Skip to main content
Top
Published in: Rare Metals 1/2021

14-11-2020 | Review

A review of helical carbon materials structure, synthesis and applications

Authors: Ding-Chuan Wang, Yu Lei, Wei Jiao, Yi-Fan Liu, Chun-Hong Mu, Xian Jian

Published in: Rare Metals | Issue 1/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The helical structures possess unique physical and chemical properties, such as superelasticity, high specific strength, chirality, and electromagnetic cross-polarization characteristics. With the development of nanoscience and nanotechnology, helical structures with various scales have been discovered or synthesized artificially. Among them, the helical carbon materials receive much attention around the world. Herein, we present a brief review of the development of helical carbon materials in terms of structures, synthesis techniques and mechanisms, and applications. The controllable designing of catalysts, carbon sources and reaction parameters plays a key role to optimize the properties of the helical carbon materials. At the same time, the applications in microwave absorption devices, sensors, catalysts, energy conversions and storage devices, and solar cell are also presented. For the good chemical and physical properties, helical carbon materials have a good application prospect in many fields. The potential issues and future opportunities of the helical carbon materials are also proposed.

Graphic abstract

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
[1]
go back to reference Watson JD, Crick FHC. Molecular structure of nucleic acids: a structure for deoxyribose nucleic acid. Nature. 1953;171(4356):737. Watson JD, Crick FHC. Molecular structure of nucleic acids: a structure for deoxyribose nucleic acid. Nature. 1953;171(4356):737.
[2]
go back to reference Watson JD, Crick FHC. Genetical implications of the structure of deoxyribonucleic acid. Nature. 1953;171(4361):964. Watson JD, Crick FHC. Genetical implications of the structure of deoxyribonucleic acid. Nature. 1953;171(4361):964.
[3]
go back to reference Smalley RE. Discovering the fullerenes. Rev Mod Phys. 1997;69(3):723. Smalley RE. Discovering the fullerenes. Rev Mod Phys. 1997;69(3):723.
[4]
go back to reference An YB, Chen S, Zou MM, Geng LB, Sun XZ, Zhang X, Wang K, Ma YW. Improving anode performances of lithium-ion capacitors employing carbon–Si composites. Rare Met. 2019;38(12):1113. An YB, Chen S, Zou MM, Geng LB, Sun XZ, Zhang X, Wang K, Ma YW. Improving anode performances of lithium-ion capacitors employing carbon–Si composites. Rare Met. 2019;38(12):1113.
[5]
go back to reference Li J, Zhang C, Wu CJ, Tao Y, Zhang L, Yang QH. Improved performance of Li–Se battery based on a novel dual functional CNTs@graphene/CNTs cathode construction. Rare Met. 2017;36(5):425. Li J, Zhang C, Wu CJ, Tao Y, Zhang L, Yang QH. Improved performance of Li–Se battery based on a novel dual functional CNTs@graphene/CNTs cathode construction. Rare Met. 2017;36(5):425.
[6]
go back to reference Wu T, Chen X, Sha J, Peng YY, Ma YL, Xie LS, Turng LS. Fabrication of shish-kebab-structured carbon nanotube/poly(ε-caprolactone) composite nanofibers for potential tissue engineering applications. Rare Met. 2019;38(1):64. Wu T, Chen X, Sha J, Peng YY, Ma YL, Xie LS, Turng LS. Fabrication of shish-kebab-structured carbon nanotube/poly(ε-caprolactone) composite nanofibers for potential tissue engineering applications. Rare Met. 2019;38(1):64.
[7]
go back to reference Li T, Liu H, Shi P, Zhang Q. Recent progress in carbon/lithium metal composite anode for safe lithium metal batteries. Rare Met. 2018;37(6):449. Li T, Liu H, Shi P, Zhang Q. Recent progress in carbon/lithium metal composite anode for safe lithium metal batteries. Rare Met. 2018;37(6):449.
[8]
go back to reference Wang BP, Lv R, Lan DS. Preparation and electrochemical properties of Sn/C composites. Rare Met. 2019;38(10):996. Wang BP, Lv R, Lan DS. Preparation and electrochemical properties of Sn/C composites. Rare Met. 2019;38(10):996.
[9]
go back to reference Yang DX, Qu D, Miao X, Jiang WS, An L, Wen YJ, Wu DD, Sun ZC. TiO2 sensitized by red-, green-, blue-emissive carbon dots for enhanced H2 production. Rare Met. 2019;38(5):404. Yang DX, Qu D, Miao X, Jiang WS, An L, Wen YJ, Wu DD, Sun ZC. TiO2 sensitized by red-, green-, blue-emissive carbon dots for enhanced H2 production. Rare Met. 2019;38(5):404.
[10]
go back to reference Yuan Q, Yao Z, Liu CJ, Lv H. Modeling double-helix carbon chains inside single-walled carbon nanotubes: stable structures and XRD analysis. Chin J Phys. 2018;56(6):2646. Yuan Q, Yao Z, Liu CJ, Lv H. Modeling double-helix carbon chains inside single-walled carbon nanotubes: stable structures and XRD analysis. Chin J Phys. 2018;56(6):2646.
[11]
go back to reference Jiao C, Zhao CR, Zhang L, Sun HB, Lu SG. High loading sulfur electrode modified by porous carbon layer. Chin J Rare Met. 2019;43(4):390. Jiao C, Zhao CR, Zhang L, Sun HB, Lu SG. High loading sulfur electrode modified by porous carbon layer. Chin J Rare Met. 2019;43(4):390.
[12]
go back to reference Zieleniewska A, Lodermeyer F, Roth A, Guldi DM. Fullerenes - how 25 years of charge transfer chemistry have shaped our understanding of (interfacial) interactions. Chem Soc Rev. 2018;47(3):702. Zieleniewska A, Lodermeyer F, Roth A, Guldi DM. Fullerenes - how 25 years of charge transfer chemistry have shaped our understanding of (interfacial) interactions. Chem Soc Rev. 2018;47(3):702.
[13]
go back to reference Kroto HW, Heath JR, O’Brien SC, Curl RF, Smalley RE. C60: buckminsterfullerene. Nature. 1985;318(6042):162. Kroto HW, Heath JR, O’Brien SC, Curl RF, Smalley RE. C60: buckminsterfullerene. Nature. 1985;318(6042):162.
[14]
go back to reference Iijima S. Helical microtubules of graphitic carbon. Nature. 1991;354(6348):56. Iijima S. Helical microtubules of graphitic carbon. Nature. 1991;354(6348):56.
[15]
go back to reference Wen L, Li F, Cheng HM. Carbon nanotubes and graphene for flexible electrochemical energy storage: from materials to devices. Adv Mater. 2016;28(22):4306. Wen L, Li F, Cheng HM. Carbon nanotubes and graphene for flexible electrochemical energy storage: from materials to devices. Adv Mater. 2016;28(22):4306.
