Skip to main content
Top
Published in: Wireless Networks 5/2019

12-02-2018

A practical sleep coordination and management scheme with duty cycle control for energy sustainable IEEE 802.11s wireless mesh networks

Authors: Hadi Barghi, Seyed Vahid Azhari

Published in: Wireless Networks | Issue 5/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

We consider the energy sustainable operation of solar powered IEEE 802.11s wireless mesh networks. Our main contribution is the development of a simple and novel sleep scheduling scheme that is local and distributed and provides contiguous sleep intervals that can be used for putting both radio interface cards and the main-board into deep sleep mode. We show this provides substantial energy savings as main-board power consumption comprises a significant portion of total node power. Unlike many sleep coordination schemes developed for Wireless Sensor Networks, our approach is suitable for Wireless Mesh Networks having much larger traffic demand and non-tree-like routing pattern. In addition, we propose a local duty-cycle control scheme, which regulates node awake time and naturally limits the amount of elastic traffic that moves along energy limited nodes. This is coupled with an implicit admission control scheme, which limits the number of non-elastic flows admitted to the network. More importantly, our scheme does not modify the IEEE 802.11 MAC and does not require information of the traffic demand nor input energy pattern. We have evaluated the performance of our approach using NS3 simulations by considering its traffic volume, lifetime and numerous other parameters and have also compared it to both perfect scheduling and default IEEE 802.11s behavior. Our results are also backed by evaluating numerous randomly generated topologies. A detailed discussion of the effect of topological aspects of the network on its sustainability characteristics is also provided.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Footnotes
1
Synchronization is out the scope of this work but can be potentially achieved using a number of schemes, such as [29, 30]
 
2
As an example, it can be determined such that MAPs are able to sustain all critical and control traffic until the beginning of the next daylight period. Examples of critical traffic is video monitoring of an important region or emergency messages. An example for calculating \(B^{req}\) is described in the “Appendix”.
 
3
Small variations in solar input energy over the sustainability epoch are averaged out to obtain a constant expected input energy for each epoch.
 
4
In practice the \(B^{req}\) profile is computed based on traffic demand during night-time. This is out of the scope of this manuscript. An example derivation is provided in the Annex.
 
