Skip to main content
Top
Published in: Progress in Additive Manufacturing 6/2022

Open Access 06-05-2022 | Review Article

A review of geometric dimensioning and tolerancing (GD&T) of additive manufacturing and powder bed fusion lattices

Authors: Eujin Pei, Israt Kabir, Tomislav Breški, Damir Godec, Axel Nordin

Published in: Progress in Additive Manufacturing | Issue 6/2022

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

To increase industrial adoption, part qualification and certification of the additive manufacturing (AM) process are crucial through geometric benchmarking as well as optimising the properties and process parameters. However, an extensive research gap remains concerning the geometric dimensioning and tolerancing (GD&T) of AM parts. This paper presents a review on the state-of-art GD&T benchmarking of powder bed fusion techniques enabling complex geometrical features like lattices. The study found a lack of design guidelines and standardised measurement techniques for lattice features and profiles.
Notes

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

1 Introduction

In manufacturing and product design, geometric dimensioning and tolerancing (GD&T) plays an important role to describe the product and to facilitate communication between stakeholders involved in the process from conceptual development to manufacture. GD&T is a set of standardized symbols and rules used to communicate the design process and product description [1]. GD&T describes the nominal geometry of the product and the allowable variation of the geometric features. Realizing the functional nature of the geometrical measurements, Stanley Parker was credited being one of the first to develop the foundations of GD&T in 1938, at the beginning of World War II by developing the concept of “True Position” while working in a munition facility referring to the tolerances for the first time [2]. The first standard document related to GD&T was published by the British Standards Institution (BSI) as BS 308:1943, Engineering drawing office practice [3], followed by the US Army 30-1-7:1946, Mil-Std-8:1949 and American Society of Mechanical Engineers (ASME) Y14.5-1957. The latest version of ASME standards for general GD&T is Y14.5-2018 which includes stakeholder groups such as the American Standards Association (ASA), United States of America Standards Institute (USASI) and American National Standards Institute (ANSI) [2]. The International Organization for Standardization (ISO) also developed a set of standards including ISO 1101:2017, ISO 14405-1:2016, ISO/TS 17863:2013, and ISO 16792:2021 for GD&T and design specifications, covering conventional product design to Computer-Aided-Design (CAD) systems for additive manufacturing (AM) [4]. ISO 17296:2014 and ISO 52902:2019 refer to the test methods of geometrical characteristics and test artifacts of the parts made by AM. ASME published and updated Y14.41-2019 and Y14.46-2017 standards for digital product description data sets and drawing requirement in digital format for AM [5]. A list of existing standard documents for GD&T is presented in Table 1.
Table 1
Standards documents for GD&T [47]
Standardisation document
General GD&T process or guidelines
GD&T for AM processes
GD&T for artifacts
ASME Y14.5-2018-dimensioning and tolerancing
X
X
 
ISO 7083:1983—technical drawings—symbols for geometrical tolerancing—proportions and dimensions
X
  
ISO TC 1101:2017—geometrical product specifications (GPS)—geometrical tolerancing—tolerances of form, orientation, location and run-out
X
  
ISO 5459:2011—geometrical tolerancing—datums and datum systems
X
  
ISO 14405-3:2016—geometrical product specifications—dimensional tolerancing—Part 3: angular sizes
X
  
ISO 2692:2014—geometrical product specifications (GPS)—geometrical tolerancing—maximum material requirement (MMR), least material requirement (LMR) and reciprocity requirement (RPR)
X
  
ISO 5458:2018—geometrical product specifications (GPS)—geometrical tolerancing—pattern and combined geometrical specification
X
  
ISO 8062:2007—geometrical product specifications (GPS)—dimensional and geometrical tolerances for moulded parts—Part 1: vocabulary
X
  
ISO/TS 17863:2013—geometrical product specifications (GPS)—tolerancing of moveable assemblies
X
  
ASME Y14.41-2019—digital product definition data practices
 
X
 
ASME Y14.46-2017—product definition for additive manufacturing
 
X
 
ISO 16792:2015—technical product documentation—digital product definition data practices
 
X
 
ISO 17296-3:2014—additive manufacturing—general principles—Part 3: main characteristics and corresponding test methods
 
X
 
ISO 52902—additive manufacturing—test artifacts—geometric capability assessment of additive manufacturing systems
 
X
X
The ability to achieve predictable and repeatable shapes via AM is critical. To optimize the design of an additive manufactured product, tolerancing is a key issue [8] for defining, communicating, and assessing the dimensional and geometric accuracy of parts [9]. Although GD&T is a mature field in conventional manufacturing industries, digital and smart manufacturing processes have created a profound need for standardisation [10]. For this study, the underlined issues in GD&T benchmarking for PBF techniques have been presented from a critical review of current literature of general GD&T for AM, and the GD&T benchmarking approach of using artifacts.