[16]
go back to reference Li PB, Tan WT, Gao MM, Liu KG. Semisolid microstructural evolution of (CNTs + Sip)/AZ91D powder compacts prepared from powders by cold pressing and remelting. Rare Met. 2020;39(6):733. Li PB, Tan WT, Gao MM, Liu KG. Semisolid microstructural evolution of (CNTs + Sip)/AZ91D powder compacts prepared from powders by cold pressing and remelting. Rare Met. 2020;39(6):733.
[17]
go back to reference Qie L, Chen WM, Wang ZH, Shao QG, Li X, Yuan LX, Hu XL, Zhang WX, Huang YH. Nitrogen-doped porous carbon nanofiber webs as anodes for lithium ion batteries with a superhigh capacity and rate capability. Adv Mater. 2012;24(15):2047. Qie L, Chen WM, Wang ZH, Shao QG, Li X, Yuan LX, Hu XL, Zhang WX, Huang YH. Nitrogen-doped porous carbon nanofiber webs as anodes for lithium ion batteries with a superhigh capacity and rate capability. Adv Mater. 2012;24(15):2047.
[18]
go back to reference Li WH, Li MS, Adair KR, Sun XL, Yu Y. Carbon nanofiber-based nanostructures for lithium-ion and sodium-ion batteries. J Mater Chem A. 2017;5(27):13882. Li WH, Li MS, Adair KR, Sun XL, Yu Y. Carbon nanofiber-based nanostructures for lithium-ion and sodium-ion batteries. J Mater Chem A. 2017;5(27):13882.
[19]
go back to reference Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA. Electric field effect in atomically thin carbon films. Science. 2004;306(5696):666. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA. Electric field effect in atomically thin carbon films. Science. 2004;306(5696):666.
[20]
go back to reference Chen ZP, Ren WC, Gao LB, Liu BL, Pei SF, Cheng HM. Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition. Nat Mater. 2011;10(6):424. Chen ZP, Ren WC, Gao LB, Liu BL, Pei SF, Cheng HM. Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition. Nat Mater. 2011;10(6):424.
[21]
go back to reference Fan YY, Tu HL, Pang Y, Wei F, Zhao HB, Yang Y, Ren TL. Au-decorated porous structure graphene with enhanced sensing performance for low-concentration NO2 detection. Rare Met. 2020;39(6):651. Fan YY, Tu HL, Pang Y, Wei F, Zhao HB, Yang Y, Ren TL. Au-decorated porous structure graphene with enhanced sensing performance for low-concentration NO2 detection. Rare Met. 2020;39(6):651.
[22]
go back to reference Davis WR, Slawson RJ, Rigby GR. An unusual form of carbon. Nature. 1953;171(4356):756. Davis WR, Slawson RJ, Rigby GR. An unusual form of carbon. Nature. 1953;171(4356):756.
[23]
go back to reference Qin LC, Iijima S. Structure and formation of raft-like bundles of single-walled helical carbon nanotubes produced by laser evaporation. Chem Phys Lett. 1997;269(1):65. Qin LC, Iijima S. Structure and formation of raft-like bundles of single-walled helical carbon nanotubes produced by laser evaporation. Chem Phys Lett. 1997;269(1):65.
[24]
go back to reference Gao R, Wang ZL, Fan S. Kinetically controlled growth of helical and zigzag shapes of carbon nanotubes. J Phys Chem B. 2000;104(6):1227. Gao R, Wang ZL, Fan S. Kinetically controlled growth of helical and zigzag shapes of carbon nanotubes. J Phys Chem B. 2000;104(6):1227.
[25]
go back to reference Yang S, Ozeki I, Chen X, Katsuno T, Motojima S. Preparation of single-helix carbon microcoils by catalytic CVD process. Thin Solid Films. 2008;516(5):718. Yang S, Ozeki I, Chen X, Katsuno T, Motojima S. Preparation of single-helix carbon microcoils by catalytic CVD process. Thin Solid Films. 2008;516(5):718.
[26]
go back to reference Yong Z, Fang L, Zhang ZH. Synthesis of heterostructured helical carbon nanotubes by iron-catalyzed ethanol decomposition. Micron. 2011;42(6):547. Yong Z, Fang L, Zhang ZH. Synthesis of heterostructured helical carbon nanotubes by iron-catalyzed ethanol decomposition. Micron. 2011;42(6):547.
[27]
go back to reference Hikita M, Bradford RL, Lafdi K. Growth and properties of carbon microcoils and nanocoils. Crystals. 2014;4(4):466. Hikita M, Bradford RL, Lafdi K. Growth and properties of carbon microcoils and nanocoils. Crystals. 2014;4(4):466.
[28]
go back to reference Jin Y, Ren J, Chen J, Dai Z, Li B, Zhou X. Controllable preparation of helical carbon nanofibers by CCVD method and their characterization. Mater Res Express. 2018;5(1):015601. Jin Y, Ren J, Chen J, Dai Z, Li B, Zhou X. Controllable preparation of helical carbon nanofibers by CCVD method and their characterization. Mater Res Express. 2018;5(1):015601.
[29]
go back to reference Kogashi K, Matsuno T, Sato S, Isobe H. Narrowing segments of helical carbon nanotubes with curved aromatic panels. Angew Chem Int Ed. 2019;58(22):7385. Kogashi K, Matsuno T, Sato S, Isobe H. Narrowing segments of helical carbon nanotubes with curved aromatic panels. Angew Chem Int Ed. 2019;58(22):7385.
[30]
go back to reference Ma H, Zhang X, Zhang Z, Wang Y, Wang G, Liu F, Cui R, Huang C, Wang M, Wei Y, Jiang K, Pan L, Liu K. Infrared micro-detectors with high sensitivity and high response speed using VO2-coated helical carbon nanocoils. J Mater Chem C. 2019;7(39):12095. Ma H, Zhang X, Zhang Z, Wang Y, Wang G, Liu F, Cui R, Huang C, Wang M, Wei Y, Jiang K, Pan L, Liu K. Infrared micro-detectors with high sensitivity and high response speed using VO2-coated helical carbon nanocoils. J Mater Chem C. 2019;7(39):12095.
[31]
go back to reference Gao Y, Guo F, Cao P, Liu J, Li D, Wu J, Wang N, Su Y, Zhao Y. Winding-locked carbon nanotubes/polymer nanofibers helical yarn for ultrastretchable conductor and strain sensor. ACS Nano. 2020;14(3):3442. Gao Y, Guo F, Cao P, Liu J, Li D, Wu J, Wang N, Su Y, Zhao Y. Winding-locked carbon nanotubes/polymer nanofibers helical yarn for ultrastretchable conductor and strain sensor. ACS Nano. 2020;14(3):3442.
