Skip to main content
Erschienen in: The International Journal of Advanced Manufacturing Technology 3-4/2020

28.02.2020 | ORIGINAL ARTICLE

Geometric deviations of laser powder bed–fused AlSi10Mg components: numerical predictions versus experimental measurements

verfasst von: Floriane Zongo, Charles Simoneau, Anatolie Timercan, Antoine Tahan, Vladimir Brailovski

Erschienen in: The International Journal of Advanced Manufacturing Technology | Ausgabe 3-4/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Laser powder bed fusion (LPBF) is one of the most potent additive manufacturing processes. One of the constraints for a broader industrial use of this process is the limited knowledge of its dimensional performances and geometrical behavior, as well as the inability to predict them as a function of material, process parameters, part size, and geometry. The objective of this study is to enrich knowledge of the geometric dimensioning and tolerancing (GD&T) performances of the LPBF process and to evaluate the distortion prediction capabilities of the ANSYS Additive Print® software. To this end, a selected topologically optimized part with three different support configurations was manufactured using an EOSINT M280 printer and AlSi10Mg powder. After printing, the parts were scanned using a coordinate measuring machine (CMM) and a micro-computed tomography (μ-CT) system. The GD&T calculations were carried out according to the ASME Y14.5 (2009) standard. The distortions measured by the CMM and μ-CT techniques were 0.195 mm and 0.368 mm, respectively (95% interval). After the software calibration and two numerical sensitivity studies, the same stereolithography files used to print the parts were downloaded into the ANSYS Additive Print® software to calculate distortions caused by the process. The differences between the experimentally measured and the ANSYS-predicted distortions for a 56 mm × 58 mm × 137 mm part fell within a 0.134 mm range at a 95% interval. The fidelity of the numerical predictions, the impact of the support structures, and the differences induced by the CMM and μ-CT measurement uncertainties are presented and discussed.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat ASTM I (2016) ASTM52901-16 standard guide for additive manufacturing–general principles–requirements for purchased AM parts. ASTM International, West Conshohocken ASTM I (2016) ASTM52901-16 standard guide for additive manufacturing–general principles–requirements for purchased AM parts. ASTM International, West Conshohocken
2.
Zurück zum Zitat DIN E (2017) ISO/ASTM 52900: 2017-06 additive manufacturing—general principles—terminology (ISO/ASTM 52900: 2015). German version EN ISO/ASTM 52900 DIN E (2017) ISO/ASTM 52900: 2017-06 additive manufacturing—general principles—terminology (ISO/ASTM 52900: 2015). German version EN ISO/ASTM 52900
3.
Zurück zum Zitat Liu J, Jalalahmadi B, Guo Y, Sealy MP, Bolander N (2018) A review of computational modeling in powder-based additive manufacturing for metallic part qualification. Rapid Prototyp J 24(8):1245–1264CrossRef Liu J, Jalalahmadi B, Guo Y, Sealy MP, Bolander N (2018) A review of computational modeling in powder-based additive manufacturing for metallic part qualification. Rapid Prototyp J 24(8):1245–1264CrossRef
4.
Zurück zum Zitat Afazov S, Okioga A, Holloway A, Denmark W, Triantaphyllou A, Smith S-A, Bradley-Smith L (2017) A methodology for precision additive manufacturing through compensation. Precis Eng 50:269–274CrossRef Afazov S, Okioga A, Holloway A, Denmark W, Triantaphyllou A, Smith S-A, Bradley-Smith L (2017) A methodology for precision additive manufacturing through compensation. Precis Eng 50:269–274CrossRef
5.
Zurück zum Zitat Afazov S, Denmark WA, Toralles BL, Holloway A, Yaghi A (2017) Distortion prediction and compensation in selective laser melting. Addit Manuf 17:15–22CrossRef Afazov S, Denmark WA, Toralles BL, Holloway A, Yaghi A (2017) Distortion prediction and compensation in selective laser melting. Addit Manuf 17:15–22CrossRef
6.