5
Shorter delay can be easily achieved by properly scaling the service interval.
 
Literature
1.
go back to reference Akyildiz, I. F., Wang, X., & Wang, W. (2005). Wireless mesh networks: A survey. Computer Networks and ISDN Systems, 47(4), 445–487.MATH Akyildiz, I. F., Wang, X., & Wang, W. (2005). Wireless mesh networks: A survey. Computer Networks and ISDN Systems, 47(4), 445–487.MATH
2.
go back to reference Ye, W., Heidemann, J., & Estrin, D. (2002). An energy-efficient MAC protocol for wireless sensor networks. In: IEEE International Conference on Computer Communications (INFOCOM), pp. 1567–1576. Ye, W., Heidemann, J., & Estrin, D. (2002). An energy-efficient MAC protocol for wireless sensor networks. In: IEEE International Conference on Computer Communications (INFOCOM), pp. 1567–1576.
3.
go back to reference Buettner, M., Yee, G. V., Anderson, E., & Han, R. (2006). X-MAC: A short preamble MAC protocol for duty-cycled wireless sensor networks. In ACM Conference on Embedded Networked Sensor Systems (SenSys), Vol. 4, pp. 307–320. Buettner, M., Yee, G. V., Anderson, E., & Han, R. (2006). X-MAC: A short preamble MAC protocol for duty-cycled wireless sensor networks. In ACM Conference on Embedded Networked Sensor Systems (SenSys), Vol. 4, pp. 307–320.
4.
go back to reference Rhee, I., Warrier, A., Min, J., & Xu, L. (2009). Drand: Distributed randomized TDMA scheduling for wireless ad-hoc networks. IEEE Transactions on Mobile Computing, 8(10), 1384–1396.CrossRef Rhee, I., Warrier, A., Min, J., & Xu, L. (2009). Drand: Distributed randomized TDMA scheduling for wireless ad-hoc networks. IEEE Transactions on Mobile Computing, 8(10), 1384–1396.CrossRef
5.
go back to reference Fan, Q., Fan, J., Li, J., & Wang, X. (2012). A multi-hop energy-efficient sleeping MAC protocol based on TDMA scheduling for wireless mesh sensor networks. Journal of Networks, 7(9), 1355–1361.CrossRef Fan, Q., Fan, J., Li, J., & Wang, X. (2012). A multi-hop energy-efficient sleeping MAC protocol based on TDMA scheduling for wireless mesh sensor networks. Journal of Networks, 7(9), 1355–1361.CrossRef
6.
go back to reference Dbibih, I., Iala, I., Aboutajdine, D., & Zytoune, O. (2016). ASS-MAC: Adaptive sleeping sensor MAC protocol designed for wireless sensor networks. In International Conference on Information Technology for Organizations Development (IT4OD), pp. 1–5. Dbibih, I., Iala, I., Aboutajdine, D., & Zytoune, O. (2016). ASS-MAC: Adaptive sleeping sensor MAC protocol designed for wireless sensor networks. In International Conference on Information Technology for Organizations Development (IT4OD), pp. 1–5.
7.
go back to reference Nguyen, V. T., Gautier, M., & Berder, O. (2016). FTA-MAC: Fast traffic adaptive energy efficient MAC protocol for wireless sensor networks. In International Conference on Cognitive Radio Oriented Wireless Networks (Crowncom), pp. 207–219. Nguyen, V. T., Gautier, M., & Berder, O. (2016). FTA-MAC: Fast traffic adaptive energy efficient MAC protocol for wireless sensor networks. In International Conference on Cognitive Radio Oriented Wireless Networks (Crowncom), pp. 207–219.
8.
go back to reference Committee ILS, et al. (1999). Wireless LAN medium access control (MAC) and physical layer (PHY) specifications. IEEE Standard 802(11). Committee ILS, et al. (1999). Wireless LAN medium access control (MAC) and physical layer (PHY) specifications. IEEE Standard 802(11).
9.
go back to reference Committee S, et al. (2005). Wireless LAN medium access control (MAC) and physical layer (PHY) specifications: Amendment 8: Medium access control (MAC) quality of service enhancements. IEEE Computer Society. Committee S, et al. (2005). Wireless LAN medium access control (MAC) and physical layer (PHY) specifications: Amendment 8: Medium access control (MAC) quality of service enhancements. IEEE Computer Society.
10.
go back to reference Zhang, F., Todd, T. D., Zhao, D., & Kezys, V. (2006). Power saving access points for IEEE 802.11 wireless network infrastructure. IEEE Transactions on Mobile Computing, 5(2), 144–156.CrossRef Zhang, F., Todd, T. D., Zhao, D., & Kezys, V. (2006). Power saving access points for IEEE 802.11 wireless network infrastructure. IEEE Transactions on Mobile Computing, 5(2), 144–156.CrossRef
11.
go back to reference Li, Y., Todd, T. D., & Zhao, D. (2005). Access point power saving in solar/battery powered IEEE 802.11 ESS mesh networks. In International Conference on Quality of Service in Heterogeneous Wired/Wireless Networks, pp. 44–49. Li, Y., Todd, T. D., & Zhao, D. (2005). Access point power saving in solar/battery powered IEEE 802.11 ESS mesh networks. In International Conference on Quality of Service in Heterogeneous Wired/Wireless Networks, pp. 44–49.
12.