[32]
go back to reference Tang N, Kuo W, Jeng C, Wang L, Lin K, Du Y. Coil-in-coil carbon nanocoils: 11 gram-scale synthesis, single nanocoil electrical properties, and electrical contact improvement. ACS Nano. 2010;4(2):781. Tang N, Kuo W, Jeng C, Wang L, Lin K, Du Y. Coil-in-coil carbon nanocoils: 11 gram-scale synthesis, single nanocoil electrical properties, and electrical contact improvement. ACS Nano. 2010;4(2):781.
[33]
go back to reference Xu D, Xuan C, Li X, Luo Z, Wang Z, Tang T, Wen J, Li M, Xiao J. Novel helical carbon nanotubes-embedded reduced graphene oxide in three-dimensional architecture for high-performance flexible supercapacitors. Electrochim Acta. 2020;339:135912. Xu D, Xuan C, Li X, Luo Z, Wang Z, Tang T, Wen J, Li M, Xiao J. Novel helical carbon nanotubes-embedded reduced graphene oxide in three-dimensional architecture for high-performance flexible supercapacitors. Electrochim Acta. 2020;339:135912.
[34]
go back to reference Han Y, Jiang C, Lin H, Luo C, Qi R, Peng H. Piezoelectric nanogenerators based on helical carbon materials and polyvinyledenedifluoride-trifluoroethylene hybrids with enhanced energy-harvesting performance. Energy Technol. 2020;8(6):1901249. Han Y, Jiang C, Lin H, Luo C, Qi R, Peng H. Piezoelectric nanogenerators based on helical carbon materials and polyvinyledenedifluoride-trifluoroethylene hybrids with enhanced energy-harvesting performance. Energy Technol. 2020;8(6):1901249.
[35]
go back to reference Hanus MJ, Harris AI. Synthesis, characterisation and applications of coiled carbon nanotubes. J Nanosci Nanotechnol. 2010;10(4):2261. Hanus MJ, Harris AI. Synthesis, characterisation and applications of coiled carbon nanotubes. J Nanosci Nanotechnol. 2010;10(4):2261.
[36]
go back to reference Jian X, Wang DC, Liu HY, Jiang M, Zhou ZW, Lu J, Xu XL, Wang Y, Wang L, Gong ZZ, Yang ML, Gou JH, Hui D. Controllable synthesis of carbon coils and growth mechanism for twinning double-helix catalyzed by Ni nanoparticle. Compos Part B-Eng. 2014;61:61350. Jian X, Wang DC, Liu HY, Jiang M, Zhou ZW, Lu J, Xu XL, Wang Y, Wang L, Gong ZZ, Yang ML, Gou JH, Hui D. Controllable synthesis of carbon coils and growth mechanism for twinning double-helix catalyzed by Ni nanoparticle. Compos Part B-Eng. 2014;61:61350.
[37]
go back to reference Wu J, He J, Odegard GM, Nagao S, Zheng Q, Zhang Z. Giant stretchability and reversibility of tightly wound helical carbon nanotubes. J Am Chem Soc. 2013;135(37):13775. Wu J, He J, Odegard GM, Nagao S, Zheng Q, Zhang Z. Giant stretchability and reversibility of tightly wound helical carbon nanotubes. J Am Chem Soc. 2013;135(37):13775.
[38]
go back to reference Jian X, Jiang M, Zhou ZW, Zeng Q, Lu J, Wang DC, Zhu JT, Gou JH, Wang Y, Hui D, Yang ML. Gas-induced formation of cu nanoparticle as catalyst for high-purity straight and helical carbon nanofibers. ACS Nano. 2012;6(10):68611. Jian X, Jiang M, Zhou ZW, Zeng Q, Lu J, Wang DC, Zhu JT, Gou JH, Wang Y, Hui D, Yang ML. Gas-induced formation of cu nanoparticle as catalyst for high-purity straight and helical carbon nanofibers. ACS Nano. 2012;6(10):68611.
[39]
go back to reference Liu Y, Wang B, Sun Q, Pan Q, Zhao N, Li Z, Yang Y, Sun X. Controllable synthesis of Co@CoOx/helical nitrogen-doped carbon nanotubes toward oxygen reduction reaction as binder-free cathodes for Al–air batteries. ACS Appl Mater Interfaces. 2020;12(14):16512. Liu Y, Wang B, Sun Q, Pan Q, Zhao N, Li Z, Yang Y, Sun X. Controllable synthesis of Co@CoOx/helical nitrogen-doped carbon nanotubes toward oxygen reduction reaction as binder-free cathodes for Al–air batteries. ACS Appl Mater Interfaces. 2020;12(14):16512.
[40]
go back to reference Motojima S, Chen Q. Three-dimensional growth mechanism of cosmo-mimetic carbon microcoils obtained by chemical vapor deposition. J Appl Phys. 1999;85(7):3919. Motojima S, Chen Q. Three-dimensional growth mechanism of cosmo-mimetic carbon microcoils obtained by chemical vapor deposition. J Appl Phys. 1999;85(7):3919.
[41]
go back to reference Dong Q, Wang H, Ji S, Wang X, Liu Q, Brett DJL, Linkov V, Wang R. Mn nanoparticles encapsulated within mesoporous helical N-doped carbon nanotubes as highly active air cathode for zinc-air batteries. Adv Sustain Syst. 2019;3(12):1900085. Dong Q, Wang H, Ji S, Wang X, Liu Q, Brett DJL, Linkov V, Wang R. Mn nanoparticles encapsulated within mesoporous helical N-doped carbon nanotubes as highly active air cathode for zinc-air batteries. Adv Sustain Syst. 2019;3(12):1900085.
[42]
go back to reference Shang Y, Li Y, He X, Zhang L, Li Z, Li P, Shi E, Wu S, Cao A. Elastic carbon nanotube straight yarns embedded with helical loops. Nanoscale. 2013;5(6):2403. Shang Y, Li Y, He X, Zhang L, Li Z, Li P, Shi E, Wu S, Cao A. Elastic carbon nanotube straight yarns embedded with helical loops. Nanoscale. 2013;5(6):2403.
[43]
go back to reference Shaikjee A, Coville NJ. The synthesis, properties and uses of carbon materials with helical morphology. J Adv Res. 2012;3(3):195. Shaikjee A, Coville NJ. The synthesis, properties and uses of carbon materials with helical morphology. J Adv Res. 2012;3(3):195.
[44]
go back to reference Lee CJ, Park J, Han S, Ihm J. Growth and field emission of carbon nanotubes on sodalime glass at 550 °C using thermal chemical vapor deposition. Chem Phys Lett. 2001;337(4):398. Lee CJ, Park J, Han S, Ihm J. Growth and field emission of carbon nanotubes on sodalime glass at 550 °C using thermal chemical vapor deposition. Chem Phys Lett. 2001;337(4):398.
[45]
go back to reference Kawaguchi M, Nozaki K, Motojima S, Iwanaga H. A growth mechanism of regularly coiled carbon fibers through acetylene pyrolysis. J Cryst Growth. 1992;118(3–4):309. Kawaguchi M, Nozaki K, Motojima S, Iwanaga H. A growth mechanism of regularly coiled carbon fibers through acetylene pyrolysis. J Cryst Growth. 1992;118(3–4):309.