Zurück zum Zitat An K, Yuan L, Dial L, Spinelli I, Stoica AD, Gao Y (2017) Neutron residual stress measurement and numerical modeling in a curved thin-walled structure by laser powder bed fusion additive manufacturing. Mater Des 135:122–132CrossRef An K, Yuan L, Dial L, Spinelli I, Stoica AD, Gao Y (2017) Neutron residual stress measurement and numerical modeling in a curved thin-walled structure by laser powder bed fusion additive manufacturing. Mater Des 135:122–132CrossRef
7.
Zurück zum Zitat Parry L, Ashcroft I, Wildman RD (2016) Understanding the effect of laser scan strategy on residual stress in selective laser melting through thermo-mechanical simulation. Addit Manuf 12:1–15 Parry L, Ashcroft I, Wildman RD (2016) Understanding the effect of laser scan strategy on residual stress in selective laser melting through thermo-mechanical simulation. Addit Manuf 12:1–15
8.
Zurück zum Zitat Caelers M (2017) Study of in-situ monitoring methods to create a robust SLM process: preventing collisions between recoater mechanism and part in a SLM machine Caelers M (2017) Study of in-situ monitoring methods to create a robust SLM process: preventing collisions between recoater mechanism and part in a SLM machine
9.
Zurück zum Zitat Nicoletto G (2017) Anisotropic high cycle fatigue behavior of Ti–6Al–4V obtained by powder bed laser fusion. Int J Fatigue 94:255–262CrossRef Nicoletto G (2017) Anisotropic high cycle fatigue behavior of Ti–6Al–4V obtained by powder bed laser fusion. Int J Fatigue 94:255–262CrossRef
10.
Zurück zum Zitat Gan MX, Wong CH (2016) Practical support structures for selective laser melting. J Mater Process Technol 238:474–484CrossRef Gan MX, Wong CH (2016) Practical support structures for selective laser melting. J Mater Process Technol 238:474–484CrossRef
11.
Zurück zum Zitat Moges T, Ameta G, Witherell P (2019) A review of model inaccuracy and parameter uncertainty in laser powder bed fusion models and simulations. J Manuf Sci Eng 141(4):040801CrossRef Moges T, Ameta G, Witherell P (2019) A review of model inaccuracy and parameter uncertainty in laser powder bed fusion models and simulations. J Manuf Sci Eng 141(4):040801CrossRef
12.
Zurück zum Zitat Markopoulos AP (2012) Finite element method in machining processes. Springer Science & Business Media Markopoulos AP (2012) Finite element method in machining processes. Springer Science & Business Media
13.
Zurück zum Zitat Dunbar AJ, Denlinger ER, Gouge MF, Michaleris P (2016) Experimental validation of finite element modeling for laser powder bed fusion deformation. Addit Manuf 12:108–120 Dunbar AJ, Denlinger ER, Gouge MF, Michaleris P (2016) Experimental validation of finite element modeling for laser powder bed fusion deformation. Addit Manuf 12:108–120
14.
Zurück zum Zitat Mukherjee T, Zhang W, DebRoy T (2017) An improved prediction of residual stresses and distortion in additive manufacturing. Comput Mater Sci 126:360–372CrossRef Mukherjee T, Zhang W, DebRoy T (2017) An improved prediction of residual stresses and distortion in additive manufacturing. Comput Mater Sci 126:360–372CrossRef
15.
Zurück zum Zitat Denlinger ER, Gouge M, Irwin J, Michaleris P (2017) Thermomechanical model development and in situ experimental validation of the laser powder-bed fusion process. Addit Manuf 16:73–80 Denlinger ER, Gouge M, Irwin J, Michaleris P (2017) Thermomechanical model development and in situ experimental validation of the laser powder-bed fusion process. Addit Manuf 16:73–80
16.
Zurück zum Zitat Yaghi A, Afazov S, Villa M (2019) Additive manufacturing process chain modelling and simulation. NAFEMS World Congress 2019:24 Yaghi A, Afazov S, Villa M (2019) Additive manufacturing process chain modelling and simulation. NAFEMS World Congress 2019:24
17.
