Skip to main content
Top
Published in: Quantum Information Processing 2/2024

01-02-2024

A rational hierarchical (t,n)-threshold quantum secret sharing scheme

Authors: Fulin Li, Zhuo Liu, Li Liu, Shixin Zhu

Published in: Quantum Information Processing | Issue 2/2024

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Quantum secret sharing plays a crucial role in quantum cryptography. In this paper, we present a rational hierarchical (t,n)-threshold quantum secret sharing scheme based on Lagrange interpolation. In our scheme, participants possess rational and hierarchical properties, and the secret can be reconstructed when the number of rational participants satisfies the hierarchical (t,n)-threshold structure proposed in this paper. The reconstructed secret can encompass both classical information and quantum state information, enhancing the practicality and flexibility of our scheme compared to existing ones. Additionally, we redefine the utility of participants based on their roles in the secret recovery process. This newly defined utility allows for a more precise analysis of the correctness, fairness, and equilibrium of our scheme. Finally, our scheme not only resists a typical set of external attacks but also incorporates mechanisms to detect forgery and collusion among participants.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
2.
go back to reference Halpern, J., Teague, V.: Rational secret sharing and multiparty computation. In: Proceedings of the 36th Annual ACM Symposium on Theory of Computing. ACM, pp. 623-632 (2004) Halpern, J., Teague, V.: Rational secret sharing and multiparty computation. In: Proceedings of the 36th Annual ACM Symposium on Theory of Computing. ACM, pp. 623-632 (2004)
3.
go back to reference Abraham, I., Dolev, D., Gonen, R.: Distributed computing meets game theory. In: Proceedings of the 25th Annual ACM Symposium on Principles of Distributed Computing. ACM, pp. 53-62 (2006) Abraham, I., Dolev, D., Gonen, R.: Distributed computing meets game theory. In: Proceedings of the 25th Annual ACM Symposium on Principles of Distributed Computing. ACM, pp. 53-62 (2006)
4.
go back to reference Nojoumian, M., Stinson, D.R.: Brief announcement: secret sharing based on the social behaviors of players. In: Proceedings of the 29th Annual ACM Symposium on Principles of Distributed Computing. ACM, pp. 239-240 (2012) Nojoumian, M., Stinson, D.R.: Brief announcement: secret sharing based on the social behaviors of players. In: Proceedings of the 29th Annual ACM Symposium on Principles of Distributed Computing. ACM, pp. 239-240 (2012)
5.
go back to reference Harn, L., Lin, C., Yong, L.: Fair secret reconstruction in (t, n)-secret sharing. J. Inf. Sesur. Appl. 23, 1–7 (2015) Harn, L., Lin, C., Yong, L.: Fair secret reconstruction in (t, n)-secret sharing. J. Inf. Sesur. Appl. 23, 1–7 (2015)
6.
go back to reference Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factoring. In: Proceedings of 35th Annual Symposium on the Foundations of Computer Science. ACM, pp. 124-134 (1994) Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factoring. In: Proceedings of 35th Annual Symposium on the Foundations of Computer Science. ACM, pp. 124-134 (1994)
7.
go back to reference Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Proceedings of the 28 Annual ACM Symposium Computing. ACM, pp. 212-219 (1996) Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Proceedings of the 28 Annual ACM Symposium Computing. ACM, pp. 212-219 (1996)
8.
go back to reference Wootters, W.K., Zurek, W.H.: A single quantum cannot be cloned. Nature 299, 802–803 (1982)ADSCrossRef Wootters, W.K., Zurek, W.H.: A single quantum cannot be cloned. Nature 299, 802–803 (1982)ADSCrossRef