[46]
go back to reference Hu S, Lee CY, Chiu HT. Chemical vapor deposition of carbon nanocoils three-dimensionally in carbon fiber cloth for all-carbon supercapacitors. ACS Omega. 2019;4(1):195. Hu S, Lee CY, Chiu HT. Chemical vapor deposition of carbon nanocoils three-dimensionally in carbon fiber cloth for all-carbon supercapacitors. ACS Omega. 2019;4(1):195.
[47]
go back to reference Pan L, Zhang M, Nakayama Y. Growth mechanism of carbon nanocoils. J Appl Phys. 2002;91(12):10058. Pan L, Zhang M, Nakayama Y. Growth mechanism of carbon nanocoils. J Appl Phys. 2002;91(12):10058.
[48]
go back to reference Yang S, Chen X, Kusunoki M, Yamamoto K, Iwanaga H, Motojima S. Microstructure and microscopic deposition mechanism of twist-shaped carbon nanocoils based on the observation of helical nanoparticles on the growth tips. Carbon. 2005;43(5):916. Yang S, Chen X, Kusunoki M, Yamamoto K, Iwanaga H, Motojima S. Microstructure and microscopic deposition mechanism of twist-shaped carbon nanocoils based on the observation of helical nanoparticles on the growth tips. Carbon. 2005;43(5):916.
[49]
go back to reference Carneiro OC, Rodriguez NM, Baker RTK. Growth of carbon nanofibers from the iron–copper catalyzed decomposition of CO/C2H4/H2 mixtures. Carbon. 2005;43(11):2389. Carneiro OC, Rodriguez NM, Baker RTK. Growth of carbon nanofibers from the iron–copper catalyzed decomposition of CO/C2H4/H2 mixtures. Carbon. 2005;43(11):2389.
[50]
go back to reference Nitze F, Abou-Hamad E, Wågberg T. Carbon nanotubes and helical carbon nanofibers grown by chemical vapour deposition on C60 fullerene supported Pd nanoparticles. Carbon. 2011;49(4):1101. Nitze F, Abou-Hamad E, Wågberg T. Carbon nanotubes and helical carbon nanofibers grown by chemical vapour deposition on C60 fullerene supported Pd nanoparticles. Carbon. 2011;49(4):1101.
[51]
go back to reference Dong L, Yu L, Cui Z, Dong H, Ercius P, Song C, Duden T. Direct imaging of copper catalyst migration inside helical carbon nanofibers. Nanotechnology. 2012;23(3):035702. Dong L, Yu L, Cui Z, Dong H, Ercius P, Song C, Duden T. Direct imaging of copper catalyst migration inside helical carbon nanofibers. Nanotechnology. 2012;23(3):035702.
[52]
go back to reference Xun L, Zheng X. Controllable synthesis of helical, straight, hollow and nitrogen-doped carbon nanofibers and their magnetic properties. Mater Res Bull. 2012;47(12):4383. Xun L, Zheng X. Controllable synthesis of helical, straight, hollow and nitrogen-doped carbon nanofibers and their magnetic properties. Mater Res Bull. 2012;47(12):4383.
[53]
go back to reference Cervantes-Sodi F, Vilatela JJ, Jiménez-Rodríguez JA, Reyes-Gutiérrez LG, Rosas-Meléndez S, Íñiguez-Rábago A, Ballesteros-Villarreal M, Palacios E, Reiband G, Terrones M. Carbon nanotube bundles self-assembled in double helix microstructures. Carbon. 2012;50(10):3688. Cervantes-Sodi F, Vilatela JJ, Jiménez-Rodríguez JA, Reyes-Gutiérrez LG, Rosas-Meléndez S, Íñiguez-Rábago A, Ballesteros-Villarreal M, Palacios E, Reiband G, Terrones M. Carbon nanotube bundles self-assembled in double helix microstructures. Carbon. 2012;50(10):3688.
[54]
go back to reference Fajardo-Díaz JL, Durón-Torres SM, López-Urías F, Muñoz-Sandoval E. Synthesis, characterization and cyclic voltammetry studies of helical carbon nanostructures produced by thermal decomposition of ethanol on Cu-foils. Carbon. 2019;155:469. Fajardo-Díaz JL, Durón-Torres SM, López-Urías F, Muñoz-Sandoval E. Synthesis, characterization and cyclic voltammetry studies of helical carbon nanostructures produced by thermal decomposition of ethanol on Cu-foils. Carbon. 2019;155:469.
[55]
go back to reference Motojima S, Kawaguchi M, Nozaki K, Iwanaga H. Growth of regularly coiled carbon filaments by Ni catalyzed pyrolysis of acetylene, and their morphology and extension characteristics. Appl Phys Lett. 1990;56(4):321. Motojima S, Kawaguchi M, Nozaki K, Iwanaga H. Growth of regularly coiled carbon filaments by Ni catalyzed pyrolysis of acetylene, and their morphology and extension characteristics. Appl Phys Lett. 1990;56(4):321.
[56]
go back to reference Kuzuya C, In-Hwang W, Hirako S, Hishikawa Y, Motojima S. Preparation, morphology, and growth mechanism of carbon nanocoils. Chem Vap Deposition. 2002;8(2):57. Kuzuya C, In-Hwang W, Hirako S, Hishikawa Y, Motojima S. Preparation, morphology, and growth mechanism of carbon nanocoils. Chem Vap Deposition. 2002;8(2):57.
[57]
go back to reference Li WJ, Xu HT, Guo YC, Chen LJ. Vapor-liquid-solid-solid growth mechanism of carbon micro-coils. Acta Phys -Chim Sin. 2006;22(6):768. Li WJ, Xu HT, Guo YC, Chen LJ. Vapor-liquid-solid-solid growth mechanism of carbon micro-coils. Acta Phys -Chim Sin. 2006;22(6):768.
[58]
go back to reference Cui R, Han Z, Zhu JJ. Helical carbon nanotubes: intrinsic peroxidase catalytic activity and its application for biocatalysis and biosensing. Chem—A Eur J. 2011;17(34):9377. Cui R, Han Z, Zhu JJ. Helical carbon nanotubes: intrinsic peroxidase catalytic activity and its application for biocatalysis and biosensing. Chem—A Eur J. 2011;17(34):9377.
[59]
go back to reference Zhang Q, Zhao MQ, Tang DM, Li F, Huang JQ, Liu B, Zhu WC, Zhang YH, Wei F. Carbon-nanotube-array double helices. Angew Chem Int Ed. 2010;49(21):3642. Zhang Q, Zhao MQ, Tang DM, Li F, Huang JQ, Liu B, Zhu WC, Zhang YH, Wei F. Carbon-nanotube-array double helices. Angew Chem Int Ed. 2010;49(21):3642.
