Skip to main content
Top
Published in: Journal of Electronic Materials 2/2024

21-12-2023 | Original Research Article

A Probabilistic Bayesian Machine Learning Framework for Comprehensive Characterization of Bond Wires in IGBT Modules Under Thermomechanical Loadings

Authors: Max-Fredi Quispe-Aguilar, Rosa Huaraca Aparco, Calixto Cañari Otero, Margoth Moreno Huamán, Yersi-Luis Huamán-Romaní

Published in: Journal of Electronic Materials | Issue 2/2024

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A Bayesian machine learning (ML) framework was introduced for the comprehensive characterization of bond wires within insulated gate bipolar transistor (IGBT) modules under the influence of thermomechanical loadings. The primary objective of this work was to predict two critical performance metrics, namely, equivalent plastic deformation (EPD) and the number of cycles to failure (Nf). At the core of our investigation was the dependable acquisition of training data via finite element method simulations. Based on the results, exceptional predictive accuracy was achieved, as evidenced by the impressive R-squared values of 0.962 for EPD and 0.927 for Nf, both of which are obtained from the Bayesian ML model. The high performance of the Bayesian model can be attributed to its ability to effectively capture complex relationships within the data while simultaneously being robust in handling uncertainties, rendering it suitable for situations characterized by limited datasets. Furthermore, it was revealed that the weight functions of the input parameters were significantly influenced by the values of the output targets, illustrating the distinct dependencies between each output target (EPD and Nf) and the relevant input features. These findings contribute to a deeper comprehension of the intricate interactions between input parameters and output metrics, ultimately aiding in the development of more precise and dependable models for bond wire characterization in IGBT modules.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference X.L. Wu, C.Y. Li, J.L. Yang, Y. Liu, and X.H. Han, Theoretical and experimental research on flow boiling heat transfer in microchannels for IGBT modules. Int. J. Heat Mass Transf. 205, 123900 (2023).CrossRef X.L. Wu, C.Y. Li, J.L. Yang, Y. Liu, and X.H. Han, Theoretical and experimental research on flow boiling heat transfer in microchannels for IGBT modules. Int. J. Heat Mass Transf. 205, 123900 (2023).CrossRef
2.
go back to reference S. Gao, R. Wang, H. Wang, and R. Kang, Warping model of high-power IGBT modules subjected to reflow soldering process. Int. J. Mech. Sci. 251, 108350 (2023).CrossRef S. Gao, R. Wang, H. Wang, and R. Kang, Warping model of high-power IGBT modules subjected to reflow soldering process. Int. J. Mech. Sci. 251, 108350 (2023).CrossRef
3.
go back to reference B. Zhou, F. Zeng, X. Jiang, W. Lian, B. Shi, and P. Zhang, Thermal properties of low-temperature-sintered graphene/nano-silver paste for insulated gate bipolar transistor packages. J. Electron. Mater. 52, 4979 (2023).CrossRef B. Zhou, F. Zeng, X. Jiang, W. Lian, B. Shi, and P. Zhang, Thermal properties of low-temperature-sintered graphene/nano-silver paste for insulated gate bipolar transistor packages. J. Electron. Mater. 52, 4979 (2023).CrossRef
4.
go back to reference L. Karanja, P. Pichon, J. Brandelero, and M. Legros, Effect of post bonding annealing on the reliability of Al based wire bondings in IGBTs. Microelectron. Reliab. 138, 114647 (2022).CrossRef L. Karanja, P. Pichon, J. Brandelero, and M. Legros, Effect of post bonding annealing on the reliability of Al based wire bondings in IGBTs. Microelectron. Reliab. 138, 114647 (2022).CrossRef
5.
go back to reference H. Zhou, Y. Zhang, J. Cao, C. Su, C. Li, A. Chang, and B. An, Research progress on bonding wire for microelectronic packaging. Micromachines 14, 432 (2023).CrossRef H. Zhou, Y. Zhang, J. Cao, C. Su, C. Li, A. Chang, and B. An, Research progress on bonding wire for microelectronic packaging. Micromachines 14, 432 (2023).CrossRef
6.
go back to reference A. Abuelnaga, M. Narimani, and A.S. Bahman, A review on IGBT module failure modes and lifetime testing. IEEE Access 9, 9643 (2021).CrossRef A. Abuelnaga, M. Narimani, and A.S. Bahman, A review on IGBT module failure modes and lifetime testing. IEEE Access 9, 9643 (2021).CrossRef
8.
