Skip to main content
Top
Published in: Rare Metals 1/2021

02-09-2020 | Original Article

Bimodal grain structures and tensile properties of a biomedical Co–20Cr–15W–10Ni alloy with different pre-strains

Authors: Cheng-Lin Li, Seong-Woo Choi, Jeong Mok Oh, Jae-Keun Hong, Jong-Taek Yeom, Joo-Hee Kang, Qing-Song Mei, Chan Hee Park

Published in: Rare Metals | Issue 1/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The influence of pre-strain on the formation of bimodal grain structures and tensile properties of a Co–20Cr–15W–10Ni alloy was investigated. The bimodal grain structures consist of fine grains (FGs; 2–3 μm in diameter) and coarse grains (CGs; 8–16 μm in diameter), which can be manipulated by changing the pre-strain (ɛ = 0.3–0.7) and annealing temperatures (1000–1100 °C). High pre-strain applied in the samples can intensify the plasticity heterogeneity through increasing the total dislocation density and the local volumes of high-density dislocations. This can essentially result in finer FGs, a higher FG volume fraction, and overall grain refinement in the samples after annealing. High-temperature essentially increases both the size and volume fraction of CGs, leading to an increase in the average grain size. The tensile test suggests that the bimodal grain structured samples exhibited both high strength and ductility, yield strengths of 621–877 MPa and ultimate tensile strengths of 1187–1367 MPa with uniform elongations of 55.0%–71.4%. The superior strength-ductility combination of the samples arises from the specific deformation mechanisms of the bimodal grain structures. The tensile properties strongly depend on the size ratio and volume fraction of FGs/CGs in addition to the average grain size in the bimodal grain structures. The grain structures can be modified via changing the pre-strain and annealing temperature.