[60]
go back to reference Tian GL, Huang JQ, Li J, Zhang Q, Wei F. Enhanced growth of carbon nanotube bundles in a magnetically assisted fluidized bed chemical vapor deposition. Carbon. 2016;108:404. Tian GL, Huang JQ, Li J, Zhang Q, Wei F. Enhanced growth of carbon nanotube bundles in a magnetically assisted fluidized bed chemical vapor deposition. Carbon. 2016;108:404.
[61]
go back to reference Tian GL, Zhao MQ, Zhang Q, Huang JQ, Wei F. Self-organization of nitrogen-doped carbon nanotubes into double-helix structures. Carbon. 2012;50(14):5323. Tian GL, Zhao MQ, Zhang Q, Huang JQ, Wei F. Self-organization of nitrogen-doped carbon nanotubes into double-helix structures. Carbon. 2012;50(14):5323.
[62]
go back to reference Zhao MQ, Zhang Q, Tian GL, Huang JQ, Wei F. Space confinement and rotation stress induced self-organization of double-helix nanostructure: a nanotube twist with a moving catalyst head. ACS Nano. 2012;6(5):4520. Zhao MQ, Zhang Q, Tian GL, Huang JQ, Wei F. Space confinement and rotation stress induced self-organization of double-helix nanostructure: a nanotube twist with a moving catalyst head. ACS Nano. 2012;6(5):4520.
[63]
go back to reference Chen X, Motojima S, Iwanga H. Vapor phase preparation of super-elastic carbon micro-coils. J Cryst Growth. 2002;237–239(3):1931. Chen X, Motojima S, Iwanga H. Vapor phase preparation of super-elastic carbon micro-coils. J Cryst Growth. 2002;237–239(3):1931.
[64]
go back to reference Meng F, Wang Y, Wang Q, Xu X, Jiang M, Zhou X, He P, Zhou Z. High-purity helical carbon nanotubes by trace-water-assisted chemical vapor deposition: large-scale synthesis and growth mechanism. Nano Res. 2018;11(6):3327. Meng F, Wang Y, Wang Q, Xu X, Jiang M, Zhou X, He P, Zhou Z. High-purity helical carbon nanotubes by trace-water-assisted chemical vapor deposition: large-scale synthesis and growth mechanism. Nano Res. 2018;11(6):3327.
[65]
go back to reference Shaikjee A, Coville NJ. The role of the hydrocarbon source on the growth of carbon materials. Carbon. 2012;50(10):3376. Shaikjee A, Coville NJ. The role of the hydrocarbon source on the growth of carbon materials. Carbon. 2012;50(10):3376.
[66]
go back to reference Li DW, Pan LJ, Wu YK, Peng W. The effect of changes in synthesis temperature and acetylene supply on the morphology of carbon nanocoils. Carbon. 2012;50(7):2571. Li DW, Pan LJ, Wu YK, Peng W. The effect of changes in synthesis temperature and acetylene supply on the morphology of carbon nanocoils. Carbon. 2012;50(7):2571.
[67]
go back to reference Fejes D, Hernádi K. A review of the properties and CVD synthesis of coiled carbon nanotubes. Materials. 2010;3(4):2618. Fejes D, Hernádi K. A review of the properties and CVD synthesis of coiled carbon nanotubes. Materials. 2010;3(4):2618.
[68]
go back to reference Khosravi M, Amini MK. Flame synthesis of carbon nanofibers on carbon paper: physicochemical characterization and application as catalyst support for methanol oxidation. Carbon. 2010;48(11):3131. Khosravi M, Amini MK. Flame synthesis of carbon nanofibers on carbon paper: physicochemical characterization and application as catalyst support for methanol oxidation. Carbon. 2010;48(11):3131.
[69]
go back to reference Xiong XH, Zhao P, Ren R, Cui X, Ji SD. Flame-synthesis of carbon nanotube forests on metal mesh structure: dependence, morphology, and application. Nanomaterials. 2019;9(9):1188. Xiong XH, Zhao P, Ren R, Cui X, Ji SD. Flame-synthesis of carbon nanotube forests on metal mesh structure: dependence, morphology, and application. Nanomaterials. 2019;9(9):1188.
[70]
go back to reference Wang LJ, Li CZ, Gu F, Zhang CX. Facile flame synthesis and electrochemical properties of carbon nanocoils. J Alloy Compd. 2009;473(1–2):351. Wang LJ, Li CZ, Gu F, Zhang CX. Facile flame synthesis and electrochemical properties of carbon nanocoils. J Alloy Compd. 2009;473(1–2):351.
[71]
go back to reference Height MJ, Howard JB, Tester JW, Sande JBV. Flame synthesis of single-walled carbon nanotubes. Carbon. 2004;42(11):2295. Height MJ, Howard JB, Tester JW, Sande JBV. Flame synthesis of single-walled carbon nanotubes. Carbon. 2004;42(11):2295.
[72]
go back to reference Akagi K, Piao G, Kaneko S, Sakamaki K, Shirakawa H, Kyotani M. Helical polyacetylene synthesized with a chiral nematic reaction field. Science. 1998;282(5394):1683. Akagi K, Piao G, Kaneko S, Sakamaki K, Shirakawa H, Kyotani M. Helical polyacetylene synthesized with a chiral nematic reaction field. Science. 1998;282(5394):1683.
[73]
go back to reference Kyotani M, Matsushita S, Nagai T, Matsui Y, Shimomura M, Kaito A, Akagi K. Helical carbon and graphitic films prepared from iodine-doped helical polyacetylene film using morphology-retaining carbonization. J Am Chem Soc. 2008;130(33):10880. Kyotani M, Matsushita S, Nagai T, Matsui Y, Shimomura M, Kaito A, Akagi K. Helical carbon and graphitic films prepared from iodine-doped helical polyacetylene film using morphology-retaining carbonization. J Am Chem Soc. 2008;130(33):10880.
[74]
go back to reference Matsushita S, Kyotani M, Akagi K. Preparation of helical carbon and graphite films using morphology-retaining carbonization. Synth Met. 2009;159(21–22):2198. Matsushita S, Kyotani M, Akagi K. Preparation of helical carbon and graphite films using morphology-retaining carbonization. Synth Met. 2009;159(21–22):2198.
[75]
go back to reference Iijima S. Helical microtubules of graphitic carbon. Nature. 1991;354:56. Iijima S. Helical microtubules of graphitic carbon. Nature. 1991;354:56.
[76]
go back to reference Qu LT, Dai LM, Stone M, Xia ZH, Wang ZL. Carbon nanotube arrays with strong shear binding-on and easy normal lifting-off. Science. 2008;322(5899):238. Qu LT, Dai LM, Stone M, Xia ZH, Wang ZL. Carbon nanotube arrays with strong shear binding-on and easy normal lifting-off. Science. 2008;322(5899):238.
