Skip to main content
Erschienen in: Journal of Scientific Computing 3/2018

06.03.2018

A Uniquely Solvable, Energy Stable Numerical Scheme for the Functionalized Cahn–Hilliard Equation and Its Convergence Analysis

verfasst von: Wenqiang Feng, Zhen Guan, John Lowengrub, Cheng Wang, Steven M. Wise, Ying Chen

Erschienen in: Journal of Scientific Computing | Ausgabe 3/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We present and analyze a uniquely solvable and unconditionally energy stable numerical scheme for the Functionalized Cahn–Hilliard equation, including an analysis of convergence. One key difficulty associated with the energy stability is based on the fact that one nonlinear energy functional term in the expansion is neither convex nor concave. To overcome this subtle difficulty, we add two auxiliary terms to make the combined term convex, which in turns yields a convex–concave decomposition of the physical energy. As a result, both the unconditional unique solvability and the unconditional energy stability of the proposed numerical scheme are assured. In addition, a global in time \(H_{\mathrm{per}}^2\) stability of the numerical scheme is established at a theoretical level, which in turn ensures the full order convergence analysis of the scheme, which is the first such result in this field. To deal with an implicit 4-Laplacian term at each time step, we apply an efficient preconditioned steepest descent algorithm to solve the corresponding nonlinear systems in the finite difference set-up. A few numerical results are presented, which confirm the stability and accuracy of the proposed numerical scheme.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Alikakos, N., Bates, P., Chen, X.: Convergence of the Cahn–Hilliard equation to the Hele–Shaw model. Arch. Ration. Mech. Anal. 128(2), 165–205 (1994)MathSciNetCrossRefMATH Alikakos, N., Bates, P., Chen, X.: Convergence of the Cahn–Hilliard equation to the Hele–Shaw model. Arch. Ration. Mech. Anal. 128(2), 165–205 (1994)MathSciNetCrossRefMATH
2.
Zurück zum Zitat Alikakos, N., Fusco, G.: The spectrum of the Cahn–Hilliard operator for generic interface in higher space dimensions. Indiana Univ. Math. J. 42(2), 637–674 (1993)MathSciNetCrossRefMATH Alikakos, N., Fusco, G.: The spectrum of the Cahn–Hilliard operator for generic interface in higher space dimensions. Indiana Univ. Math. J. 42(2), 637–674 (1993)MathSciNetCrossRefMATH
3.
Zurück zum Zitat Allen, S.M., Cahn, J.W.: A microscopic theory for antiphase boundary motion and its application to antiphase domain coursening. Acta. Metall. 27, 1085 (1979)CrossRef Allen, S.M., Cahn, J.W.: A microscopic theory for antiphase boundary motion and its application to antiphase domain coursening. Acta. Metall. 27, 1085 (1979)CrossRef
4.
Zurück zum Zitat Aristotelous, A., Karakasian, O., Wise, S.: A mixed discontinuous Galerkin, convex splitting scheme for a modified Cahn–Hilliard equation and an efficient nonlinear multigrid solver. Discrete Contin. Dyn. Sys. B 18, 2211–2238 (2013)MathSciNetCrossRefMATH Aristotelous, A., Karakasian, O., Wise, S.: A mixed discontinuous Galerkin, convex splitting scheme for a modified Cahn–Hilliard equation and an efficient nonlinear multigrid solver. Discrete Contin. Dyn. Sys. B 18, 2211–2238 (2013)MathSciNetCrossRefMATH
5.
Zurück zum Zitat Baskaran, A., Hu, Z., Lowengrub, J., Wang, C., Wise, S., Zhou, P.: Energy stable and efficient finite-difference nonlinear multigrid schemes for the modified phase field crystal equation. J. Comput. Phys. 250, 270–292 (2013)MathSciNetCrossRefMATH Baskaran, A., Hu, Z., Lowengrub, J., Wang, C., Wise, S., Zhou, P.: Energy stable and efficient finite-difference nonlinear multigrid schemes for the modified phase field crystal equation. J. Comput. Phys. 250, 270–292 (2013)MathSciNetCrossRefMATH
6.
Zurück zum Zitat Baskaran, A., Lowengrub, J., Wang, C., Wise, S.: Convergence analysis of a second order convex splitting scheme for the modified phase field crystal equation. SIAM J. Numer. Anal. 51, 2851–2873 (2013)MathSciNetCrossRefMATH Baskaran, A., Lowengrub, J., Wang, C., Wise, S.: Convergence analysis of a second order convex splitting scheme for the modified phase field crystal equation. SIAM J. Numer. Anal. 51, 2851–2873 (2013)MathSciNetCrossRefMATH
7.