go back to reference L. Xie, E. Deng, S. Yang, Y. Zhang, Y. Zhong, Y. Wang, and Y. Huang, State-of-the-art of the bond wire failure mechanism and power cycling lifetime in power electronics. Microelectron. Reliab. 147, 115060 (2023).CrossRef L. Xie, E. Deng, S. Yang, Y. Zhang, Y. Zhong, Y. Wang, and Y. Huang, State-of-the-art of the bond wire failure mechanism and power cycling lifetime in power electronics. Microelectron. Reliab. 147, 115060 (2023).CrossRef
9.
go back to reference N. Dornic, A. Ibrahim, Z. Khatir, N. Degrenne, S. Mollov, and D. Ingrosso, Analysis of the aging mechanism occurring at the bond-wire contact of IGBT power devices during power cycling. Microelectron. Reliab. 114, 113873 (2020).CrossRef N. Dornic, A. Ibrahim, Z. Khatir, N. Degrenne, S. Mollov, and D. Ingrosso, Analysis of the aging mechanism occurring at the bond-wire contact of IGBT power devices during power cycling. Microelectron. Reliab. 114, 113873 (2020).CrossRef
10.
go back to reference F. Qin, X. Bie, T. An, J. Dai, Y. Dai, and P. Chen, A lifetime prediction method for IGBT modules considering the self-accelerating effect of bond wire damage. IEEE J. Emerg. Sel. Top. Power Electron. 9, 2271 (2021).CrossRef F. Qin, X. Bie, T. An, J. Dai, Y. Dai, and P. Chen, A lifetime prediction method for IGBT modules considering the self-accelerating effect of bond wire damage. IEEE J. Emerg. Sel. Top. Power Electron. 9, 2271 (2021).CrossRef
11.
go back to reference Y. Huang, Y. Jia, Y. Luo, F. Xiao, and B. Liu, Lifting-off of al bonding wires in IGBT modules under power cycling: failure mechanism and lifetime model. IEEE J. Emerg. Sel. Top. Power Electron. 8, 3162 (2020).CrossRef Y. Huang, Y. Jia, Y. Luo, F. Xiao, and B. Liu, Lifting-off of al bonding wires in IGBT modules under power cycling: failure mechanism and lifetime model. IEEE J. Emerg. Sel. Top. Power Electron. 8, 3162 (2020).CrossRef
12.
go back to reference S. Manoharan, C. Patel, S. Dunford, J. Beshears, and P. McCluskey, Life prediction of copper wire bonds in commercial devices using principal component analysis (PCA). Microelectron. Reliab. 99, 137 (2019).CrossRef S. Manoharan, C. Patel, S. Dunford, J. Beshears, and P. McCluskey, Life prediction of copper wire bonds in commercial devices using principal component analysis (PCA). Microelectron. Reliab. 99, 137 (2019).CrossRef
13.
go back to reference Y. Zhang, K. Wu, H. Li, S. Shen, W. Cao, F. Li, and J. Han, Thermal fatigue analysis of gold wire bonding solder joints in MEMS pressure sensors by thermal cycling tests. Microelectron. Reliab. 139, 114829 (2022).CrossRef Y. Zhang, K. Wu, H. Li, S. Shen, W. Cao, F. Li, and J. Han, Thermal fatigue analysis of gold wire bonding solder joints in MEMS pressure sensors by thermal cycling tests. Microelectron. Reliab. 139, 114829 (2022).CrossRef
15.
go back to reference Y. Huang, Y. Luo, F. Xiao, B. Liu, and X. Tang, Evaluation of the degradation in electrothermal characteristics of IGBTs during thermal cycling cocaused by solder cracking and Al-wires lifting-off based on iterative looping. IEEE Trans. Power Electron. 38, 1768 (2023).CrossRef Y. Huang, Y. Luo, F. Xiao, B. Liu, and X. Tang, Evaluation of the degradation in electrothermal characteristics of IGBTs during thermal cycling cocaused by solder cracking and Al-wires lifting-off based on iterative looping. IEEE Trans. Power Electron. 38, 1768 (2023).CrossRef
17.