9.
go back to reference Lo, H.K., Chau, H.F.: Unconditional security of quantum key distribution over arbitrarily long distances. Science 283, 2050–2056 (1999)ADSCrossRefPubMed Lo, H.K., Chau, H.F.: Unconditional security of quantum key distribution over arbitrarily long distances. Science 283, 2050–2056 (1999)ADSCrossRefPubMed
10.
go back to reference Mayers, D.: Unconditional security in quantum cryptography. ACM 48, 351–406 (2001)MathSciNet Mayers, D.: Unconditional security in quantum cryptography. ACM 48, 351–406 (2001)MathSciNet
12.
go back to reference Cleve, R., Gottesman, D., Lo, H.K.: How to share a quantum secret. Phys. Rev. Lett. 83, 648–651 (1999)ADSCrossRef Cleve, R., Gottesman, D., Lo, H.K.: How to share a quantum secret. Phys. Rev. Lett. 83, 648–651 (1999)ADSCrossRef
13.
go back to reference Li, Y., Zhang, K., Peng, K.: Multiparty secret sharing of quantum information based on entanglement swapping. Phys. Lett. A 324, 420–424 (2004)ADSMathSciNetCrossRef Li, Y., Zhang, K., Peng, K.: Multiparty secret sharing of quantum information based on entanglement swapping. Phys. Lett. A 324, 420–424 (2004)ADSMathSciNetCrossRef
14.
go back to reference Katz, J.: Theory of Cryptography, pp. 251–272. Springer-Verlag, Berlin (2008)CrossRef Katz, J.: Theory of Cryptography, pp. 251–272. Springer-Verlag, Berlin (2008)CrossRef
15.
go back to reference Lau, H.K., Weedbrook, C.: Quantum secret sharing with continuous-variable cluster states. Phys. Rev. A 88, 042313 (2013)ADSCrossRef Lau, H.K., Weedbrook, C.: Quantum secret sharing with continuous-variable cluster states. Phys. Rev. A 88, 042313 (2013)ADSCrossRef
16.
go back to reference Rahaman, R., Parker, M.G.: Quantum scheme for secret sharing based on local distinguish ability. Phys. Rev. A 91, 022330 (2015)ADSCrossRef Rahaman, R., Parker, M.G.: Quantum scheme for secret sharing based on local distinguish ability. Phys. Rev. A 91, 022330 (2015)ADSCrossRef
17.
go back to reference Fu, Y., Yin, H.L., Chen, T.Y., Chen, Z.B.: Long-distance measurement-device-independent multiparty quantum communication. Rhys. Rev. Lett. 114, 090501 (2015)ADSCrossRef Fu, Y., Yin, H.L., Chen, T.Y., Chen, Z.B.: Long-distance measurement-device-independent multiparty quantum communication. Rhys. Rev. Lett. 114, 090501 (2015)ADSCrossRef
18.
go back to reference Brian, P.W., Joseph, M.L., Nicholas, A.P., Bing, Q., Warren, P.G.: Quantum secret sharing with polarization-entangled photon pairs. Rhys. Rev. A 99, 062311 (2019) Brian, P.W., Joseph, M.L., Nicholas, A.P., Bing, Q., Warren, P.G.: Quantum secret sharing with polarization-entangled photon pairs. Rhys. Rev. A 99, 062311 (2019)
19.
go back to reference Ju, X.X., Zhong, W., Sheng, Y.B., Zhou, L.: Measurement-device-independent quantum secret sharing with hyper-encoding. Chinese Phys. B 31, 100302 (2022)ADSCrossRef Ju, X.X., Zhong, W., Sheng, Y.B., Zhou, L.: Measurement-device-independent quantum secret sharing with hyper-encoding. Chinese Phys. B 31, 100302 (2022)ADSCrossRef
20.
go back to reference Li, C.L., Fu, Y., Liu, W.B., Xie, Y.M., Li, B.H.: Breaking rate-distance limitation of measurement-device-independent quantum secret sharing. Rhys. Rev. Res. 5, 033077 (2023) Li, C.L., Fu, Y., Liu, W.B., Xie, Y.M., Li, B.H.: Breaking rate-distance limitation of measurement-device-independent quantum secret sharing. Rhys. Rev. Res. 5, 033077 (2023)
21.
go back to reference Gu, J., Cao, X.Y., Yin, H.L., Chen, Z.B.: Differential phase shift quantum secret sharing using twin field. Opt. Express 29, 9165 (2021)ADSCrossRefPubMed Gu, J., Cao, X.Y., Yin, H.L., Chen, Z.B.: Differential phase shift quantum secret sharing using twin field. Opt. Express 29, 9165 (2021)ADSCrossRefPubMed