2 GD&T for additive manufacturing

The layer-by-layer bottom-up approach of AM causes rough surfaces known as stair-stepping that may potentially lead to geometrical inaccuracy. These geometrical errors also depend on factors such as part shrinkage, material properties, process parameters, support structures and surface approximation errors due to slicing techniques. Another important factor is the difference between the CAD and the toolpath model that creates a geometrical mismatch of the printed parts. The reason is that the printed part is not solely replicated from the original CAD model due to data adjustments made during the slicing stage to create a toolpath model that is dependent on various slicing parameters. Rupal et al. [11] addressed this issue and proposed a novel reverse CAD model algorithm that can convert the sliced file back to a CAD model. The reverse CAD model approach was able to assess the geometric and mechanical behaviours of the printed part while incorporating the effect of the slicing parameters. Some research works [12, 13] addressed the variation in printed part, especially for metal AM, that influences the part quality. Moges et al. [14] identified the sources of uncertainties of laser powder bed fusion (L-PBF) process chain that includes modelling uncertainty, parameter uncertainty, numerical uncertainty, and measurement uncertainty. They developed a methodology of quantifying uncertainties by case studies of semi-analytical and FEM-based L-PBF melt pool models. Another quantification approach using Isotherm Migration Method (IMM) model [15] by choosing melt pool width as the output quantity of interest was proposed by Lopez et al. [16], considering four sources of uncertainties corresponding to modelling, simulation, and measurement processes of L-PBF.
The isotropic layered structures, differential shrinkage of the parts, stair-stepping, and effect of support structure result into poor surface finish that cause non-conformance of the geometry. Many researchers and users of AM technologies realised that the GD&T of AM finished part does not fully comply with the existing ISO standardised GD&T process flow. AM yet not a standalone manufacturing option to produce higher precision surface finish of the printed part which still depends on the post-processing subtractive manufacturing technology such as CNC machining [17]. Rupal [18] mentioned that the two mostly adopted approaches for the geometric conformance or tolerance quantification for AM, (1) experimental methods based on geometric benchmark test artifacts (GBTA) and (2) predictive methods such as numerical analysis, are not in compliance with ISO 1101 standard. His work points that the limitations in GBTA design, guidelines in terms of geometric conformance, linkage of features to GD&T and their characterisation, parametric optimisation GD&T are yet to be addressed to fully realised the GD&T for AM assembled parts or moulds. Specifically in L-PBF, GD&T based datasets are crucial to consider the effect of removal of base plate. A Horizon 2020 project Computer Aided Technologies for Additive Manufacturing (2018) developed a metrology workflow including point cloud-based analysis that adds machining allowance to AM parts to achieve quality surface finish accomplished by post CNC machining [19].
In terms of GD&T for material extrusion (ME), Huang et al. [20] proposed a new method of identifying and predicting geometrical variation of ME parts using a “Skin Shape Model” to improve the geometrical quality of printed parts in the design phase, and validated by experiments with a Coordinate Measuring Machine (CMM) of a cylindrical test piece. Other researchers proposed steps to evaluate the geometrical accuracy based on conventional GD&T characteristics and test methods [21, 22], using Taguchi’s design of experiment (DOE) statistical approach to establish the relationship of the GD&T characteristics with 13 important process parameters of ME process which helped optimize the ideal parameters to improve the geometrical accuracy. The study extended a previous attempt [23] that proposing a design framework to build a test coupon with standard tolerance characteristics following ISO 1101:2005. They reported that four process parameters including component size, extruder temperature, print orientation and layer thickness are linked to the dimensional accuracy and geometrical tolerance. In terms of Vat Photopolymerisation (VP), a study was carried out to understand the effect of the slicing parameters on dimensional variation of a VP-printed part that could manipulate the horizontal dimensions of the unit printed-volume, known as a voxel [24]. The process resulted in printing with voxel dimensions below the size of the micromirrors in the VP process, thereby improving the GD&T of the printed parts. Powder bed fusion (PBF) has been widely used in tooling and biomedical sectors and the process uses a diverse range of materials especially metals, alloys, high strength polymers and ceramic. Based on the types of processing materials, fusion mechanism and heating source, PBF comprises a range of similar technologies including selective laser sintering (SLS), selective laser melting (SLM), electron beam melting (EBM), and high speed sintering (HSS). However, one of the biggest constraints towards industrial adoption of the PBF family is limited knowledge of the GD&T processes, as well as the lack of understanding of the functional relationships between materials, process parameters, support structure, part size and geometry. In the GD&T research for metal AM, laser-based powder bed fusion (L-PBF) process, especially SLM, paid more attention possibly because, it is easy and comparatively affordable to improvise and well-adopted by the industries. Zongo et al. [25] conducted a comparative study of GD&T calculations carried out both experimentally by CMM and using micro-computed tomography (µ-CT) and theoretically using ANSYS Additive Print software for a L-PBF process. The geometrical distortion of a topologically optimized part printed with an EOSINT M280 printer and AlSi10Mg alloy powder was measured with different support structures. The results found that the AP software predicted similar trend of distortion gained experimentally and the CMM technique showed higher accuracy in data acquisition than CT scans. Importantly, higher density of support structures influenced global geometrical distortion but unaffected the local deviation of highly strained zones. Other studies of L-PBF focused on developing a design framework of suitable Geometric Benchmark Test Artifacts (GBTA) for evaluating the geometric behaviours and features. Rupal et al. proposed a methodology based on features, that is a classification system based on geometric reasoning for designing the printed part [26]. The study was further extended for complex metal parts including assemblies, known as an Assembly Benchmark Test Artefact (ABTA) that include mating features to identify the assembly capacity and dependencies of the geometric tolerancing quantifiers [27]. The framework was proposed to estimate geometric tolerances based on the Skin Shape Model considering material shrinkage and validated through a case study [28], shown in Fig. 1.

