Skip to main content
Erschienen in: Journal of Electronic Materials 7/2023

06.05.2023 | Original Research Article

Thermal Properties of Low-Temperature-Sintered Graphene/Nano-silver Paste for Insulated Gate Bipolar Transistor Packages

verfasst von: Bin Zhou, Fabing Zeng, Xiong Jiang, Wenlei Lian, Bo Shi, Ping Zhang

Erschienen in: Journal of Electronic Materials | Ausgabe 7/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Although high-power devices have experienced rapid development, they still suffer from several limitations in terms of traditional interconnecting materials. This paper describes the preparation of nano-silver paste through liquid-phase chemical reduction using PVP/12-3-12 type gemini quaternary ammonium salt as the mixed stabilizing agent. The high-thermal-conductivity multilayer graphene was mixed into the nano-silver paste to improve the interfacial heat-transfer performance of power devices. The nano-silver paste was sintered at a low temperature (270°C), and its thermal properties were tested. The experimental results show that the thermal resistance of the sintered layers of different pastes decreases linearly with an increase in the loading of multilayer graphene under no-pressure sintering. When the loading of the multilayer graphene was 1%, the silver nanoparticles were adsorbed uniformly on the graphene nanosheets owing to the van der Waals force. Further, in comparison to pure nano-silver paste, the thermal resistance decreased by 60%. This shows that the uniform dispersion of multilayer graphene in the paste and its high thermal conductivity reduced the thermal resistance of the paste sintering layer, allowing the heat generated by the insulated gate bipolar transistor power chip to dissipate rapidly, improving the heat-transfer performance at the interface.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat M. Abtew, and G. Selvaduray, Lead-free solders in microelectronics. Mater. Sci. Eng. R. Rep. 27, 95–141 (2000).CrossRef M. Abtew, and G. Selvaduray, Lead-free solders in microelectronics. Mater. Sci. Eng. R. Rep. 27, 95–141 (2000).CrossRef
2.
Zurück zum Zitat M. Banea, F. De Sousa, L. Da Silva, R. Campilho, and A.B. de Pereira, Effects of temperature and loading rate on the mechanical properties of a high temperature epoxy adhesive. J. Adhes. Sci. Technol. 25, 2461–2474 (2011).CrossRef M. Banea, F. De Sousa, L. Da Silva, R. Campilho, and A.B. de Pereira, Effects of temperature and loading rate on the mechanical properties of a high temperature epoxy adhesive. J. Adhes. Sci. Technol. 25, 2461–2474 (2011).CrossRef
3.
Zurück zum Zitat A. El-Daly, Y. Swilem, M. Makled, M. El-Shaarawy, and A. Abdraboh, Thermal and mechanical properties of Sn–Zn–Bi lead-free solder alloys. J. Alloys Compd. 484, 134–142 (2009).CrossRef A. El-Daly, Y. Swilem, M. Makled, M. El-Shaarawy, and A. Abdraboh, Thermal and mechanical properties of Sn–Zn–Bi lead-free solder alloys. J. Alloys Compd. 484, 134–142 (2009).CrossRef
4.
Zurück zum Zitat M. Hasnine, and N. Vahora, Microstructural and mechanical behavior of SnCu–Ge solder alloy subjected to high temperature storage. J. Mater. Sci. Mater. Electron. 29, 8904–8913 (2018).CrossRef M. Hasnine, and N. Vahora, Microstructural and mechanical behavior of SnCu–Ge solder alloy subjected to high temperature storage. J. Mater. Sci. Mater. Electron. 29, 8904–8913 (2018).CrossRef
5.
Zurück zum Zitat V. Niranjani, P. Venkateswarlu, V. Singh, B. ChandraRao, and S. Kamat, Effect of gold addition on the microstructure and mechanical properties of Sn–3.8 Ag–0.7 Cu lead-free solder alloy. Trans. Indian Inst. Met. 71, 1497–1505 (2018).CrossRef V. Niranjani, P. Venkateswarlu, V. Singh, B. ChandraRao, and S. Kamat, Effect of gold addition on the microstructure and mechanical properties of Sn–3.8 Ag–0.7 Cu lead-free solder alloy. Trans. Indian Inst. Met. 71, 1497–1505 (2018).CrossRef
6.