Zurück zum Zitat Bendejacq, D., Joanicot, M., Ponsinet, V.: Pearling instabilities in water-dispersed copolymer cylinders with charged brushes. Eur. Phys. J. E 17, 83–92 (2005)CrossRef Bendejacq, D., Joanicot, M., Ponsinet, V.: Pearling instabilities in water-dispersed copolymer cylinders with charged brushes. Eur. Phys. J. E 17, 83–92 (2005)CrossRef
8.
Zurück zum Zitat Boyd, J.P.: Chebyshev and Fourier Spectral Methods. Courier Corporation, North Chelmsford (2001)MATH Boyd, J.P.: Chebyshev and Fourier Spectral Methods. Courier Corporation, North Chelmsford (2001)MATH
9.
10.
Zurück zum Zitat Cahn, J., Hilliard, J.: Free energy of a nonuniform system. I. interfacial free energy. J. Chem. Phys. 28, 258 (1958)CrossRef Cahn, J., Hilliard, J.: Free energy of a nonuniform system. I. interfacial free energy. J. Chem. Phys. 28, 258 (1958)CrossRef
11.
Zurück zum Zitat Chen, F., Shen, J.: Efficient spectral-Galerkin methods for systems of coupled second-order equations and their applications. J. Comput. Phys. 231, 5016–5028 (2012)MathSciNetCrossRefMATH Chen, F., Shen, J.: Efficient spectral-Galerkin methods for systems of coupled second-order equations and their applications. J. Comput. Phys. 231, 5016–5028 (2012)MathSciNetCrossRefMATH
12.
Zurück zum Zitat Chen, W., Conde, S., Wang, C., Wang, X., Wise, S.: A linear energy stable scheme for a thin film model without slope selection. J. Sci. Comput. 52, 546–562 (2012)MathSciNetCrossRefMATH Chen, W., Conde, S., Wang, C., Wang, X., Wise, S.: A linear energy stable scheme for a thin film model without slope selection. J. Sci. Comput. 52, 546–562 (2012)MathSciNetCrossRefMATH
13.
Zurück zum Zitat Chen, W., Liu, Y., Wang, C., Wise, S.: An optimal-rate convergence analysis of a fully discrete finite difference scheme for Cahn–Hilliard–Hele–Shaw equation. Math. Comput. 85, 2231–2257 (2016)CrossRefMATH Chen, W., Liu, Y., Wang, C., Wise, S.: An optimal-rate convergence analysis of a fully discrete finite difference scheme for Cahn–Hilliard–Hele–Shaw equation. Math. Comput. 85, 2231–2257 (2016)CrossRefMATH
14.
Zurück zum Zitat Chen, W., Wang, C., Wang, X., Wise, S.: A linear iteration algorithm for energy stable second order scheme for a thin film model without slope selection. J. Sci. Comput. 59, 574–601 (2014)MathSciNetCrossRefMATH Chen, W., Wang, C., Wang, X., Wise, S.: A linear iteration algorithm for energy stable second order scheme for a thin film model without slope selection. J. Sci. Comput. 59, 574–601 (2014)MathSciNetCrossRefMATH
15.
Zurück zum Zitat Chen, X.: Spectrum for the Allen–Cahn Cahn–Hilliard and phase-field equations for generic interfaces. Commun. Partial Differ. Equ. 19, 1371–1395 (1994)MathSciNetCrossRefMATH Chen, X.: Spectrum for the Allen–Cahn Cahn–Hilliard and phase-field equations for generic interfaces. Commun. Partial Differ. Equ. 19, 1371–1395 (1994)MathSciNetCrossRefMATH
16.
17.
Zurück zum Zitat Chen, X., Elliott, C.M., Gardiner, A., Zhao, J.: Convergence of numerical solutions to the Allen–Cahn equation. Appl. Anal. 69(1), 47–56 (1998)MathSciNetMATH Chen, X., Elliott, C.M., Gardiner, A., Zhao, J.: Convergence of numerical solutions to the Allen–Cahn equation. Appl. Anal. 69(1), 47–56 (1998)MathSciNetMATH
18.