go back to reference Q. Huang, C. Peng, S.F.-M. Ellen, W. Zhu, and L. Wang, A finite element analysis on the reliability of heavy bonding wire for high-power IGBT module. IEEE Trans. Compon. Packag. Manuf. Technol. 11, 212 (2021).CrossRef Q. Huang, C. Peng, S.F.-M. Ellen, W. Zhu, and L. Wang, A finite element analysis on the reliability of heavy bonding wire for high-power IGBT module. IEEE Trans. Compon. Packag. Manuf. Technol. 11, 212 (2021).CrossRef
18.
go back to reference L. Li, Y. He, L. Wang, C. Wang, and X. Liu, IGBT lifetime model considering composite failure modes. Mater. Sci. Semicond. Process. 143, 106529 (2022).CrossRef L. Li, Y. He, L. Wang, C. Wang, and X. Liu, IGBT lifetime model considering composite failure modes. Mater. Sci. Semicond. Process. 143, 106529 (2022).CrossRef
20.
go back to reference V. Samavatian, M. Fotuhi-Firuzabad, M. Samavatian, P. Dehghanian, and F. Blaabjerg, Correlation-driven machine learning for accelerated reliability assessment of solder joints in electronics. Sci. Rep. 10, 14821 (2020).CrossRef V. Samavatian, M. Fotuhi-Firuzabad, M. Samavatian, P. Dehghanian, and F. Blaabjerg, Correlation-driven machine learning for accelerated reliability assessment of solder joints in electronics. Sci. Rep. 10, 14821 (2020).CrossRef
21.
go back to reference V. Voet, F. Van Loock, C. De Fruytier, A. Simar, and T. Pardoen, Machine learning aided modelling of thermomechanical fatigue of solder joints in electronic component assemblies. Int. J. Fatigue 167, 107298 (2023).CrossRef V. Voet, F. Van Loock, C. De Fruytier, A. Simar, and T. Pardoen, Machine learning aided modelling of thermomechanical fatigue of solder joints in electronic component assemblies. Int. J. Fatigue 167, 107298 (2023).CrossRef
22.
go back to reference R.R. Kurniawan, B.T. Sayed, A. Sari, J.P. Luna, A.K. Kareem, and N.A. Hussien, A micromechanical data-driven machine-learning approach for microstructural characterization of solder balls in electronic packages subjected to thermomechanical fatigue. J. Electron. Mater. 52, 4614 (2023).CrossRef R.R. Kurniawan, B.T. Sayed, A. Sari, J.P. Luna, A.K. Kareem, and N.A. Hussien, A micromechanical data-driven machine-learning approach for microstructural characterization of solder balls in electronic packages subjected to thermomechanical fatigue. J. Electron. Mater. 52, 4614 (2023).CrossRef
23.
go back to reference V. Samavatian, M. Fotuhi-Firuzabad, M. Samavatian, P. Dehghanian, and F. Blaabjerg, Iterative machine learning-aided framework bridges between fatigue and creep damages in solder interconnections. IEEE Trans. Compon. Packag. Manuf. Technol. 12, 349 (2022).CrossRef V. Samavatian, M. Fotuhi-Firuzabad, M. Samavatian, P. Dehghanian, and F. Blaabjerg, Iterative machine learning-aided framework bridges between fatigue and creep damages in solder interconnections. IEEE Trans. Compon. Packag. Manuf. Technol. 12, 349 (2022).CrossRef
24.
go back to reference B. Zhang and Y. Gao, IGBT reliability analysis of photovoltaic inverter with reactive power output capability. Microelectron. Reliab. 147, 115073 (2023).CrossRef B. Zhang and Y. Gao, IGBT reliability analysis of photovoltaic inverter with reactive power output capability. Microelectron. Reliab. 147, 115073 (2023).CrossRef
25.
go back to reference T.-C. Chen, M.J.C. Opulencia, H.S. Majdi, A.T. Hammid, H. Sharma, S. Sajjadifar, and A. Surendar, Estimation of thermomechanical fatigue lifetime of ball grid solder joints in electronic devices using a machine learning approach. J. Electron. Mater. 51, 3495 (2022).CrossRef T.-C. Chen, M.J.C. Opulencia, H.S. Majdi, A.T. Hammid, H. Sharma, S. Sajjadifar, and A. Surendar, Estimation of thermomechanical fatigue lifetime of ball grid solder joints in electronic devices using a machine learning approach. J. Electron. Mater. 51, 3495 (2022).CrossRef
26.
