNetMATHCrossRef Shen, J., Yang, X.: A phase-field model and its numerical approximation for two-phase incompressible flows with different densities and viscosities. SIAM J. Sci. Comput. 32, 1159–1179 (2010)MathSciNetMATHCrossRef
46.
go back to reference Shen, J., Yang, X.: Decoupled, energy stable schemes for phase-field models of two-phase incompressible flows. SIAM J. Numer. Anal. 53(1), 279–296 (2015)MathSciNetMATHCrossRef Shen, J., Yang, X.: Decoupled, energy stable schemes for phase-field models of two-phase incompressible flows. SIAM J. Numer. Anal. 53(1), 279–296 (2015)MathSciNetMATHCrossRef
48.
go back to reference Yuan, M., Chen, W., Wang, C., Wise, S.M., Zhang, Z.: An energy stable finite element scheme for the three-component Cahn-Hilliard-type model for macromolecular microsphere composite hydrogels. J. Sci. Comput. 87, 78 (2021)MathSciNetMATHCrossRef Yuan, M., Chen, W., Wang, C., Wise, S.M., Zhang, Z.: An energy stable finite element scheme for the three-component Cahn-Hilliard-type model for macromolecular microsphere composite hydrogels. J. Sci. Comput. 87, 78 (2021)MathSciNetMATHCrossRef
49.
go back to reference Zhang, J., Wang, C., Wise, S.M., Zhang, Z.: Structure-preserving, energy stable numerical schemes for a liquid thin film coarsening model. SIAM J. Sci. Comput. 43(2), A1248–A1272 (2021)MathSciNetMATHCrossRef Zhang, J., Wang, C., Wise, S.M., Zhang, Z.: Structure-preserving, energy stable numerical schemes for a liquid thin film coarsening model. SIAM J. Sci. Comput. 43(2), A1248–A1272 (2021)MathSciNetMATHCrossRef
50.
go back to reference Zhao, J.: A general framework to derive linear, decoupled and energy-stable schemes for reversible-irreversible thermodynamically consistent models. Comput. Math. Appl. 110(5), 91–109 (2022)MathSciNetMATHCrossRef Zhao, J.: A general framework to derive linear, decoupled and energy-stable schemes for reversible-irreversible thermodynamically consistent models. Comput. Math. Appl. 110(5), 91–109 (2022)MathSciNetMATHCrossRef
51.
go back to reference Zhao, J., Han, D.: Second-order decoupled energy-stable schemes for Cahn-Hilliard-Navier-Stokes equations. J. Comput. Phys. 443, 110536 (2021)MathSciNetMATHCrossRef Zhao, J., Han, D.: Second-order decoupled energy-stable schemes for Cahn-Hilliard-Navier-Stokes equations. J. Comput. Phys. 443, 110536 (2021)MathSciNetMATHCrossRef
52.
go back to reference Zhao, J., Yang, X., Shen, J., Wang, Q.: A decoupled energy stable scheme for a hydrodynamic phase-field model of mixtures of nematic liquid crystals and viscous fluids. J. Comput. Phys. 305, 539–556 (2016)MathSciNetMATHCrossRef Zhao, J., Yang, X., Shen, J., Wang, Q.: A decoupled energy stable scheme for a hydrodynamic phase-field model of mixtures of nematic liquid crystals and viscous fluids. J. Comput. Phys. 305, 539–556 (2016)MathSciNetMATHCrossRef
Metadata
Title
A Positivity Preserving, Energy Stable Finite Difference Scheme for the Flory-Huggins-Cahn-Hilliard-Navier-Stokes System
Authors
Wenbin Chen
Jianyu Jing
Cheng Wang
Xiaoming Wang
Publication date
01-08-2022
Publisher
Springer US
Published in
Journal of Scientific Computing / Issue 2/2022
Print ISSN: 0885-7474
Electronic ISSN: 1573-7691
DOI
https://doi.org/10.1007/s10915-022-01872-1

Other articles of this Issue 2/2022

Journal of Scientific Computing 2/2022 Go to the issue

Premium Partner