Zurück zum Zitat Cheng, K., Feng, W., Gottlieb, S., Wang, C.: A Fourier pseudospectral method for the “Good” Boussinesq equation with second-order temporal accuracy. Numer. Methods Partial Differ. Equ. 31, 202–224 (2015)MathSciNetCrossRefMATH Cheng, K., Feng, W., Gottlieb, S., Wang, C.: A Fourier pseudospectral method for the “Good” Boussinesq equation with second-order temporal accuracy. Numer. Methods Partial Differ. Equ. 31, 202–224 (2015)MathSciNetCrossRefMATH
19.
Zurück zum Zitat Christlieb, A., Jones, J., Promislow, K., Wetton, B., Willoughby, M.: High accuracy solutions to energy gradient flows from material science models. J. Comput. Phys. 257, 193 Part A–215 (2014)MathSciNetCrossRefMATH Christlieb, A., Jones, J., Promislow, K., Wetton, B., Willoughby, M.: High accuracy solutions to energy gradient flows from material science models. J. Comput. Phys. 257, 193 Part A–215 (2014)MathSciNetCrossRefMATH
20.
Zurück zum Zitat Dai, S., Promislow, K.: Geometric evolution of bilayers under the Functionalized Cahn–Hilliard equation. In: Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, p 469 (2013) Dai, S., Promislow, K.: Geometric evolution of bilayers under the Functionalized Cahn–Hilliard equation. In: Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, p 469 (2013)
21.
Zurück zum Zitat Diegel, A., Feng, X., Wise, S.: Analysis of a mixed finite element method for a Cahn–Hilliard–Darcy–Stokes system. SIAM J. Numer. Anal. 53, 127–152 (2015)MathSciNetCrossRefMATH Diegel, A., Feng, X., Wise, S.: Analysis of a mixed finite element method for a Cahn–Hilliard–Darcy–Stokes system. SIAM J. Numer. Anal. 53, 127–152 (2015)MathSciNetCrossRefMATH
22.
Zurück zum Zitat Diegel, A., Wang, C., Wang, X., Wise, S.: Convergence analysis and error estimates for a second order accurate finite element method for the Cahn–Hilliard–Navier–Stokes system. Numer. Math. 137, 495–534 (2017)MathSciNetCrossRefMATH Diegel, A., Wang, C., Wang, X., Wise, S.: Convergence analysis and error estimates for a second order accurate finite element method for the Cahn–Hilliard–Navier–Stokes system. Numer. Math. 137, 495–534 (2017)MathSciNetCrossRefMATH
23.
Zurück zum Zitat Diegel, A., Wang, C., Wise, S.: Stability and convergence of a second order mixed finite element method for the Cahn–Hilliard equation. IMA J. Numer. Anal. 36, 1867–1897 (2016)MathSciNetCrossRef Diegel, A., Wang, C., Wise, S.: Stability and convergence of a second order mixed finite element method for the Cahn–Hilliard equation. IMA J. Numer. Anal. 36, 1867–1897 (2016)MathSciNetCrossRef
24.
Zurück zum Zitat Doelman, A., Hayrapetyan, G., Promislow, K., Wetton, B.: Meander and pearling of single-curvature bilayer interfaces in the Functionalized Cahn–Hilliard equation. SIAM J. Math. Anal. 46, 3640–3677 (2014)MathSciNetCrossRefMATH Doelman, A., Hayrapetyan, G., Promislow, K., Wetton, B.: Meander and pearling of single-curvature bilayer interfaces in the Functionalized Cahn–Hilliard equation. SIAM J. Math. Anal. 46, 3640–3677 (2014)MathSciNetCrossRefMATH
26.
Zurück zum Zitat Eyre, D.: Unconditionally gradient stable time marching the Cahn–Hilliard equation. In: Bullard, J.W., Kalia, R., Stoneham, M., Chen, L. (eds.) Computational and Mathematical Models of Microstructural Evolution, vol. 53, pp. 1686–1712. Materials Research Society, Warrendale (1998) Eyre, D.: Unconditionally gradient stable time marching the Cahn–Hilliard equation. In: Bullard, J.W., Kalia, R., Stoneham, M., Chen, L. (eds.) Computational and Mathematical Models of Microstructural Evolution, vol. 53, pp. 1686–1712. Materials Research Society, Warrendale (1998)
27.
Zurück zum Zitat Feng, W., Guo, Z., Lowengrub, J., Wise, S.: A mass-conservative adaptive FAS multigrid solver for cell-centered finite difference methods on block-structured, locally-cartesian grids. J. Comput. Phys. 352, 463–497 (2018)MathSciNetCrossRefMATH Feng, W., Guo, Z., Lowengrub, J., Wise, S.: A mass-conservative adaptive FAS multigrid solver for cell-centered finite difference methods on block-structured, locally-cartesian grids. J. Comput. Phys. 352, 463–497 (2018)MathSciNetCrossRefMATH
28.