go back to reference X. Dai, X. Yang, X. Wu, C. Tu, and G. Liu, Analytical modeling of thermomechanical stress for bond wire of IGBT module. Microelectron. Reliab. 127, 114401 (2021).CrossRef X. Dai, X. Yang, X. Wu, C. Tu, and G. Liu, Analytical modeling of thermomechanical stress for bond wire of IGBT module. Microelectron. Reliab. 127, 114401 (2021).CrossRef
27.
go back to reference N. Dornic, Z. Khatir, S.H. Tran, A. Ibrahim, R. Lallemand, J.-P. Ousten, J. Ewanchuk, and S.V. Mollov, Stress-based model for lifetime estimation of bond wire contacts using power cycling tests and finite-element modeling. IEEE J. Emerg. Sel. Top. Power Electron. 7, 1659 (2019).CrossRef N. Dornic, Z. Khatir, S.H. Tran, A. Ibrahim, R. Lallemand, J.-P. Ousten, J. Ewanchuk, and S.V. Mollov, Stress-based model for lifetime estimation of bond wire contacts using power cycling tests and finite-element modeling. IEEE J. Emerg. Sel. Top. Power Electron. 7, 1659 (2019).CrossRef
28.
go back to reference M. Hernes, S. D’Arco, A. Antonopoulos, and D. Peftitsis, Failure analysis and lifetime assessment of IGBT power modules at low temperature stress cycles. IET Power Electron. 14, 1271 (2021).CrossRef M. Hernes, S. D’Arco, A. Antonopoulos, and D. Peftitsis, Failure analysis and lifetime assessment of IGBT power modules at low temperature stress cycles. IET Power Electron. 14, 1271 (2021).CrossRef
29.
go back to reference P.A. Agyakwa, L. Yang, E. Arjmand, P. Evans, M.R. Corfield, and C.M. Johnson, Damage evolution in Al wire bonds subjected to a junction temperature fluctuation of 30 K. J. Electron. Mater. 45, 3659 (2016).CrossRef P.A. Agyakwa, L. Yang, E. Arjmand, P. Evans, M.R. Corfield, and C.M. Johnson, Damage evolution in Al wire bonds subjected to a junction temperature fluctuation of 30 K. J. Electron. Mater. 45, 3659 (2016).CrossRef
30.
go back to reference W. Huai, M. Liserre, F. Blaabjerg, P. De Place Rimmen, J.B. Jacobsen, T. Kvisgaard, and J. Landkildehus, Transitioning to physics-of-failure as a reliability driver in power electronics. IEEE J. Emerg. Sel. Top. Power Electron. 2, 97 (2014).CrossRef W. Huai, M. Liserre, F. Blaabjerg, P. De Place Rimmen, J.B. Jacobsen, T. Kvisgaard, and J. Landkildehus, Transitioning to physics-of-failure as a reliability driver in power electronics. IEEE J. Emerg. Sel. Top. Power Electron. 2, 97 (2014).CrossRef
31.
go back to reference V. Samavatian, Y. Avenas, and H. Iman-Eini, Mutual and self-aging effects of power semiconductors on the thermal behaviour of DC–DC boost power converter. Microelectron. Reliab. 88–90, 493 (2018).CrossRef V. Samavatian, Y. Avenas, and H. Iman-Eini, Mutual and self-aging effects of power semiconductors on the thermal behaviour of DC–DC boost power converter. Microelectron. Reliab. 88–90, 493 (2018).CrossRef
32.
go back to reference M. Bouarroudj, Z. Khatir, J.P. Ousten, F. Badel, L. Dupont, and S. Lefebvre, Degradation behavior of 600 V-200 A IGBT modules under power cycling and high temperature environment conditions. Microelectron. Reliab. 47, 1719 (2007).CrossRef M. Bouarroudj, Z. Khatir, J.P. Ousten, F. Badel, L. Dupont, and S. Lefebvre, Degradation behavior of 600 V-200 A IGBT modules under power cycling and high temperature environment conditions. Microelectron. Reliab. 47, 1719 (2007).CrossRef
33.
go back to reference S. Dusmez, S.H. Ali, M. Heydarzadeh, A.S. Kamath, H. Duran, and B. Akin, Aging precursor identification and lifetime estimation for thermally aged discrete package silicon power switches. IEEE Trans. Ind. Appl. 53, 251 (2017).CrossRef S. Dusmez, S.H. Ali, M. Heydarzadeh, A.S. Kamath, H. Duran, and B. Akin, Aging precursor identification and lifetime estimation for thermally aged discrete package silicon power switches. IEEE Trans. Ind. Appl. 53, 251 (2017).CrossRef
34.