3 Geometric benchmark test artifacts

To measure AM capabilities and qualify machines for maintaining geometrical accuracy and tolerancing, a 3D CAD model comprising of different shapes and features, called a Geometric Benchmark Test Artifact (GBTA) is used. Several studies have focused on designing test artifacts for evaluating the geometrical performance of AM processes [21], proposing a framework, design criteria [29], manufacturing methodologies [30] and guidelines towards developing standardised test artifacts [31]. The first GBTA for evaluating accuracy of AM process performance was proposed by Kruth in 1991 [32]. Rebaioli et al. [21] reviewed almost 60 types of such artifacts utilised in geometric benchmarking process of AM techniques. The artifacts created mainly for PBF is listed in Table 2 with corresponding GD&T characteristics for specific processes and materials. Aspects of linear accuracy, cylindricity and position were the most common features to be evaluated as compared to the level of assemblability and lattice structures that is not shown in a GBTA.
Table 2
GD&T characteristics for different metallic materials using PBF [21]
Artifact
Processes
Materials
LA
C
Ps
P
SR
MS
R
A
LS
Kruth, 2005
SLS/SLM
Polymer coated SS (SLS), Tool steel, 316L SS, Bronze (SLM)
X
X
X
  
X
   
Abdel Ghany and Moustafa, 2006
SLS/SLM
LaserForm A6 (Steel based), DuraForm (Glass-filled Polyamide), Direct steel DS20, Direct steel DSH20 (SLS), CL 20ES SS, CL 50 WS (Hot work steel), CL 40 Ti, Metals, Ceramic (SLM)
X
X
X
  
X
   
Vandenbroucke and Kruth, 2007
SLM
Ti6Al4V, CoCrMo
X
X
X
  
X
   
Pessard, 2008
SLS
DM20 (Cu-based powder), DS20 (Steel-based powder)
    