[77]
go back to reference Lima MD, Fang SL, Lepro X, Lewis C, Ovalle-Robles R, Carretero-Gonzalez J, Castillo-Martinez E, Kozlov ME, Oh JY, Rawat N, Haines CS, Haque MH, Aare V, Stoughton S, Zakhidov AA, Baughman RH. Biscrolling nanotube sheets and functional guests into yarns. Science. 2011;331(6013):51. Lima MD, Fang SL, Lepro X, Lewis C, Ovalle-Robles R, Carretero-Gonzalez J, Castillo-Martinez E, Kozlov ME, Oh JY, Rawat N, Haines CS, Haque MH, Aare V, Stoughton S, Zakhidov AA, Baughman RH. Biscrolling nanotube sheets and functional guests into yarns. Science. 2011;331(6013):51.
[78]
go back to reference Hata K, Futaba DN, Mizuno K, Namai T, Yumura M, Iijima S. Water-assisted highly efficient synthesis of impurity-free single-walled carbon nanotubes. Science. 2004;306(5700):1362. Hata K, Futaba DN, Mizuno K, Namai T, Yumura M, Iijima S. Water-assisted highly efficient synthesis of impurity-free single-walled carbon nanotubes. Science. 2004;306(5700):1362.
[79]
go back to reference Jiang KL, Li QQ, Fan SS. Nanotechnology: spinning continuous carbon nanotube yarns—carbon nanotubes weave their way into a range of imaginative macroscopic applications. Nature. 2002;419(6909):801. Jiang KL, Li QQ, Fan SS. Nanotechnology: spinning continuous carbon nanotube yarns—carbon nanotubes weave their way into a range of imaginative macroscopic applications. Nature. 2002;419(6909):801.
[80]
go back to reference Shang Y, Li Y, He X, Du S, Zhang L, Shi E, Wu S, Li Z, Li P, Wei J, Wang K, Zhu H, Wu D, Cao A. Highly twisted double-helix carbon nanotube yarns. ACS Nano. 2013;7(2):1446. Shang Y, Li Y, He X, Du S, Zhang L, Shi E, Wu S, Li Z, Li P, Wei J, Wang K, Zhu H, Wu D, Cao A. Highly twisted double-helix carbon nanotube yarns. ACS Nano. 2013;7(2):1446.
[81]
go back to reference Li QW, Zhang XF, DePaula RF, Zheng LX, Zhao YH, Stan L, Holesinger TG, Arendt PN, Peterson DE, Zhu YT. Sustained growth of ultralong carbon nanotube arrays for fiber spinning. Adv Mater. 2006;18(23):3160. Li QW, Zhang XF, DePaula RF, Zheng LX, Zhao YH, Stan L, Holesinger TG, Arendt PN, Peterson DE, Zhu YT. Sustained growth of ultralong carbon nanotube arrays for fiber spinning. Adv Mater. 2006;18(23):3160.
[82]
go back to reference Shang YY, He XD, Li YB, Zhang LH, Li Z, Ji CY, Shi EZ, Li PX, Zhu K, Peng QY, Wang C, Zhang XJ, Wang RG, Wei JQ, Wang KL, Zhu HW, Wu DH, Cao AY. Super-stretchable spring-like carbon nanotube ropes. Adv Mater. 2012;24(21):2896. Shang YY, He XD, Li YB, Zhang LH, Li Z, Ji CY, Shi EZ, Li PX, Zhu K, Peng QY, Wang C, Zhang XJ, Wang RG, Wei JQ, Wang KL, Zhu HW, Wu DH, Cao AY. Super-stretchable spring-like carbon nanotube ropes. Adv Mater. 2012;24(21):2896.
[83]
go back to reference Wagner RS, Ellis WC. Vapor-liquid-sold mechanism of single crystal growth. Appl Phys Lett. 1964;4(5):89. Wagner RS, Ellis WC. Vapor-liquid-sold mechanism of single crystal growth. Appl Phys Lett. 1964;4(5):89.
[84]
go back to reference Morales AM, Lieber CM. A laser ablation method for the synthesis of crystalline semiconductor nanowires. Science. 1998;279(5348):208. Morales AM, Lieber CM. A laser ablation method for the synthesis of crystalline semiconductor nanowires. Science. 1998;279(5348):208.
[85]
go back to reference Kuchibhatla SVNT, Karakoti AS, Bera D, Seal S. One dimensional nanostructured materials. Prog Mater Sci. 2007;52(5):699. Kuchibhatla SVNT, Karakoti AS, Bera D, Seal S. One dimensional nanostructured materials. Prog Mater Sci. 2007;52(5):699.
[86]
go back to reference Yang P, Yan H, Mao S, Russo R, Johnson J, Saykally R, Morris N, Pham J, He R, Choi HJ. Controlled growth of ZnO nanowires and their optical properties. Adv Func Mater. 2002;12(5):323. Yang P, Yan H, Mao S, Russo R, Johnson J, Saykally R, Morris N, Pham J, He R, Choi HJ. Controlled growth of ZnO nanowires and their optical properties. Adv Func Mater. 2002;12(5):323.
[87]
go back to reference Barth S, Hernandez-Ramirez F, Holmes JD, Romano-Rodriguez A. Synthesis and applications of one-dimensional semiconductors. Prog Mater Sci. 2010;55(6):563. Barth S, Hernandez-Ramirez F, Holmes JD, Romano-Rodriguez A. Synthesis and applications of one-dimensional semiconductors. Prog Mater Sci. 2010;55(6):563.
[88]
go back to reference Gavillet J, Loiseau A, Journet C, Willaime F, Ducastelle F, Charlier JC. Root-growth mechanism for single-wall carbon nanotubes. Phys Rev Lett. 2001;87(27):275504. Gavillet J, Loiseau A, Journet C, Willaime F, Ducastelle F, Charlier JC. Root-growth mechanism for single-wall carbon nanotubes. Phys Rev Lett. 2001;87(27):275504.
[89]
go back to reference Wang F, Dong A, Sun J, Tang R, Yu H, Buhro WE. Solution − liquid − solid growth of semiconductor nanowires. Inorg Chem. 2006;45(19):7511. Wang F, Dong A, Sun J, Tang R, Yu H, Buhro WE. Solution − liquid − solid growth of semiconductor nanowires. Inorg Chem. 2006;45(19):7511.
[90]
go back to reference Dick KA, Deppert K, Mårtensson T, Mandl B, Samuelson L, Seifert W. Failure of the vapor − liquid − solid mechanism in Au-assisted MOVPE growth of InAs nanowires. Nano Lett. 2005;5(4):761. Dick KA, Deppert K, Mårtensson T, Mandl B, Samuelson L, Seifert W. Failure of the vapor − liquid − solid mechanism in Au-assisted MOVPE growth of InAs nanowires. Nano Lett. 2005;5(4):761.
[91]
go back to reference Motojima S, Chen X, Yang S, Hasegawa M. Properties and potential applications of carbon microcoils/nanocoils. Diam Relat Mater. 2004;13(11):1989. Motojima S, Chen X, Yang S, Hasegawa M. Properties and potential applications of carbon microcoils/nanocoils. Diam Relat Mater. 2004;13(11):1989.