go back to reference A.K. Pani and H.K. Mohanta, Online monitoring of cement clinker quality using multivariate statistics and Takagi-Sugeno fuzzy-inference technique. Control Eng. Pract. 57, 1 (2016).CrossRef A.K. Pani and H.K. Mohanta, Online monitoring of cement clinker quality using multivariate statistics and Takagi-Sugeno fuzzy-inference technique. Control Eng. Pract. 57, 1 (2016).CrossRef
35.
go back to reference G. Li, L. Yang, C.-G. Lee, X. Wang, and M. Rong, A Bayesian deep learning RUL framework integrating epistemic and aleatoric uncertainties. IEEE Trans. Ind. Electron. 68, 8829 (2020).CrossRef G. Li, L. Yang, C.-G. Lee, X. Wang, and M. Rong, A Bayesian deep learning RUL framework integrating epistemic and aleatoric uncertainties. IEEE Trans. Ind. Electron. 68, 8829 (2020).CrossRef
36.
go back to reference H. Pei, X.-S. Si, C. Hu, T. Li, C. He, and Z. Pang, Bayesian deep-learning-based prognostic model for equipment without label data related to lifetime. IEEE Trans. Syst. Man, Cybern. Syst. 53, 504 (2022).CrossRef H. Pei, X.-S. Si, C. Hu, T. Li, C. He, and Z. Pang, Bayesian deep-learning-based prognostic model for equipment without label data related to lifetime. IEEE Trans. Syst. Man, Cybern. Syst. 53, 504 (2022).CrossRef
37.
go back to reference X. Ke and Y. Duan, A Bayesian machine learning approach for inverse prediction of high-performance concrete ingredients with targeted performance. Constr. Build. Mater. 270, 121424 (2021).CrossRef X. Ke and Y. Duan, A Bayesian machine learning approach for inverse prediction of high-performance concrete ingredients with targeted performance. Constr. Build. Mater. 270, 121424 (2021).CrossRef
39.
go back to reference S. Roberts, M. Osborne, M. Ebden, S. Reece, N. Gibson, and S. Aigrain, Gaussian processes for time-series modelling. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 371, 20110550 (2013).CrossRef S. Roberts, M. Osborne, M. Ebden, S. Reece, N. Gibson, and S. Aigrain, Gaussian processes for time-series modelling. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 371, 20110550 (2013).CrossRef
40.
go back to reference F. Gao, and L. Han, Implementing the Nelder-Mead simplex algorithm with adaptive parameters. Comput. Optim. Appl. 51, 259 (2012).CrossRef F. Gao, and L. Han, Implementing the Nelder-Mead simplex algorithm with adaptive parameters. Comput. Optim. Appl. 51, 259 (2012).CrossRef
41.
go back to reference Z. Xiong, Y. Cui, Z. Liu, Y. Zhao, M. Hu, and J. Hu, Evaluating explorative prediction power of machine learning algorithms for materials discovery using k-fold forward cross-validation. Comput. Mater. Sci. 171, 109203 (2020).CrossRef Z. Xiong, Y. Cui, Z. Liu, Y. Zhao, M. Hu, and J. Hu, Evaluating explorative prediction power of machine learning algorithms for materials discovery using k-fold forward cross-validation. Comput. Mater. Sci. 171, 109203 (2020).CrossRef
42.
go back to reference G.S. Thoppil, J. Nie, and A. Alankar, Bayesian approach for inferrable machine learning models of process–structure–property linkages in complex concentrated alloys. J. Alloys Compd. 967, 171595 (2023).CrossRef G.S. Thoppil, J. Nie, and A. Alankar, Bayesian approach for inferrable machine learning models of process–structure–property linkages in complex concentrated alloys. J. Alloys Compd. 967, 171595 (2023).CrossRef
43.
go back to reference V.A. Mints, J.K. Pedersen, A. Bagger, J. Quinson, A.S. Anker, K.M.Ø. Jensen, J. Rossmeisl, and M. Arenz, Exploring the composition space of high-entropy alloy nanoparticles for the electrocatalytic H2/CO oxidation with bayesian optimization. ACS Catal. 12, 11263 (2022).CrossRef V.A. Mints, J.K. Pedersen, A. Bagger, J. Quinson, A.S. Anker, K.M.Ø. Jensen, J. Rossmeisl, and M. Arenz, Exploring the composition space of high-entropy alloy nanoparticles for the electrocatalytic H2/CO oxidation with bayesian optimization. ACS Catal. 12, 11263 (2022).CrossRef
44.