go back to reference Association IS, et al. (2012). 802.11-2012-IEEE standard for information technology—Telecommunications and information exchange between systems local and metropolitan area networks-specific requirements part 11: Wireless LAN medium access control (MAC) and physical layer (PHY) specifications. IEEE Standard. Association IS, et al. (2012). 802.11-2012-IEEE standard for information technology—Telecommunications and information exchange between systems local and metropolitan area networks-specific requirements part 11: Wireless LAN medium access control (MAC) and physical layer (PHY) specifications. IEEE Standard.
13.
go back to reference Afzal, B., Alvi, S. A., & Shah, G. A. (2016). Adaptive duty cycling based multi-hop PSMP for internet of multimedia things. In 13th IEEE Annual Consumer Communications and Networking Conference (CCNC), pp. 895–900. Afzal, B., Alvi, S. A., & Shah, G. A. (2016). Adaptive duty cycling based multi-hop PSMP for internet of multimedia things. In 13th IEEE Annual Consumer Communications and Networking Conference (CCNC), pp. 895–900.
14.
go back to reference Ghosh, D., Gupta, A., & Mohapatra, P. (2007). Admission control and interference-aware scheduling in multi-hop WIMAX networks. In IEEE International Conference on Mobile Adhoc and Sensor Systems, pp. 1–9. Ghosh, D., Gupta, A., & Mohapatra, P. (2007). Admission control and interference-aware scheduling in multi-hop WIMAX networks. In IEEE International Conference on Mobile Adhoc and Sensor Systems, pp. 1–9.
15.
go back to reference Zou, J., & Zhao, D. (2009). Real-time CBR traffic scheduling in IEEE 802.16-based wireless mesh networks. Wireless Networks, 15(1), 65–72.CrossRef Zou, J., & Zhao, D. (2009). Real-time CBR traffic scheduling in IEEE 802.16-based wireless mesh networks. Wireless Networks, 15(1), 65–72.CrossRef
16.
go back to reference Wang, Z., Li, J., Kang, L., Wang, C. & Zhang, Y. (2015). Low-latency tdma sleep scheduling in wireless sensor networks. In IEEE/CIC International Conference on Communications in China (ICCC), pp. 1–6. Wang, Z., Li, J., Kang, L., Wang, C. & Zhang, Y. (2015). Low-latency tdma sleep scheduling in wireless sensor networks. In IEEE/CIC International Conference on Communications in China (ICCC), pp. 1–6.
17.
go back to reference MalekpourShahraki, M., Barghi, H., Azhari, S. V., & Asaiyan, S. (2016). Distributed and Energy Efficient Scheduling for IEEE802.11s Wireless EDCA Networks. Wireless Personal Communications, 90(1), 301–323.CrossRef MalekpourShahraki, M., Barghi, H., Azhari, S. V., & Asaiyan, S. (2016). Distributed and Energy Efficient Scheduling for IEEE802.11s Wireless EDCA Networks. Wireless Personal Communications, 90(1), 301–323.CrossRef
18.
go back to reference Kansal, A., Hsu, J., Zahedi, S., & Srivastava, M. B. (2007). Power management in energy harvesting sensor networks. ACM Transactions on Embedded Computing Systems (TECS), 6(4), 32.CrossRef Kansal, A., Hsu, J., Zahedi, S., & Srivastava, M. B. (2007). Power management in energy harvesting sensor networks. ACM Transactions on Embedded Computing Systems (TECS), 6(4), 32.CrossRef
19.
go back to reference Vigorito, C., Ganesan, D., & Barto, A. (2007). Adaptive control of duty cycling in energy-harvesting wireless sensor networks. In The 4th Annual IEEE Communications Society Conference on Sensor, Mesh and Ad Hoc Communications and Networks (SECON), pp. 21–30. Vigorito, C., Ganesan, D., & Barto, A. (2007). Adaptive control of duty cycling in energy-harvesting wireless sensor networks. In The 4th Annual IEEE Communications Society Conference on Sensor, Mesh and Ad Hoc Communications and Networks (SECON), pp. 21–30.
20.
go back to reference Buchli, B., Sutton, F., Beutel, J., & Thiele, L. (2014). Dynamic power management for long-term energy neutral operation of solar energy harvesting systems. In 12th ACM Conference on Embedded Network Sensor Systems (SenSys), pp. 31–45. Buchli, B., Sutton, F., Beutel, J., & Thiele, L. (2014). Dynamic power management for long-term energy neutral operation of solar energy harvesting systems. In 12th ACM Conference on Embedded Network Sensor Systems (SenSys), pp. 31–45.
21.
go back to reference Peng, S., & Low, C. (2014). Prediction free energy neutral power management for energy harvesting wireless sensor nodes. Ad Hoc Networks, 13, 351–367.CrossRef Peng, S., & Low, C. (2014). Prediction free energy neutral power management for energy harvesting wireless sensor nodes. Ad Hoc Networks, 13, 351–367.CrossRef
22.
go back to reference Bui, N., & Rossi, M. (2015). Staying alive: System design for self-sufficient sensor networks. ACM Transactions on Sensor Networks (TOSN), 11(3), 40.CrossRef Bui, N., & Rossi, M. (2015). Staying alive: System design for self-sufficient sensor networks. ACM Transactions on Sensor Networks (TOSN), 11(3), 40.CrossRef
23.
go back to reference Romaniello, G., Alphand, O., Guizzetti, R., & Duda, A. (2015). Sustainable traffic aware duty-cycle adaptation in harvested multi-hop wireless sensor. In IEEE 81st Vehicular Technology Conference (VTC Spring), pp. 1–6. Romaniello, G., Alphand, O., Guizzetti, R., & Duda, A. (2015). Sustainable traffic aware duty-cycle adaptation in harvested multi-hop wireless sensor. In IEEE 81st Vehicular Technology Conference (VTC Spring), pp. 1–6.
24.