Zurück zum Zitat Feng, W., Salgado, A., Wang, C., Wise, S.: Preconditioned steepest descent methods for some nonlinear elliptic equations involving p-Laplacian terms. J. Comput. Phys. 334, 45–67 (2017)MathSciNetCrossRefMATH Feng, W., Salgado, A., Wang, C., Wise, S.: Preconditioned steepest descent methods for some nonlinear elliptic equations involving p-Laplacian terms. J. Comput. Phys. 334, 45–67 (2017)MathSciNetCrossRefMATH
29.
Zurück zum Zitat Feng, W., Wang, C., Wise, S., Zhang, Z.: A second-order energy stable Backward Differentiation Formula method for the epitaxial thin film equation with slope selection. Numer. Methods Partial Differ. Equ. (Submitted and in review, 2018) Feng, W., Wang, C., Wise, S., Zhang, Z.: A second-order energy stable Backward Differentiation Formula method for the epitaxial thin film equation with slope selection. Numer. Methods Partial Differ. Equ. (Submitted and in review, 2018)
30.
Zurück zum Zitat Feng, X., Li, Y.: Analysis of interior penalty discontinuous Galerkin methods for the Allen–Cahn equation and the mean curvature flow. IMA J. Numer. Anal. 35, 1622–1651 (2015)MathSciNetCrossRefMATH Feng, X., Li, Y.: Analysis of interior penalty discontinuous Galerkin methods for the Allen–Cahn equation and the mean curvature flow. IMA J. Numer. Anal. 35, 1622–1651 (2015)MathSciNetCrossRefMATH
31.
Zurück zum Zitat Feng, X., Li, Y., Xing, Y.: Analysis of mixed interior penalty discontinuous Galerkin methods for the Cahn–Hilliard equation and the Hele–Shaw flow. SIAM J. Numer. Anal. 54, 825–847 (2016)MathSciNetCrossRefMATH Feng, X., Li, Y., Xing, Y.: Analysis of mixed interior penalty discontinuous Galerkin methods for the Cahn–Hilliard equation and the Hele–Shaw flow. SIAM J. Numer. Anal. 54, 825–847 (2016)MathSciNetCrossRefMATH
32.
Zurück zum Zitat Feng, X., Prohl, A.: Error analysis of a mixed finite element method for the Cahn–Hilliard equation. Numer. Math. 99, 47–84 (2004)MathSciNetCrossRefMATH Feng, X., Prohl, A.: Error analysis of a mixed finite element method for the Cahn–Hilliard equation. Numer. Math. 99, 47–84 (2004)MathSciNetCrossRefMATH
33.
Zurück zum Zitat Gavish, N., Hayrapetyan, G., Promislow, K., Yang, L.: Curvature driven flow of bi-layer interfaces. Phys. D Nonlinear Phenom. 240, 675–693 (2011)CrossRefMATH Gavish, N., Hayrapetyan, G., Promislow, K., Yang, L.: Curvature driven flow of bi-layer interfaces. Phys. D Nonlinear Phenom. 240, 675–693 (2011)CrossRefMATH
34.
Zurück zum Zitat Gavish, N., Jones, J., Xu, Z., Christlieb, A., Promislow, K.: Variational models of network formation and ion transport: applications to perfluorosulfonate ionomer membranes. Polymers 4, 630–655 (2012)CrossRef Gavish, N., Jones, J., Xu, Z., Christlieb, A., Promislow, K.: Variational models of network formation and ion transport: applications to perfluorosulfonate ionomer membranes. Polymers 4, 630–655 (2012)CrossRef
35.
Zurück zum Zitat Gompper, G., Schick, M.: Correlation between structural and interfacial properties of amphiphilic systems. Phys. Rev. Lett. 65, 1116–1119 (1990)CrossRef Gompper, G., Schick, M.: Correlation between structural and interfacial properties of amphiphilic systems. Phys. Rev. Lett. 65, 1116–1119 (1990)CrossRef
36.
Zurück zum Zitat Guo, J., Wang, C., Wise, S., Yue, X.: An \(H^2\) convergence of a second-order convex-splitting, finite difference scheme for the three-dimensional Cahn–Hilliard equation. Commu. Math. Sci. 14, 489–515 (2016)CrossRefMATH Guo, J., Wang, C., Wise, S., Yue, X.: An \(H^2\) convergence of a second-order convex-splitting, finite difference scheme for the three-dimensional Cahn–Hilliard equation. Commu. Math. Sci. 14, 489–515 (2016)CrossRefMATH
37.