go back to reference I. Jebli, F.-Z. Belouadha, M.I. Kabbaj, and A. Tilioua, Prediction of solar energy guided by pearson correlation using machine learning. Energy 224, 120109 (2021).CrossRef I. Jebli, F.-Z. Belouadha, M.I. Kabbaj, and A. Tilioua, Prediction of solar energy guided by pearson correlation using machine learning. Energy 224, 120109 (2021).CrossRef
45.
go back to reference B. Czerny, I. Paul, G. Khatibi, and M. Thoben, Experimental and analytical study of geometry effects on the fatigue life of Al bond wire interconnects. Microelectron. Reliab. 53, 1558 (2013).CrossRef B. Czerny, I. Paul, G. Khatibi, and M. Thoben, Experimental and analytical study of geometry effects on the fatigue life of Al bond wire interconnects. Microelectron. Reliab. 53, 1558 (2013).CrossRef
46.
go back to reference M.A. Eleffendi and C.M. Johnson, In-service diagnostics for wire-bond lift-off and solder fatigue of power semiconductor packages. IEEE Trans. Power Electron. 32, 7187 (2017).CrossRef M.A. Eleffendi and C.M. Johnson, In-service diagnostics for wire-bond lift-off and solder fatigue of power semiconductor packages. IEEE Trans. Power Electron. 32, 7187 (2017).CrossRef
47.
go back to reference H. Luo, F. Iannuzzo, N. Baker, F. Blaabjerg, W. Li, and X. He, Study of current density influence on bond wire degradation rate in SiC MOSFET modules. IEEE J. Emerg. Sel. Top. Power Electron. 8, 1622 (2019).CrossRef H. Luo, F. Iannuzzo, N. Baker, F. Blaabjerg, W. Li, and X. He, Study of current density influence on bond wire degradation rate in SiC MOSFET modules. IEEE J. Emerg. Sel. Top. Power Electron. 8, 1622 (2019).CrossRef
48.
go back to reference S. Palanisamy, T. Basler, J. Lutz, C. Künzel, L. Wehrhahn-Kilian, and R. Elpelt, Investigation of the bipolar degradation of SiC MOSFET body diodes and the influence of current density, (2021), pp. 1–6. S. Palanisamy, T. Basler, J. Lutz, C. Künzel, L. Wehrhahn-Kilian, and R. Elpelt, Investigation of the bipolar degradation of SiC MOSFET body diodes and the influence of current density, (2021), pp. 1–6.
49.
go back to reference U.-M. Choi, F. Blaabjerg, and S. Jørgensen, Power cycling test methods for reliability assessment of power device modules in respect to temperature stress. IEEE Trans. Power Electron. 33, 2531 (2017).CrossRef U.-M. Choi, F. Blaabjerg, and S. Jørgensen, Power cycling test methods for reliability assessment of power device modules in respect to temperature stress. IEEE Trans. Power Electron. 33, 2531 (2017).CrossRef
50.
go back to reference F. Erturk, E. Ugur, J. Olson, and B. Akin, Real-time aging detection of SiC MOSFETs. IEEE Trans. Ind. Appl. 55, 600 (2018).CrossRef F. Erturk, E. Ugur, J. Olson, and B. Akin, Real-time aging detection of SiC MOSFETs. IEEE Trans. Ind. Appl. 55, 600 (2018).CrossRef
Metadata
Title
A Probabilistic Bayesian Machine Learning Framework for Comprehensive Characterization of Bond Wires in IGBT Modules Under Thermomechanical Loadings
Authors
Max-Fredi Quispe-Aguilar
Rosa Huaraca Aparco
Calixto Cañari Otero
Margoth Moreno Huamán
Yersi-Luis Huamán-Romaní
Publication date
21-12-2023
Publisher
Springer US
Published in
Journal of Electronic Materials / Issue 2/2024
Print ISSN: 0361-5235
Electronic ISSN: 1543-186X
DOI
https://doi.org/10.1007/s11664-023-10868-y

Other articles of this Issue 2/2024

Journal of Electronic Materials 2/2024 Go to the issue