go back to reference Cai, L. X., Liu, Y., Luan, T., Shen, X., Mark, J., & Poor, H. V. (2014). Sustainability analysis and resource management for wireless mesh networks with renewable energy supplies. IEEE Journal on Selected Areas in Communications, 32(2), 345–355.CrossRef Cai, L. X., Liu, Y., Luan, T., Shen, X., Mark, J., & Poor, H. V. (2014). Sustainability analysis and resource management for wireless mesh networks with renewable energy supplies. IEEE Journal on Selected Areas in Communications, 32(2), 345–355.CrossRef
25.
go back to reference Teng, R., Li, H., Zhang, B., & Miura, R. (2016). Differentiation presentation for sustaining internet access in a disaster-resilient homogeneous wireless infrastructure. IEEE Access, 4, 514–528.CrossRef Teng, R., Li, H., Zhang, B., & Miura, R. (2016). Differentiation presentation for sustaining internet access in a disaster-resilient homogeneous wireless infrastructure. IEEE Access, 4, 514–528.CrossRef
26.
go back to reference Zhou, L., Kang, G., Zhang, N., & Cheng, J. (2015). Spectral efficiency guaranteed sustainable routing for energy renewable wireless mesh networks. In International Conference on Wireless Communications and Signal Processing (WCSP), pp. 1–5. Zhou, L., Kang, G., Zhang, N., & Cheng, J. (2015). Spectral efficiency guaranteed sustainable routing for energy renewable wireless mesh networks. In International Conference on Wireless Communications and Signal Processing (WCSP), pp. 1–5.
27.
go back to reference Badawy, G. H., Sayegh, A. A., & Todd, T. D. (2009). Fair flow control in solar powered WLAN mesh networks. In IEEE Wireless Communications and Networking Conference(WCNC), pp. 1–6. Badawy, G. H., Sayegh, A. A., & Todd, T. D. (2009). Fair flow control in solar powered WLAN mesh networks. In IEEE Wireless Communications and Networking Conference(WCNC), pp. 1–6.
28.
go back to reference Sarkar, S., Khouzani, M. H. R., & Kar, K. (2013). Optimal routing and scheduling in multihop wireless renewable energy networks. IEEE Transaction on Automatic Control, 58(7), 1792–1798.MathSciNetCrossRefMATH Sarkar, S., Khouzani, M. H. R., & Kar, K. (2013). Optimal routing and scheduling in multihop wireless renewable energy networks. IEEE Transaction on Automatic Control, 58(7), 1792–1798.MathSciNetCrossRefMATH
29.
go back to reference Porsch, M., & Bauschert, T. (2014). Aligned beacon transmissions to increase IEEE 802.11s light sleep mode scalability. In Advances in Communication Networking, pp. 173–184. Porsch, M., & Bauschert, T. (2014). Aligned beacon transmissions to increase IEEE 802.11s light sleep mode scalability. In Advances in Communication Networking, pp. 173–184.
30.
go back to reference Safonov, A., & Lyakhov, A. (2008). Synchronization and beaconing in IEEE 802.11s mesh networks. In International Conference on Telecommunications (ICT), pp. 1–6. Safonov, A., & Lyakhov, A. (2008). Synchronization and beaconing in IEEE 802.11s mesh networks. In International Conference on Telecommunications (ICT), pp. 1–6.
31.
go back to reference Heusse, M., Rousseau, F., Berger-Sabbatel, G., & Duda, A. (2003). Performance anomaly of 802.11b. In: 22th Annual Joint Conference of the IEEE Computer and Communications Societies (INFOCOM), Vol. 2. pp. 836–843. Heusse, M., Rousseau, F., Berger-Sabbatel, G., & Duda, A. (2003). Performance anomaly of 802.11b. In: 22th Annual Joint Conference of the IEEE Computer and Communications Societies (INFOCOM), Vol. 2. pp. 836–843.
32.
go back to reference Halperin, D., Greenstein, B., Sheth, A., & Wetherall, D. (2010). Demystifying 802.11n power consumption. In Proceedings of the 2010 International Conference on Power Aware Computing and Systems, p. 1. Halperin, D., Greenstein, B., Sheth, A., & Wetherall, D. (2010). Demystifying 802.11n power consumption. In Proceedings of the 2010 International Conference on Power Aware Computing and Systems, p. 1.
33.
go back to reference Wald, L., Albuisson, M., Best, C., Delamare, C., Dumortier, D., Gaboardi, E., et al. (2002). Soda: A project for the integration and exploitation of networked solar radiation databases. In Environmental Communication in the Information Society, International Society for Environmental Protection, Vienna, Austria, pp. 713–720. http://www.soda-is.com. Wald, L., Albuisson, M., Best, C., Delamare, C., Dumortier, D., Gaboardi, E., et al. (2002). Soda: A project for the integration and exploitation of networked solar radiation databases. In Environmental Communication in the Information Society, International Society for Environmental Protection, Vienna, Austria, pp. 713–720. http://​www.​soda-is.​com.
Metadata
Title
A practical sleep coordination and management scheme with duty cycle control for energy sustainable IEEE 802.11s wireless mesh networks
Authors
Hadi Barghi
Seyed Vahid Azhari
Publication date
12-02-2018
Publisher
Springer US
Published in
Wireless Networks / Issue 5/2019
Print ISSN: 1022-0038
Electronic ISSN: 1572-8196
DOI
https://doi.org/10.1007/s11276-018-1683-6

Other articles of this Issue 5/2019

Wireless Networks 5/2019 Go to the issue