X
    
Kotlinski, 2009
SLS
Nylon 12
X
X
X
      
Cooke and Soons, 2010
EBM/SLM
Ti6Al4V (EBM), 17–4 SS, 15–5 SS (SLM)
X
X
X
X
     
Campanelli, 2010
SLM
18 Ni Marage 300 steel
X
X
X
  
X
   
Delgado, 2010
SLS
Direct Metal 20 (bronze-based powder with Ni)
X
X
X
      
Fahad and Hopkinson, 2012
SLS
Nylon
X
X
X
X
  
X
  
Moylan, 2014
SLS/SLM/EBM
Polymer, SS (SLS), SS (SLM), Ti (EBM)
X
X
X
  
X
   
Yasa, 2014
SLM
Inconel 625
         
Teeter, 2015
SLM
316L SS
X
X
X
  
X
  
X
Berger, 2016
SLM
AlSi10Mg
X
X
X
X
 
X
   
Kniepkamp, 2016
SLM
316L SS
 
X
   
X
   
Calignano, 2017
SLM
Al
X
X
   
X
   
Toguem Tagne, 2019
SLM
Inconel 718
X
X
X
X
X
X
X
  
Rupal, 2020
SLM
Inconel
 
X
     
X
X
Taylor, 2021
L-SLM
Ti6Al4V
X
X
X
X
X
X
X
 
X
SS stainless steel, Al aluminium, Ti titanium, Ni nickel, Cu copper, LA linear accuracy, C cylindricity, Ps position, P profile, SR surface roughness, MS minimum feasible size, R repeatability, A assemblability, LS lattice structure

3.1 Lattice structures

The meaning of “Lattice” comes from a Germanic origin as a crossed-woven structure using metal or wooden strips with square or diamond-shape voids. Lattices can be found around us in nature, in various patterns with diverse shapes and sizes [33]. Lattice structures emerged in engineering applications from the late nineteenth century due to its extraordinary high strength-weight ratio. A remarkable example is the Bennerley Viaduct (see Fig. 2a) that is a railway bridge with a truss-like lattice structure in England used to carry trains between 1876–1877 [34]. In today’s modern world, lattice structures, like shown in Fig. 2b, are used in biomedical, transportation, tooling and microelectronics due to the extreme lightweight nature with scalability and realised through use of AM [35, 36].
There are different taxonomies for lattice structures proposed in various studies. However, this paper will only focus on periodic lattices, rather than stochastic cellular structures such as foam or honeycomb cells, due to their comparatively superior structural integrity [37]. Following a review of current literature, we present a classification system of lattices, considering the periodicity, size, material, orientation, and geometric constituent of the unit cell that form the lattice. As shown in Fig. 3, the first class is based on the degree of order or periodicity, consisting of three variants including disordered/random lattices, periodic lattices and pseudoperiodic lattices. Both periodic and pseudoperiodic lattices can be further classified into homogeneous and heterogeneous lattices based on the strut thickness, cell density and material type in terms of functionality. The pseudoperiodic lattice is also known as a conformal lattice [37] in relation to the conformity of the lattice orientation and the surface normal of the boundary. For the same reason, periodic lattices are also known as non-conformal lattices as it is trimmed at the boundary edges. This classification is further elaborated for periodic, pseudoperiodic and random lattices in terms of topology or the geometric constituents of the unit cell including beam, shell-based elements, and Triply Periodic Minimal Surfaces (TPMS) cells that are created following 3D trigonometric functions. This classification will be used to help identify the fundamental design of lattices in terms of size, shapes, orientation, and geometric profiles and with a view of applying relevant GD&T approaches.
Nazir et al. [33] conducted an extensive review on the forms, designs and performance of lattice structures manufactured by AM, where the capabilities and issues of DfAM for lattices using existing CAD software was highlighted. They showed different approaches of designing and optimizing the cellular structure through analytical and digital modelling techniques. There are several CAD-FEM software packages commercially available for designing and optimizing beam or shell structures, such as Catia, Creo, Solidworks, Mimics, SpaceClaim and Netfabb listed in Table 3 and current capabilities of lattice design vary among commercially available software with some requiring different levels of programming and mathematical skills of users. For example, nTopology has a comprehensive library of various lattice design including volume, surface and conformal lattices with beam, shell and TPMS unit cells. Autodesk Netfabb and Ansys SpaceClaim have limited options and mainly include common beam and shell elements. It was also found that the terms used to describe the lattices vary. For example, Netfabb describes the shell feature as a surface element. Moreover, almost all software do not have the capabilities of assessing the dimension and tolerance of the modelled part, especially for lattice structures. Creaform [39], GOM Inspect Suite [40], Hexagon PC-DMIS [41] are commonly used as quality inspection tools with GD&T capabilities.
Table 3
CAD-FEM packages for designing cellular structures using AM [33, 42]
Company/software
Lattice structure modelling
FEM analysis
Topology optimisation
ANSYS SpaceClaim
X
X
X
Dassault Systems CATIA
X
X
X
PTC Creo
X
X
 