Zurück zum Zitat Guo, R., Xu, Y., Xu, Z.: Local discontinuous Galerkin methods for the functionalized Cahn–Hilliard equation. J. Sci. Comput. 63, 913–937 (2015)MathSciNetCrossRefMATH Guo, R., Xu, Y., Xu, Z.: Local discontinuous Galerkin methods for the functionalized Cahn–Hilliard equation. J. Sci. Comput. 63, 913–937 (2015)MathSciNetCrossRefMATH
38.
Zurück zum Zitat Hesthaven, J.S., Gottlieb, S., Gottlieb, D.: Spectral Methods for Time-Dependent Problems, vol. 21. Cambridge University Press, Cambridge (2007)CrossRefMATH Hesthaven, J.S., Gottlieb, S., Gottlieb, D.: Spectral Methods for Time-Dependent Problems, vol. 21. Cambridge University Press, Cambridge (2007)CrossRefMATH
39.
Zurück zum Zitat Hsu, W.Y., Gierke, T.D.: Ion transport and clustering in nafion perfluorinated membranes. J. Membr. Sci. 13, 307–326 (1983)CrossRef Hsu, W.Y., Gierke, T.D.: Ion transport and clustering in nafion perfluorinated membranes. J. Membr. Sci. 13, 307–326 (1983)CrossRef
40.
Zurück zum Zitat Hu, Z., Wise, S., Wang, C., Lowengrub, J.: Stable and efficient finite-difference nonlinear-multigrid schemes for the phase field crystal equation. J. Comput. Phys. 228, 5323–5339 (2009)MathSciNetCrossRefMATH Hu, Z., Wise, S., Wang, C., Lowengrub, J.: Stable and efficient finite-difference nonlinear-multigrid schemes for the phase field crystal equation. J. Comput. Phys. 228, 5323–5339 (2009)MathSciNetCrossRefMATH
41.
Zurück zum Zitat Jain, S., Bates, F.S.: Consequences of nonergodicity in aqueous binary PEO-PB micellar dispersions. Macromolecules 37, 1511–1523 (2004)CrossRef Jain, S., Bates, F.S.: Consequences of nonergodicity in aqueous binary PEO-PB micellar dispersions. Macromolecules 37, 1511–1523 (2004)CrossRef
42.
Zurück zum Zitat Jones, J.: Development of a fast and accurate time stepping scheme for the Functionalized Cahn–Hilliard equation and application to a graphics processing unit. Ph.D. thesis, Michigan State University (2013) Jones, J.: Development of a fast and accurate time stepping scheme for the Functionalized Cahn–Hilliard equation and application to a graphics processing unit. Ph.D. thesis, Michigan State University (2013)
43.
Zurück zum Zitat Li, W., Chen, W., Wang, C., Yan, Y., He, R.: A second order energy stable linear scheme for a thin film model without slope selection. J. Sci. Comput. (in press, 2018) Li, W., Chen, W., Wang, C., Yan, Y., He, R.: A second order energy stable linear scheme for a thin film model without slope selection. J. Sci. Comput. (in press, 2018)
45.
Zurück zum Zitat Promislow, K., Wu, Q.: Existence of pearled patterns in the planar functionalized Cahn–Hilliard equation. J. Differ. Equ. 259, 3298–3343 (2015)MathSciNetCrossRefMATH Promislow, K., Wu, Q.: Existence of pearled patterns in the planar functionalized Cahn–Hilliard equation. J. Differ. Equ. 259, 3298–3343 (2015)MathSciNetCrossRefMATH
46.
Zurück zum Zitat Shen, J., Wang, C., Wang, X., Wise, S.: Second-order convex splitting schemes for gradient flows with Ehrlich-Schwoebel type energy: application to thin film epitaxy. SIAM J. Numer. Anal. 50, 105–125 (2012)MathSciNetCrossRefMATH Shen, J., Wang, C., Wang, X., Wise, S.: Second-order convex splitting schemes for gradient flows with Ehrlich-Schwoebel type energy: application to thin film epitaxy. SIAM J. Numer. Anal. 50, 105–125 (2012)MathSciNetCrossRefMATH
47.