[92]
go back to reference Yang S, Chen X, Motojima S, Ichihara M. Morphology and microstructure of spring-like carbon micro-coils/nano-coils prepared by catalytic pyrolysis of acetylene using Fe-containing alloy catalysts. Carbon. 2005;43(4):827. Yang S, Chen X, Motojima S, Ichihara M. Morphology and microstructure of spring-like carbon micro-coils/nano-coils prepared by catalytic pyrolysis of acetylene using Fe-containing alloy catalysts. Carbon. 2005;43(4):827.
[93]
go back to reference Wu FY, Du JH, Liu CG, Li LX, Cheng HM. The microstructure and energy storage characteristics of micro-coiled carbon fibers. New Carbon Mater. 2004;19(2):81. Wu FY, Du JH, Liu CG, Li LX, Cheng HM. The microstructure and energy storage characteristics of micro-coiled carbon fibers. New Carbon Mater. 2004;19(2):81.
[94]
go back to reference Wu FY, Zhou YW, Zhang JW, Du JH, Li F. Effect of high temperature treatment on the topological microstructure of micro-coil carbon fibers. New Carbon Mater. 2012;27(6):448. Wu FY, Zhou YW, Zhang JW, Du JH, Li F. Effect of high temperature treatment on the topological microstructure of micro-coil carbon fibers. New Carbon Mater. 2012;27(6):448.
[95]
go back to reference Su G, Du JH, Fan YY, Shen ZH, Kang N, Cheng HM. Comparing of growth mechanism of carbon nanofibers prepared by different catalysts. Chin J Mater Res. 2001;06:623. Su G, Du JH, Fan YY, Shen ZH, Kang N, Cheng HM. Comparing of growth mechanism of carbon nanofibers prepared by different catalysts. Chin J Mater Res. 2001;06:623.
[96]
go back to reference Jian X, Jiang M, Zhou Z, Yang M, Lu J, Hu S, Wang Y, Hui D. Preparation of high purity helical carbon nanofibers by the catalytic decomposition of acetylene and their growth mechanism. Carbon. 2010;48(15):4535. Jian X, Jiang M, Zhou Z, Yang M, Lu J, Hu S, Wang Y, Hui D. Preparation of high purity helical carbon nanofibers by the catalytic decomposition of acetylene and their growth mechanism. Carbon. 2010;48(15):4535.
[97]
go back to reference Qin Y, Zhang Q, Cui Z. Effect of synthesis method of nanocopper catalysts on the morphologies of carbon nanofibers prepared by catalytic decomposition of acetylene. J Catal. 2004;223(2):389. Qin Y, Zhang Q, Cui Z. Effect of synthesis method of nanocopper catalysts on the morphologies of carbon nanofibers prepared by catalytic decomposition of acetylene. J Catal. 2004;223(2):389.
[98]
go back to reference Li L, Lu L, Qi S. Preparation, characterization and microwave absorption properties of porous nickel ferrite hollow nanospheres/helical carbon nanotubes/polypyrrole nanowires composites. J Mater Sci: Mater Electron. 2018;29(10):8513. Li L, Lu L, Qi S. Preparation, characterization and microwave absorption properties of porous nickel ferrite hollow nanospheres/helical carbon nanotubes/polypyrrole nanowires composites. J Mater Sci: Mater Electron. 2018;29(10):8513.
[99]
go back to reference Liao SB, Yin GJ. Reflectance of a chiral plate absorber. Appl Phys Lett. 1993;62(20):2480. Liao SB, Yin GJ. Reflectance of a chiral plate absorber. Appl Phys Lett. 1993;62(20):2480.
[100]
go back to reference Rogacheva AV, Fedotov VA, Schwanecke AS, Zheludev NI. Giant gyrotropy due to electromagnetic-field coupling in a bilayered chiral structure. Phys Rev Lett. 2006;97(17):177401. Rogacheva AV, Fedotov VA, Schwanecke AS, Zheludev NI. Giant gyrotropy due to electromagnetic-field coupling in a bilayered chiral structure. Phys Rev Lett. 2006;97(17):177401.
[101]
go back to reference Umari MH, Varadan VV, Varadan VK. Rotation and dichroism associated with microwave propagation in chiral composite samples. Radio Sci. 1991;26(5):1327. Umari MH, Varadan VV, Varadan VK. Rotation and dichroism associated with microwave propagation in chiral composite samples. Radio Sci. 1991;26(5):1327.
[102]
go back to reference Gansel JK, Thiel M, Rill MS, Decker M, Bade K, Saile V, von Freymann G, Linden S, Wegener M. Gold helix photonic metamaterial as broadband circular polarizer. Science. 2009;325(5947):1513. Gansel JK, Thiel M, Rill MS, Decker M, Bade K, Saile V, von Freymann G, Linden S, Wegener M. Gold helix photonic metamaterial as broadband circular polarizer. Science. 2009;325(5947):1513.
[103]
go back to reference Motojima S, Hoshiya S, Hishikawa Y. Electromagnetic wave absorption properties of carbon microcoils/PMMA composite beads in W bands. Carbon. 2003;41(13):2658. Motojima S, Hoshiya S, Hishikawa Y. Electromagnetic wave absorption properties of carbon microcoils/PMMA composite beads in W bands. Carbon. 2003;41(13):2658.
[104]
go back to reference Zhao SC, Gao Z, Chen CQ, Wang GZ, Zhang B, Chen Y, Zhang J, Li X, Qin Y. Alternate nonmagnetic and magnetic multilayer nanofilms deposited on carbon nanocoils by atomic layer deposition to tune microwave absorption property. Carbon. 2016;98:196. Zhao SC, Gao Z, Chen CQ, Wang GZ, Zhang B, Chen Y, Zhang J, Li X, Qin Y. Alternate nonmagnetic and magnetic multilayer nanofilms deposited on carbon nanocoils by atomic layer deposition to tune microwave absorption property. Carbon. 2016;98:196.
[105]
go back to reference Jian X, Tian W, Li JY, Deng LJ, Zho ZW, Zhang L, Lu HP, Yin LJ, Mahmood N. High-temperature oxidation-resistant ZrN0.4B0.6/SiC nanohybrid for enhanced microwave absorption. ACS Appl Mater Interf. 2019;11(17):15869. Jian X, Tian W, Li JY, Deng LJ, Zho ZW, Zhang L, Lu HP, Yin LJ, Mahmood N. High-temperature oxidation-resistant ZrN0.4B0.6/SiC nanohybrid for enhanced microwave absorption. ACS Appl Mater Interf. 2019;11(17):15869.