22.
go back to reference Shen, A., Cao, X.Y., Wang, Y., Fu, Y., Gu, Jie: Experimental quantum secret sharing based on phase encoding of coherent states. Sci. China-Phys. Mech. Astron. 66, 260311 (2023)ADSCrossRef Shen, A., Cao, X.Y., Wang, Y., Fu, Y., Gu, Jie: Experimental quantum secret sharing based on phase encoding of coherent states. Sci. China-Phys. Mech. Astron. 66, 260311 (2023)ADSCrossRef
23.
go back to reference Yin, H.L., Fu, Y., Li, C.L., Weng, C.X., Li, B.H.: Experimental quantum secure network with digital signatures and encryption. Natl. Sci. Rev. 10, nwac228 (2023)ADSCrossRefPubMed Yin, H.L., Fu, Y., Li, C.L., Weng, C.X., Li, B.H.: Experimental quantum secure network with digital signatures and encryption. Natl. Sci. Rev. 10, nwac228 (2023)ADSCrossRefPubMed
25.
go back to reference Dou, Z., Xu, G., Chen, X.B.: A secure rational quantum state sharing protocol. Sci. China. Inf. Sci. 61(2), 022501 (2018)MathSciNetCrossRef Dou, Z., Xu, G., Chen, X.B.: A secure rational quantum state sharing protocol. Sci. China. Inf. Sci. 61(2), 022501 (2018)MathSciNetCrossRef
26.
go back to reference Maitra, A., Joyee, D.S., Paul, G.: Proposal for quantum rational secret sharing. Phys. Rev. A 92, 022305 (2015)ADSCrossRef Maitra, A., Joyee, D.S., Paul, G.: Proposal for quantum rational secret sharing. Phys. Rev. A 92, 022305 (2015)ADSCrossRef
27.
go back to reference Simmon, G.J.: How to (really) share a secret. In: Proceedings of Advances in Cryptology-CRYPTO’ 88. Springer, pp. 390-448 (1990) Simmon, G.J.: How to (really) share a secret. In: Proceedings of Advances in Cryptology-CRYPTO’ 88. Springer, pp. 390-448 (1990)
28.
go back to reference Basit, A., Kumar, N.C., Venkaiah, V.C.: Multi-stage multi-secret sharing scheme for hierarchical access structure. In: Proceedings of International Conference on Computing, Communication and Automation. IEEE, pp. 557-563 (2017) Basit, A., Kumar, N.C., Venkaiah, V.C.: Multi-stage multi-secret sharing scheme for hierarchical access structure. In: Proceedings of International Conference on Computing, Communication and Automation. IEEE, pp. 557-563 (2017)
29.
go back to reference Zhang, J., Lin, C.L., Huang, K.K.: Polynomial interpolation based hierarchical secret sharing schemes. J. Cryptol. Res. 9(4), 743–754 (2022) Zhang, J., Lin, C.L., Huang, K.K.: Polynomial interpolation based hierarchical secret sharing schemes. J. Cryptol. Res. 9(4), 743–754 (2022)
31.
go back to reference Xu, G., Wang, C., Yang, Y.X.: Hierarchical quantum information splitting of an arbitrary two-qubit state via the cluster state. Quantum Inf. Process. 13(1), 43–57 (2014)ADSCrossRef Xu, G., Wang, C., Yang, Y.X.: Hierarchical quantum information splitting of an arbitrary two-qubit state via the cluster state. Quantum Inf. Process. 13(1), 43–57 (2014)ADSCrossRef
32.
go back to reference Venugopalan, A., Shukla: Protocol, an integrated hierarchical dynamic quantum secret sharing. Int. J. Theor. Phys. 54, 3143–3154 (2015)CrossRef Venugopalan, A., Shukla: Protocol, an integrated hierarchical dynamic quantum secret sharing. Int. J. Theor. Phys. 54, 3143–3154 (2015)CrossRef
33.
go back to reference Xu, G., Shan, R.T., Chen, X.B.: Probabilistic and hierarchical quantum information splitting based on the non-maximally entangled cluster state. CMC-Comput. Mat. Contin. 69(1), 339–349 (2021) Xu, G., Shan, R.T., Chen, X.B.: Probabilistic and hierarchical quantum information splitting based on the non-maximally entangled cluster state. CMC-Comput. Mat. Contin. 69(1), 339–349 (2021)
34.