Zurück zum Zitat Torabi, S., Lowengrub, J., Voigt, A., Wise, S.: A new phase-field model for strongly anisotropic systems. In: Proceedings of the Royal Society of London A, The Royal Society, pp. rspa–2008 (2009) Torabi, S., Lowengrub, J., Voigt, A., Wise, S.: A new phase-field model for strongly anisotropic systems. In: Proceedings of the Royal Society of London A, The Royal Society, pp. rspa–2008 (2009)
48.
Zurück zum Zitat Torabi, S., Wise, S., Lowengrub, J., Ratz, A., Voigt, A.: A new method for simulating strongly anisotropic Cahn–Hilliard equations. In: MST 2007 Conference Proceedings, vol. 3, p. 1432 (2007) Torabi, S., Wise, S., Lowengrub, J., Ratz, A., Voigt, A.: A new method for simulating strongly anisotropic Cahn–Hilliard equations. In: MST 2007 Conference Proceedings, vol. 3, p. 1432 (2007)
49.
Zurück zum Zitat Wang, C., Wang, X., Wise, S.: Unconditionally stable schemes for equations of thin film epitaxy. Discrete Contin. Dyn. Syst. A 28, 405–423 (2010)MathSciNetCrossRefMATH Wang, C., Wang, X., Wise, S.: Unconditionally stable schemes for equations of thin film epitaxy. Discrete Contin. Dyn. Syst. A 28, 405–423 (2010)MathSciNetCrossRefMATH
50.
Zurück zum Zitat Wang, C., Wise, S.M.: An energy stable and convergent finite-difference scheme for the modified phase field crystal equation. SIAM J. Numer. Anal. 49, 945–969 (2011)MathSciNetCrossRefMATH Wang, C., Wise, S.M.: An energy stable and convergent finite-difference scheme for the modified phase field crystal equation. SIAM J. Numer. Anal. 49, 945–969 (2011)MathSciNetCrossRefMATH
51.
Zurück zum Zitat Wang, X., Ju, L., Du, Q.: Efficient and stable exponential time differencing Runge-Kutta methods for phase field elastic bending energy models. J. Comput. Phys. 316, 21–38 (2016)MathSciNetCrossRefMATH Wang, X., Ju, L., Du, Q.: Efficient and stable exponential time differencing Runge-Kutta methods for phase field elastic bending energy models. J. Comput. Phys. 316, 21–38 (2016)MathSciNetCrossRefMATH
52.
Zurück zum Zitat Wise, S., Kim, J., Lowengrub, J.: Solving the regularized, strongly anisotropic Cahn–Hilliard equation by an adaptive nonlinear multigrid method. J. Comput. Phys. 226, 414–446 (2007)MathSciNetCrossRefMATH Wise, S., Kim, J., Lowengrub, J.: Solving the regularized, strongly anisotropic Cahn–Hilliard equation by an adaptive nonlinear multigrid method. J. Comput. Phys. 226, 414–446 (2007)MathSciNetCrossRefMATH
53.
Zurück zum Zitat Wise, S., Wang, C., Lowengrub, J.: An energy stable and convergent finite-difference scheme for the phase field crystal equation. SIAM J. Numer. Anal. 47, 2269–2288 (2009)MathSciNetCrossRefMATH Wise, S., Wang, C., Lowengrub, J.: An energy stable and convergent finite-difference scheme for the phase field crystal equation. SIAM J. Numer. Anal. 47, 2269–2288 (2009)MathSciNetCrossRefMATH
54.
Zurück zum Zitat Yan, Y., Chen, W., Wang, C., Wise, S.: A second-order energy stable BDF numerical scheme for the Cahn–Hilliard equation. Commun. Comput. Phys. 23, 572–602 (2018) Yan, Y., Chen, W., Wang, C., Wise, S.: A second-order energy stable BDF numerical scheme for the Cahn–Hilliard equation. Commun. Comput. Phys. 23, 572–602 (2018)
Metadaten
Titel
A Uniquely Solvable, Energy Stable Numerical Scheme for the Functionalized Cahn–Hilliard Equation and Its Convergence Analysis
verfasst von
Wenqiang Feng
Zhen Guan
John Lowengrub
Cheng Wang
Steven M. Wise
Ying Chen
Publikationsdatum
06.03.2018
Verlag
Springer US
Erschienen in
Journal of Scientific Computing / Ausgabe 3/2018
Print ISSN: 0885-7474
Elektronische ISSN: 1573-7691
DOI
https://doi.org/10.1007/s10915-018-0690-1

Weitere Artikel der Ausgabe 3/2018

Journal of Scientific Computing 3/2018 Zur Ausgabe

Premium Partner