Zurück zum Zitat Chen J-m, Lu H, Wang J-h, Chen W-x, Hao D-j Prediction of welding deformation with inherent strain method based on FEM Chen J-m, Lu H, Wang J-h, Chen W-x, Hao D-j Prediction of welding deformation with inherent strain method based on FEM
18.
Zurück zum Zitat Wang Y-X, Zhang P, Hou Z-G, Li C-Z (2008) Inherent strain method and thermal elastic-plastic analysis of welding deformation of a thin-wall beam. J Mech 24(4):301–309CrossRef Wang Y-X, Zhang P, Hou Z-G, Li C-Z (2008) Inherent strain method and thermal elastic-plastic analysis of welding deformation of a thin-wall beam. J Mech 24(4):301–309CrossRef
19.
Zurück zum Zitat Ueda Y, Fukuda K, Tanigawa M (1979) New measuring method of three dimensional residual stresses based on theory of inherent strain (welding mechanics, strength & design). Trans JWRI 8(2):249–256 Ueda Y, Fukuda K, Tanigawa M (1979) New measuring method of three dimensional residual stresses based on theory of inherent strain (welding mechanics, strength & design). Trans JWRI 8(2):249–256
20.
Zurück zum Zitat M. Tateishi, HS, P. Mehmert (2019) Automated distortion compensation functionality for metal additive manufacturing. NAFEMS World Congress 2019:18 M. Tateishi, HS, P. Mehmert (2019) Automated distortion compensation functionality for metal additive manufacturing. NAFEMS World Congress 2019:18
21.
Zurück zum Zitat Setien I, Chiumenti M, van der Veen S, San Sebastian M, Garciandía F, Echeverría A (2019) Empirical methodology to determine inherent strains in additive manufacturing. Comput Math Appl 78(7):2282–2295MathSciNetCrossRef Setien I, Chiumenti M, van der Veen S, San Sebastian M, Garciandía F, Echeverría A (2019) Empirical methodology to determine inherent strains in additive manufacturing. Comput Math Appl 78(7):2282–2295MathSciNetCrossRef
22.
Zurück zum Zitat Keller N, Ploshikhin V New method for fast predictions of residual stress and distortion of AM parts. In: Solid freeform fabrication symposium (SFF), Austin,2014. pp 4–6 Keller N, Ploshikhin V New method for fast predictions of residual stress and distortion of AM parts. In: Solid freeform fabrication symposium (SFF), Austin,2014. pp 4–6
23.
Zurück zum Zitat François M, Segonds F, Rivette M, Turpault S, Peyre P (2019) Design for additive manufacturing (DfAM) methodologies: a proposal to foster the design of microwave waveguide components. Virtual and Physical Prototyping 14(2):175–187CrossRef François M, Segonds F, Rivette M, Turpault S, Peyre P (2019) Design for additive manufacturing (DfAM) methodologies: a proposal to foster the design of microwave waveguide components. Virtual and Physical Prototyping 14(2):175–187CrossRef
24.
Zurück zum Zitat Engineers ASoM (1995) Mathematical definition of dimensioning and tolerancing principles: ASME Y14. 5.1 M-1994. American Society of Mechanical Engineers Engineers ASoM (1995) Mathematical definition of dimensioning and tolerancing principles: ASME Y14. 5.1 M-1994. American Society of Mechanical Engineers
25.
Zurück zum Zitat TC69 I (2013) SC4—applications of statistical methods in process management: ISO. TR 22514-4: 2007—statistical methods in process management—capability and performance—part 4: process capability estimates and performance measures. Published standard TC69 I (2013) SC4—applications of statistical methods in process management: ISO. TR 22514-4: 2007—statistical methods in process management—capability and performance—part 4: process capability estimates and performance measures. Published standard
26.
Zurück zum Zitat ANSYS (2018) ANSYS additive user’s guide release 19.2.62 ANSYS (2018) ANSYS additive user’s guide release 19.2.62
27.