[106]
go back to reference Tang NJ, Zhong W, Au CT, Gedanken A, Yang Y, Du YW. Large-scale synthesis, annealing, purification, and magnetic properties of crystalline helical carbon nanotubes with symmetrical structures. Adv Func Mater. 2007;17(9):1542. Tang NJ, Zhong W, Au CT, Gedanken A, Yang Y, Du YW. Large-scale synthesis, annealing, purification, and magnetic properties of crystalline helical carbon nanotubes with symmetrical structures. Adv Func Mater. 2007;17(9):1542.
[107]
go back to reference Jian X, Chen XN, Zhou ZW, Li G, Jiang M, Xu XL, Lu J, Li QM, Wang Y, Gou JH, Hui D. Remarkable improvement in microwave absorption by cloaking a micro-scaled tetrapod hollow with helical carbon nanofibers. Phys Chem Chem Phys. 2015;17(5):3024. Jian X, Chen XN, Zhou ZW, Li G, Jiang M, Xu XL, Lu J, Li QM, Wang Y, Gou JH, Hui D. Remarkable improvement in microwave absorption by cloaking a micro-scaled tetrapod hollow with helical carbon nanofibers. Phys Chem Chem Phys. 2015;17(5):3024.
[108]
go back to reference Wang GZ, Gao Z, Tang SW, Chen CQ, Duan FF, Zhao SC, Lin SW, Feng YH, Zhou L, Qin Y. Microwave absorption properties of carbon nanocoils coated with highly controlled magnetic materials by atomic layer deposition. ACS Nano. 2012;6(12):11009. Wang GZ, Gao Z, Tang SW, Chen CQ, Duan FF, Zhao SC, Lin SW, Feng YH, Zhou L, Qin Y. Microwave absorption properties of carbon nanocoils coated with highly controlled magnetic materials by atomic layer deposition. ACS Nano. 2012;6(12):11009.
[109]
go back to reference Yu Q, Wang Z, Chen P, Wang Q, Wang Y, Ma M. Microwave absorbing and mechanical properties of carbon fiber/bismaleimide composites imbedded with Fe@C/PEK-C nano-membranes. J Mater Sci: Mater Electron. 2019;30(1):308. Yu Q, Wang Z, Chen P, Wang Q, Wang Y, Ma M. Microwave absorbing and mechanical properties of carbon fiber/bismaleimide composites imbedded with Fe@C/PEK-C nano-membranes. J Mater Sci: Mater Electron. 2019;30(1):308.
[110]
go back to reference Tang H, Jian X, Wu B, Liu SY, Jiang ZC, Chen XN, Lv WQ, He WD, Tian W, Wei YF, Gao YQ, Chen T, Li G. Fe3C/helical carbon nanotube hybrid: facile synthesis and spin-induced enhancement in microwave-absorbing properties. Compos Part B-Eng. 2016;107:51. Tang H, Jian X, Wu B, Liu SY, Jiang ZC, Chen XN, Lv WQ, He WD, Tian W, Wei YF, Gao YQ, Chen T, Li G. Fe3C/helical carbon nanotube hybrid: facile synthesis and spin-induced enhancement in microwave-absorbing properties. Compos Part B-Eng. 2016;107:51.
[111]
go back to reference Pan W, He M, Bu X, Zhou Y, Ding B, Huang T, Huang S, Li S. Microwave absorption and infrared emissivity of helical polyacetylene@multiwalled carbon nanotubes composites. J Mater Sci: Mater Electron. 2017;28(12):8601. Pan W, He M, Bu X, Zhou Y, Ding B, Huang T, Huang S, Li S. Microwave absorption and infrared emissivity of helical polyacetylene@multiwalled carbon nanotubes composites. J Mater Sci: Mater Electron. 2017;28(12):8601.
[112]
go back to reference Liang Z, Fan X, Lei H, Qi J, Li Y, Gao J, Huo M, Yuan H, Zhang W, Lin H, Zheng H, Cao R. Cobalt–nitrogen-doped helical carbonaceous nanotubes as a class of efficient electrocatalysts for the oxygen reduction reaction. Angew Chem Int Ed. 2018;57(40):13187. Liang Z, Fan X, Lei H, Qi J, Li Y, Gao J, Huo M, Yuan H, Zhang W, Lin H, Zheng H, Cao R. Cobalt–nitrogen-doped helical carbonaceous nanotubes as a class of efficient electrocatalysts for the oxygen reduction reaction. Angew Chem Int Ed. 2018;57(40):13187.
[113]
go back to reference Zhao MQ, Peng HJ, Tian GL, Zhang Q, Huang JQ, Cheng XB, Tang C, Wei F. Hierarchical vine-tree-like carbon nanotube architectures: in situ CVD self-assembly and their use as robust scaffolds for lithium-sulfur batteries. Adv Mater. 2014;26(41):7051. Zhao MQ, Peng HJ, Tian GL, Zhang Q, Huang JQ, Cheng XB, Tang C, Wei F. Hierarchical vine-tree-like carbon nanotube architectures: in situ CVD self-assembly and their use as robust scaffolds for lithium-sulfur batteries. Adv Mater. 2014;26(41):7051.
[114]
go back to reference Ao X, Sun H, Wang C, Li J, Ruan Y, Li B, Wu QH, Li Y, Jiang J, Yang Y, Mai L. In situ nitrogen-doped helical mesoporous carbonaceous nanotubes for superior-high lithium anodic performance. Carbon. 2018;130:599. Ao X, Sun H, Wang C, Li J, Ruan Y, Li B, Wu QH, Li Y, Jiang J, Yang Y, Mai L. In situ nitrogen-doped helical mesoporous carbonaceous nanotubes for superior-high lithium anodic performance. Carbon. 2018;130:599.
[115]
go back to reference Wang G, Kuang S, Zhang W. Helical carbon nanofiber as a low-cost counter electrode for dye-sensitized solar cells. Mater Lett. 2016;174:14. Wang G, Kuang S, Zhang W. Helical carbon nanofiber as a low-cost counter electrode for dye-sensitized solar cells. Mater Lett. 2016;174:14.
[116]
go back to reference Sun Y, Wang Y, Hua C, Ge Y, Hou S, Shang Y, Cao A. Water-responsive helical graphene-oxide fibers incorporating a continuous carbon nanotube network. Carbon. 2018;132:394. Sun Y, Wang Y, Hua C, Ge Y, Hou S, Shang Y, Cao A. Water-responsive helical graphene-oxide fibers incorporating a continuous carbon nanotube network. Carbon. 2018;132:394.
Metadata
Title
A review of helical carbon materials structure, synthesis and applications
Authors
Ding-Chuan Wang
Yu Lei
Wei Jiao
Yi-Fan Liu
Chun-Hong Mu
Xian Jian
Publication date
14-11-2020
Publisher
Nonferrous Metals Society of China
Published in
Rare Metals / Issue 1/2021
Print ISSN: 1001-0521
Electronic ISSN: 1867-7185
DOI
https://doi.org/10.1007/s12598-020-01622-y

Other articles of this Issue 1/2021

Rare Metals 1/2021 Go to the issue

Premium Partners