Dassault Systems Solidworks
X
X
X
Materialise Mimics
X
X
 
*MIT Abaqus
X
X
 
nTopology
X
X
X
Autodesk Within
X
 
X
Altair Optistruct
X
 
X
Autodesk Netfabb
X
X
X
Materialise 3-matic STL
X
  
Paramount Conformal lattice structure (CLS)
X
  
ParaMatters CogniCAD
X
 
X
Massachusetts Institute of Technology (MIT)

3.2 GD&T methods for lattices

Ameta et al. [43, 44] claimed that conventional GD&T techniques are inadequate to tolerance lattice structures for AM including non-uniform thickness lattices, conformal lattices, and unstructured lattices and to verify the design against a functionality. The tolerancing of a lattice structure comprises of a) size tolerance for strut thickness and unit cell dimensions, (b) form tolerances for strut shape and unit cell shape, (c) orientation tolerances for individual strut and unit cell, and (d) position tolerance for unit cells and the lattice as a pattern. To address this gap, they introduced a Total Supplemental Surface (TSS) concept for the ASME Y14.46 standard, mitigating the tolerancing challenges for lattice structures which is shown in Fig. 4. The successful outcome of the TSS process lies in the selection of the measurement techniques and control algorithms for the TSS profile. Rupal et al. [27] also utilised a similar TSS technique to tolerance their proposed artifact called an Assembly Benchmark Test Artifact (ABTA), including mating features and lattice structures to characterise fit to form of the features and geometric tolerance of the lattice feature. The deviation of the sample is predicted by a theoretical point cloud model called skin model shapes in MATLAB, verified using finite element analysis and experimental validation of the part.