Zurück zum Zitat ANSYS (2018) ANSYS additive print calibration guide release 19.2.18 ANSYS (2018) ANSYS additive print calibration guide release 19.2.18
28.
Zurück zum Zitat Wang J, Sama SR, Manogharan G (2019) Re-thinking design methodology for castings: 3D sand-printing and topology optimization. Int J Met 13(1):2–17 Wang J, Sama SR, Manogharan G (2019) Re-thinking design methodology for castings: 3D sand-printing and topology optimization. Int J Met 13(1):2–17
29.
Zurück zum Zitat Del Re F, Contaldi V, Astarita A, Palumbo B, Squillace A, Corrado P, Di Petta P (2018) Statistical approach for assessing the effect of powder reuse on the final quality of AlSi10Mg parts produced by laser powder bed fusion additive manufacturing. Int J Adv Manuf Technol 97(5–8):2231–2240 Del Re F, Contaldi V, Astarita A, Palumbo B, Squillace A, Corrado P, Di Petta P (2018) Statistical approach for assessing the effect of powder reuse on the final quality of AlSi10Mg parts produced by laser powder bed fusion additive manufacturing. Int J Adv Manuf Technol 97(5–8):2231–2240
30.
Zurück zum Zitat GmbH EOS (2016) Material data sheet: EOS aluminium AlSi10Mg (for EOS M280).5 GmbH EOS (2016) Material data sheet: EOS aluminium AlSi10Mg (for EOS M280).5
32.
Zurück zum Zitat Dixon WJ, Massey Jr FJ (1951) Introduction to statistical analysis Dixon WJ, Massey Jr FJ (1951) Introduction to statistical analysis
33.
Zurück zum Zitat Barbero BR, Ureta ES (2011) Comparative study of different digitization techniques and their accuracy. Comput Aided Des 43(2):188–206CrossRef Barbero BR, Ureta ES (2011) Comparative study of different digitization techniques and their accuracy. Comput Aided Des 43(2):188–206CrossRef
34.
Zurück zum Zitat Aloisi V, Carmignato S (2016) Influence of surface roughness on X-ray computed tomography dimensional measurements of additive manufactured parts. Case Studies in Nondestructive Testing and Evaluation 6:104–110CrossRef Aloisi V, Carmignato S (2016) Influence of surface roughness on X-ray computed tomography dimensional measurements of additive manufactured parts. Case Studies in Nondestructive Testing and Evaluation 6:104–110CrossRef
35.
Zurück zum Zitat Kessel W (2002) Measurement uncertainty according to ISO/BIPM-GUM. Thermochim Acta 382(1–2):1–16CrossRef Kessel W (2002) Measurement uncertainty according to ISO/BIPM-GUM. Thermochim Acta 382(1–2):1–16CrossRef
36.
Zurück zum Zitat Zongo F, Tahan A, Aidibe A, Brailovski V (2018) Intra-and inter-repeatability of profile deviations of an AlSi10Mg tooling component manufactured by laser powder bed fusion. J Manuf Mater Process 2(3):56 Zongo F, Tahan A, Aidibe A, Brailovski V (2018) Intra-and inter-repeatability of profile deviations of an AlSi10Mg tooling component manufactured by laser powder bed fusion. J Manuf Mater Process 2(3):56
Metadaten
Titel
Geometric deviations of laser powder bed–fused AlSi10Mg components: numerical predictions versus experimental measurements
verfasst von
Floriane Zongo
Charles Simoneau
Anatolie Timercan
Antoine Tahan
Vladimir Brailovski
Publikationsdatum
28.02.2020
Verlag
Springer London
Erschienen in
The International Journal of Advanced Manufacturing Technology / Ausgabe 3-4/2020
Print ISSN: 0268-3768
Elektronische ISSN: 1433-3015
DOI
https://doi.org/10.1007/s00170-020-04987-7

Weitere Artikel der Ausgabe 3-4/2020

The International Journal of Advanced Manufacturing Technology 3-4/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.