go back to reference Qin, H., Tang, W., Tso, R.L.: Hierarchical quantum secret sharing based on special high-dimensional entangled state. IEEE. J. Sel. Top. Quant. 26, 1–1 (2020)CrossRef Qin, H., Tang, W., Tso, R.L.: Hierarchical quantum secret sharing based on special high-dimensional entangled state. IEEE. J. Sel. Top. Quant. 26, 1–1 (2020)CrossRef
35.
go back to reference Zha, X.W., Miao, N., Wang, H.F.: Hierarchical quantum information splitting of an arbitrary two-qubit using a single quantum resource. Int. J. Theor. Phys. 58, 2428–2434 (2019)MathSciNetCrossRef Zha, X.W., Miao, N., Wang, H.F.: Hierarchical quantum information splitting of an arbitrary two-qubit using a single quantum resource. Int. J. Theor. Phys. 58, 2428–2434 (2019)MathSciNetCrossRef
36.
go back to reference Nielsen, M.A., Chuang, I.L.: Quantum computation and quantum information. Math. Struct. Comp. Sci. 17(6), 1115–1115 (2002)MathSciNet Nielsen, M.A., Chuang, I.L.: Quantum computation and quantum information. Math. Struct. Comp. Sci. 17(6), 1115–1115 (2002)MathSciNet
37.
go back to reference Stefanov, A., Gisin, N., Guinnard, O.: Optical quantum random number generator. J. Mod. Opt. 47, 595–598 (2000)ADS Stefanov, A., Gisin, N., Guinnard, O.: Optical quantum random number generator. J. Mod. Opt. 47, 595–598 (2000)ADS
38.
go back to reference Qin, H., Zhu, X., Dai, Y.: (t, n) Threshold quantum secret sharing using the phase shift operation. Quantum Inf. Process. 14(8), 2997–3004 (2015)ADSMathSciNetCrossRef Qin, H., Zhu, X., Dai, Y.: (t, n) Threshold quantum secret sharing using the phase shift operation. Quantum Inf. Process. 14(8), 2997–3004 (2015)ADSMathSciNetCrossRef
39.
go back to reference Zhang, X.L.: One-way quantum identity authentication based on public key. Chinese. Sci. Bull. 54, 2018–2021 (2009)CrossRef Zhang, X.L.: One-way quantum identity authentication based on public key. Chinese. Sci. Bull. 54, 2018–2021 (2009)CrossRef
40.
go back to reference Makarov, V., Anisimov, A., Skaar, J.: Effects of detector efficiency mismatch on security of quantum cryptosystems. Phys. Rev. A 74, 022313 (2006)ADSCrossRef Makarov, V., Anisimov, A., Skaar, J.: Effects of detector efficiency mismatch on security of quantum cryptosystems. Phys. Rev. A 74, 022313 (2006)ADSCrossRef
41.
go back to reference Qi, B., Fung, C.H.F., Lo, H.K.: Time-shift attack in practical quantum cryptosystems. Quantum Inf. Comput. 7, 73–824 (2007)MathSciNet Qi, B., Fung, C.H.F., Lo, H.K.: Time-shift attack in practical quantum cryptosystems. Quantum Inf. Comput. 7, 73–824 (2007)MathSciNet
42.
go back to reference Zhang, H.L., Che, B.C., Dou, Z.: A rational quantum state sharing protocol with semi-off-line dealer. Chinese Phys. B 31(5), 050309 (2022)ADSCrossRef Zhang, H.L., Che, B.C., Dou, Z.: A rational quantum state sharing protocol with semi-off-line dealer. Chinese Phys. B 31(5), 050309 (2022)ADSCrossRef
43.
go back to reference Tsai, C.W., Hsieh, C.R., Hwang, T.: Dense coding using cluster states and its application on deterministic secure quantum communication. Eur. Phys. J. D 61, 779 (2011)ADSCrossRef Tsai, C.W., Hsieh, C.R., Hwang, T.: Dense coding using cluster states and its application on deterministic secure quantum communication. Eur. Phys. J. D 61, 779 (2011)ADSCrossRef
44.
Metadata
Title
A rational hierarchical (t,n)-threshold quantum secret sharing scheme
Authors
Fulin Li
Zhuo Liu
Li Liu
Shixin Zhu
Publication date
01-02-2024
Publisher
Springer US
Published in
Quantum Information Processing / Issue 2/2024
Print ISSN: 1570-0755
Electronic ISSN: 1573-1332
DOI
https://doi.org/10.1007/s11128-024-04269-1

Other articles of this Issue 2/2024

Quantum Information Processing 2/2024 Go to the issue