Zurück zum Zitat P.R. Chalker, Wide bandgap semiconductor materials for high temperature electronics. Thin Solid Films 343, 616–622 (1999).CrossRef P.R. Chalker, Wide bandgap semiconductor materials for high temperature electronics. Thin Solid Films 343, 616–622 (1999).CrossRef
7.
Zurück zum Zitat P.G. Neudeck, R.S. Okojie, and L.-Y. Chen, High-temperature electronics-a role for wide bandgap semiconductors? Proc. IEEE 90, 1065–1076 (2002).CrossRef P.G. Neudeck, R.S. Okojie, and L.-Y. Chen, High-temperature electronics-a role for wide bandgap semiconductors? Proc. IEEE 90, 1065–1076 (2002).CrossRef
8.
Zurück zum Zitat R.R. Lamichhane, N. Ericsson, S. Frank, C. Britton, L. Marlino, A. Mantooth, M. Francis, P. Shepherd, M. Glover, S. Perez, A wide bandgap silicon carbide (SiC) gate driver for high-temperature and high-voltage applications, in 2014 IEEE 26th International Symposium on Power Semiconductor Devices & IC's (ISPSD), IEEE, 414–417 (2014). R.R. Lamichhane, N. Ericsson, S. Frank, C. Britton, L. Marlino, A. Mantooth, M. Francis, P. Shepherd, M. Glover, S. Perez, A wide bandgap silicon carbide (SiC) gate driver for high-temperature and high-voltage applications, in 2014 IEEE 26th International Symposium on Power Semiconductor Devices & IC's (ISPSD), IEEE, 414–417 (2014).
9.
Zurück zum Zitat J. Hornberger, A.B. Lostetter, K. Olejniczak, T. McNutt, S.M. Lal, and A. Mantooth, Silicon-carbide (SiC) semiconductor power electronics for extreme high-temperature environments, in 2004 IEEE Aerospace Conference Proceedings (IEEE Cat. No. 04TH8720), IEEE, 2538–2555 (2004). J. Hornberger, A.B. Lostetter, K. Olejniczak, T. McNutt, S.M. Lal, and A. Mantooth, Silicon-carbide (SiC) semiconductor power electronics for extreme high-temperature environments, in 2004 IEEE Aerospace Conference Proceedings (IEEE Cat. No. 04TH8720), IEEE, 2538–2555 (2004).
10.
Zurück zum Zitat T. Nomura, M. Masuda, N. Ikeda, and S. Yoshida, Switching characteristics of GaN HFETs in a half bridge package for high temperature applications. IEEE Trans. Power Electron. 23, 692–697 (2008).CrossRef T. Nomura, M. Masuda, N. Ikeda, and S. Yoshida, Switching characteristics of GaN HFETs in a half bridge package for high temperature applications. IEEE Trans. Power Electron. 23, 692–697 (2008).CrossRef
11.
Zurück zum Zitat R. Khazaka, B. Thollin, L. Mendizabal, D. Henry, and R. Hanna, Characterization of nanosilver dry films for high-temperature applications. IEEE Trans. Device Mater. Reliab. 15, 149–155 (2015).CrossRef R. Khazaka, B. Thollin, L. Mendizabal, D. Henry, and R. Hanna, Characterization of nanosilver dry films for high-temperature applications. IEEE Trans. Device Mater. Reliab. 15, 149–155 (2015).CrossRef
12.
Zurück zum Zitat J.G. Bai, Z.Z. Zhang, J.N. Calata, and G.-Q. Lu, Low-temperature sintered nanoscale silver as a novel semiconductor device-metallized substrate interconnect material. IEEE Trans. Compon. Packag. Technol. 29, 589–593 (2006).CrossRef J.G. Bai, Z.Z. Zhang, J.N. Calata, and G.-Q. Lu, Low-temperature sintered nanoscale silver as a novel semiconductor device-metallized substrate interconnect material. IEEE Trans. Compon. Packag. Technol. 29, 589–593 (2006).CrossRef
13.
Zurück zum Zitat P. Zhang, X. Jiang, P. Yuan, H. Yan, and D. Yang, Silver nanopaste: Synthesis, reinforcements and application. Int. J. Heat Mass Transfer 127, 1048–1069 (2018).CrossRef P. Zhang, X. Jiang, P. Yuan, H. Yan, and D. Yang, Silver nanopaste: Synthesis, reinforcements and application. Int. J. Heat Mass Transfer 127, 1048–1069 (2018).CrossRef
14.
Zurück zum Zitat A.D. Albert, M.F. Becker, J.W. Keto, and D. Kovar, Low temperature, pressure-assisted sintering of nanoparticulate silver films. Acta Mater. 56, 1820–1829 (2008).CrossRef A.D. Albert, M.F. Becker, J.W. Keto, and D. Kovar, Low temperature, pressure-assisted sintering of nanoparticulate silver films. Acta Mater. 56, 1820–1829 (2008).CrossRef
15.