4 Summary

GD&T is a mature field for the manufacturing sector. However, for companies utilising AM, the geometric quality and structural integrity of the built part not only depends on the machine set-up, process parameters, built environment, but also the quality of the CAD model and the slicing techniques to convert the digital model into a toolpath planning and printing. In addition, the built position, orientation, support structure and materials influence the geometric quality of the built part [25]. Previous studies focused on optimising the mechanical properties of the built part and corresponding process parameters [4547]. Other studies [11, 21, 28, 48] only relate to geometric part qualification using common geometric features such as rectangles, squares, cylinders, holes, cubes, walls and slopes. They benchmarked GD&T characteristics of various artifacts produced from different AM technologies. The common GD&T characteristics such as flatness, cylindricity, parallelism, circularity were investigated, including the spatial repeatability of the features, surface finish and the minimum feature size [30]. Most GD&T work has focused on PBF techniques because of the excellent capability of the process to build various shapes, forms and complex features, including thin internal channels, infills, lattices and consolidated assembled parts [49]. However, there is a significant gap in the GD&T for complex features, especially for internal channels, lattice structures and consolidated parts. Handful studies developed tolerancing methods for lattice structures except for Ameta et al. [43, 44, 50], who proposed using a transition region known as TSS to represent the allowable variation in materials and geometry of a part with lattice structures and verifying the data using experimental metrology by CMM, XCT and FVM. However, their work is not fully applicable to different lattice structures shown in Fig. 3.
In summary, a literature review has been conducted on GD&T benchmarking for AM, and there is an extensive research gap requiring the need for GD&T benchmarking of PBF parts with complex features such as lattice structures. There is an urgent need for a standardised approach for GD&T artifacts encompassing lattice features and other freeform structures. Future work should also propose a GD&T workflow for designing artifacts with lattices structures.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literature
4.
go back to reference Lu Y, Morris K, Frechette S (2016) Current standards landscape for smart manufacturing systems, vol 8107 (ISBN 1069600690287) Lu Y, Morris K, Frechette S (2016) Current standards landscape for smart manufacturing systems, vol 8107 (ISBN 1069600690287)
14.
go back to reference Moges T, Yan W, Lin S, Ameta G, Fox J, Witherell P (2020) Quantifying uncertainty in laser powder bed fusion additive manufacturing models and simulations. In: Solid free. fabr. 2018 proc. 29th annu. int. solid free. fabr. symp.—an addit. manuf. conf. SFF 2018, pp 1913–1928 Moges T, Yan W, Lin S, Ameta G, Fox J, Witherell P (2020) Quantifying uncertainty in laser powder bed fusion additive manufacturing models and simulations. In: Solid free. fabr. 2018 proc. 29th annu. int. solid free. fabr. symp.—an addit. manuf. conf. SFF 2018, pp 1913–1928
17.
go back to reference Thompson A (2018) Surface texture measurement of metal additively manufactured parts by X-ray computed tomography. University of Nottingham, Nottingham Thompson A (2018) Surface texture measurement of metal additively manufactured parts by X-ray computed tomography. University of Nottingham, Nottingham
18.
go back to reference Rupal BS (2021) Geometric tolerance quantification and prediction framework for additive manufacturing processes. University of Alberta, Edmonton Rupal BS (2021) Geometric tolerance quantification and prediction framework for additive manufacturing processes. University of Alberta, Edmonton
19.
go back to reference de la Maza S, Ventura T (2018) Metrology workflow for AM workpieces, including WP6 task integrated into sub workflows targeting the different use cases, 2018 de la Maza S, Ventura T (2018) Metrology workflow for AM workpieces, including WP6 task integrated into sub workflows targeting the different use cases, 2018
29.
go back to reference Toguem SCT, Rupal BS, Mehdi-Souzani C, Qureshi AJ, Anwer N (2018) A review of AM artifact design methods. In: Proc.—2018 ASPE euspen summer top. meet. adv. precis. addit. manuf., pp 132–137 Toguem SCT, Rupal BS, Mehdi-Souzani C, Qureshi AJ, Anwer N (2018) A review of AM artifact design methods. In: Proc.—2018 ASPE euspen summer top. meet. adv. precis. addit. manuf., pp 132–137
45.
go back to reference Gurrala PK, Regalla SP (2014) Multi-objective optimisation of strength and volumetric shrinkage of FDM parts: a multi-objective optimization scheme is used to optimize the strength and volumetric shrinkage of FDM parts considering different process parameters. Virtual Phys Prototyp 9:127–138. https://doi.org/10.1080/17452759.2014.898851CrossRef Gurrala PK, Regalla SP (2014) Multi-objective optimisation of strength and volumetric shrinkage of FDM parts: a multi-objective optimization scheme is used to optimize the strength and volumetric shrinkage of FDM parts considering different process parameters. Virtual Phys Prototyp 9:127–138. https://​doi.​org/​10.​1080/​17452759.​2014.​898851CrossRef
46.
go back to reference Phan TQ, Strantza M, Hill MR, Gnaupel-Herold TH, Heigel J, D’Elia CR, DeWald AT, Clausen B, Pagan DC, Peter Ko JY, Brown DW, Levine LE (2019) Elastic residual strain and stress measurements and corresponding part deflections of 3D additive manufacturing builds of IN625 AM-Bench artifacts using neutron diffraction, synchrotron X-ray diffraction, and contour method. Integr Mater Manuf Innov 8:318–334. https://doi.org/10.1007/s40192-019-00149-0CrossRef Phan TQ, Strantza M, Hill MR, Gnaupel-Herold TH, Heigel J, D’Elia CR, DeWald AT, Clausen B, Pagan DC, Peter Ko JY, Brown DW, Levine LE (2019) Elastic residual strain and stress measurements and corresponding part deflections of 3D additive manufacturing builds of IN625 AM-Bench artifacts using neutron diffraction, synchrotron X-ray diffraction, and contour method. Integr Mater Manuf Innov 8:318–334. https://​doi.​org/​10.​1007/​s40192-019-00149-0CrossRef
Metadata
Title
A review of geometric dimensioning and tolerancing (GD&T) of additive manufacturing and powder bed fusion lattices
Authors
Eujin Pei
Israt Kabir
Tomislav Breški
Damir Godec
Axel Nordin
Publication date
06-05-2022
Publisher
Springer International Publishing
Published in
Progress in Additive Manufacturing / Issue 6/2022
Print ISSN: 2363-9512
Electronic ISSN: 2363-9520
DOI
https://doi.org/10.1007/s40964-022-00304-8

Other articles of this Issue 6/2022

Progress in Additive Manufacturing 6/2022 Go to the issue

Premium Partners