Zurück zum Zitat K. Xiao, S. Luo, K. Ngo, and G. Lu, Low-temperature sintering of a nanosilver paste for attaching large-area power chips, in 2013 IEEE International Symposium on Advanced Packaging Materials, IEEE, 192–202 (2013). K. Xiao, S. Luo, K. Ngo, and G. Lu, Low-temperature sintering of a nanosilver paste for attaching large-area power chips, in 2013 IEEE International Symposium on Advanced Packaging Materials, IEEE, 192–202 (2013).
16.
Zurück zum Zitat K.S. Tan, Y.H. Wong, and K.Y. Cheong, Thermal characteristic of sintered Ag–Cu nanopaste for high-temperature die-attach application. Int. J. Therm. Sci. 87, 169–177 (2015).CrossRef K.S. Tan, Y.H. Wong, and K.Y. Cheong, Thermal characteristic of sintered Ag–Cu nanopaste for high-temperature die-attach application. Int. J. Therm. Sci. 87, 169–177 (2015).CrossRef
17.
Zurück zum Zitat H. Pal, and V. Sharma, Effect of sintering on mechanical and electrical properties of carbon nanotube based silver nanocomposites. Indian J. Phys. 89, 217–224 (2015).CrossRef H. Pal, and V. Sharma, Effect of sintering on mechanical and electrical properties of carbon nanotube based silver nanocomposites. Indian J. Phys. 89, 217–224 (2015).CrossRef
18.
Zurück zum Zitat Y. Feng, H.L. Yuan, and M. Zhang, Fabrication and properties of silver-matrix composites reinforced by carbon nanotubes. Mater. Charact. 55, 211–218 (2005).CrossRef Y. Feng, H.L. Yuan, and M. Zhang, Fabrication and properties of silver-matrix composites reinforced by carbon nanotubes. Mater. Charact. 55, 211–218 (2005).CrossRef
19.
Zurück zum Zitat V. Goyal, and A.A. Balandin, Thermal properties of the hybrid graphene-metal nano-micro-composites: Applications in thermal interface materials. Appl. Phys. Lett. 100, 073113 (2012).CrossRef V. Goyal, and A.A. Balandin, Thermal properties of the hybrid graphene-metal nano-micro-composites: Applications in thermal interface materials. Appl. Phys. Lett. 100, 073113 (2012).CrossRef
20.
Zurück zum Zitat X. Wang, Q. Xu, X. Hu, F. Han, and C. Zhu, Silver-nanoparticles/graphene hybrids for effective enrichment and sensitive SERS detection of polycyclic aromatic hydrocarbons. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 228, 117783 (2020).CrossRef X. Wang, Q. Xu, X. Hu, F. Han, and C. Zhu, Silver-nanoparticles/graphene hybrids for effective enrichment and sensitive SERS detection of polycyclic aromatic hydrocarbons. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 228, 117783 (2020).CrossRef
21.
Zurück zum Zitat V. Tramonti, C. Lofrumento, M.R. Martina, G. Lucchesi, and G. Caminati, Graphene oxide/silver nanoparticles platforms for the detection and discrimination of native and fibrillar lysozyme: A combined QCM and SERS approach. Nanomaterials 12, 600 (2022).CrossRef V. Tramonti, C. Lofrumento, M.R. Martina, G. Lucchesi, and G. Caminati, Graphene oxide/silver nanoparticles platforms for the detection and discrimination of native and fibrillar lysozyme: A combined QCM and SERS approach. Nanomaterials 12, 600 (2022).CrossRef
22.
Zurück zum Zitat A. Parashar, and P. Mertiny, Effect of van der Waals forces on the buckling strength of graphene. J. Comput. Theor. Nanosci. 10, 2626–2630 (2013).CrossRef A. Parashar, and P. Mertiny, Effect of van der Waals forces on the buckling strength of graphene. J. Comput. Theor. Nanosci. 10, 2626–2630 (2013).CrossRef
Metadaten
Titel
Thermal Properties of Low-Temperature-Sintered Graphene/Nano-silver Paste for Insulated Gate Bipolar Transistor Packages
verfasst von
Bin Zhou
Fabing Zeng
Xiong Jiang
Wenlei Lian
Bo Shi
Ping Zhang
Publikationsdatum
06.05.2023
Verlag
Springer US
Erschienen in
Journal of Electronic Materials / Ausgabe 7/2023
Print ISSN: 0361-5235
Elektronische ISSN: 1543-186X
DOI
https://doi.org/10.1007/s11664-023-10449-z

Weitere Artikel der Ausgabe 7/2023

Journal of Electronic Materials 7/2023 Zur Ausgabe

Topical Collection: International Conference on Organic Electronics 2022

Magnetron-Sputtered Silver Nanoparticles for Surface Plasmons for Terahertz Sensors