Graphic abstract

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
[1]
go back to reference Klarstrom DL. Wrought cobalt-base superalloys. J Mater Eng Perform. 1993;2:523. Klarstrom DL. Wrought cobalt-base superalloys. J Mater Eng Perform. 1993;2:523.
[3]
go back to reference Chen Q, Thouas GA. Metallic implant biomaterials. Mater Sci Eng R. 2015;87:1. Chen Q, Thouas GA. Metallic implant biomaterials. Mater Sci Eng R. 2015;87:1.
[4]
go back to reference Zhang EL, Fu S, Wang RX, Li HX, Liu Y, Ma ZQ, Liu GK, Zhu CS, Qin GW, Chen DF. Role of Cu element in biomedical metal alloy design. Rare Met. 2019;38(6):476. Zhang EL, Fu S, Wang RX, Li HX, Liu Y, Ma ZQ, Liu GK, Zhu CS, Qin GW, Chen DF. Role of Cu element in biomedical metal alloy design. Rare Met. 2019;38(6):476.
[5]
go back to reference Fu J, Su Y, Qin YX, Zheng Y, Wang Y, Zhu D. Evolution of metallic cardiovascular stent materials: a comparative study among stainless steel, magnesium and zinc. Biomaterials. 2020;230:119641. Fu J, Su Y, Qin YX, Zheng Y, Wang Y, Zhu D. Evolution of metallic cardiovascular stent materials: a comparative study among stainless steel, magnesium and zinc. Biomaterials. 2020;230:119641.
[6]
go back to reference Huang T, Cheng J, Bian D, Zheng Y. Fe–Au and Fe–Ag composites as candidates for biodegradable stent materials. J Biomed Mater Res Part B Appl Biomater. 2016;104:225. Huang T, Cheng J, Bian D, Zheng Y. Fe–Au and Fe–Ag composites as candidates for biodegradable stent materials. J Biomed Mater Res Part B Appl Biomater. 2016;104:225.
[7]
go back to reference Li M, Xu X, Jia Z, Shi Y, Cheng Y, Zheng Y. Rapamycin-loaded nanoporous α-Fe2O3 as an endothelial favorable and thromboresistant coating for biodegradable drug-eluting Fe stent applications. J Mater Chem B. 2017;5:1182. Li M, Xu X, Jia Z, Shi Y, Cheng Y, Zheng Y. Rapamycin-loaded nanoporous α-Fe2O3 as an endothelial favorable and thromboresistant coating for biodegradable drug-eluting Fe stent applications. J Mater Chem B. 2017;5:1182.
[8]
go back to reference Lin WJ, Zhang G, Cao P, Zhang DY, Zheng YF, Wu RX, Qin L, Wang GQ, Wen TY. Cytotoxicity and its test methodology for a bioabsorbable nitrided iron stent. J Biomed Mater Res Part B Appl Biomater. 2015;103:764. Lin WJ, Zhang G, Cao P, Zhang DY, Zheng YF, Wu RX, Qin L, Wang GQ, Wen TY. Cytotoxicity and its test methodology for a bioabsorbable nitrided iron stent. J Biomed Mater Res Part B Appl Biomater. 2015;103:764.
[9]
go back to reference Zhou WR, Zheng YF, Leeflang MA, Zhou J. Mechanical property, biocorrosion and in vitro biocompatibility evaluations of Mg–Li–(Al)–(RE) alloys for future cardiovascular stent application. Acta Biomater. 2013;9(10):8488. Zhou WR, Zheng YF, Leeflang MA, Zhou J. Mechanical property, biocorrosion and in vitro biocompatibility evaluations of Mg–Li–(Al)–(RE) alloys for future cardiovascular stent application. Acta Biomater. 2013;9(10):8488.
[10]
go back to reference Shen ZQ, Zhao M, Zhou XC, Yang HT, Liu JN, Guo H, Zheng YF, Yang JA. A numerical corrosion-fatigue model for biodegradable Mg alloy stents. Acta Biomater. 2019;97:671. Shen ZQ, Zhao M, Zhou XC, Yang HT, Liu JN, Guo H, Zheng YF, Yang JA. A numerical corrosion-fatigue model for biodegradable Mg alloy stents. Acta Biomater. 2019;97:671.
[11]
go back to reference Zhu S, Wu C, Li G, Zheng Y, Nie JF. Microstructure, mechanical properties and creep behaviour of extruded Zn-xLi (x = 0.1, 0.3 and 0.4) alloys for biodegradable vascular stent applications. Mater Sci Eng A. 2020;777:139082. Zhu S, Wu C, Li G, Zheng Y, Nie JF. Microstructure, mechanical properties and creep behaviour of extruded Zn-xLi (x = 0.1, 0.3 and 0.4) alloys for biodegradable vascular stent applications. Mater Sci Eng A. 2020;777:139082.
[12]
go back to reference Zhu S, Wu C, Li G, Zheng Y, Nie JF. Creep properties of biodegradable Zn–0.1Li alloy at human body temperature: implications for its durability as stents. Mater Res Lett. 2019;7(9):347. Zhu S, Wu C, Li G, Zheng Y, Nie JF. Creep properties of biodegradable Zn–0.1Li alloy at human body temperature: implications for its durability as stents. Mater Res Lett. 2019;7(9):347.
[13]
go back to reference Yang HT, Wang C, Liu CQ, Chen HW, Wu YF, Han JT, Jia ZC, Lin WJ, Zhang DY, Li WT, Yuan W, Guo H, Li HF, Yang GX, Kong DL, Zhu DH, Takashima K, Ruan LQ, Nie JF, Li X, Zheng YF. Evolution of the degradation mechanism of pure zinc stent in the one-year study of rabbit abdominal aorta model. Biomaterials. 2017;145:92. Yang HT, Wang C, Liu CQ, Chen HW, Wu YF, Han JT, Jia ZC, Lin WJ, Zhang DY, Li WT, Yuan W, Guo H, Li HF, Yang GX, Kong DL, Zhu DH, Takashima K, Ruan LQ, Nie JF, Li X, Zheng YF. Evolution of the degradation mechanism of pure zinc stent in the one-year study of rabbit abdominal aorta model. Biomaterials. 2017;145:92.
[14]
go back to reference Briguori C, Sarais C, Pagnotta P, Liistro F, Montorfano M, Chieffo A, Sgura F, Corvaja N, Albiero R, Stankovic G, Toutoutzas C, Bonizzoni E, Maro CD, Colombo A. In-stent restenosis in small coronary arteries: impact of strut thickness. J Am Coll Cardiol. 2002;40(3):403. Briguori C, Sarais C, Pagnotta P, Liistro F, Montorfano M, Chieffo A, Sgura F, Corvaja N, Albiero R, Stankovic G, Toutoutzas C, Bonizzoni E, Maro CD, Colombo A. In-stent restenosis in small coronary arteries: impact of strut thickness. J Am Coll Cardiol. 2002;40(3):403.
[15]
go back to reference Zhu ZY, Meng L, Chen L. Strain-induced martensitic transformation in biomedical Co–Cr–W–Ni alloys. Rare Met. 2020;39(3):241. Zhu ZY, Meng L, Chen L. Strain-induced martensitic transformation in biomedical Co–Cr–W–Ni alloys. Rare Met. 2020;39(3):241.
[16]
go back to reference Gupta RK, Karthikeyan MK, Bhalia DN, Ghosh BR, Sinha PP. Effect of microstructure on mechanical properties of refractory Co–Cr–W–Ni alloy. Met Sci Heat Treat. 2008;50:175. Gupta RK, Karthikeyan MK, Bhalia DN, Ghosh BR, Sinha PP. Effect of microstructure on mechanical properties of refractory Co–Cr–W–Ni alloy. Met Sci Heat Treat. 2008;50:175.
[17]
go back to reference Kumar VA, Gupta RK, Murty SVSN, Durga A. Hot workability and microstructure control in Co20Cr15W10Ni cobalt-based superalloy. J Alloys Compd. 2016;676:527. Kumar VA, Gupta RK, Murty SVSN, Durga A. Hot workability and microstructure control in Co20Cr15W10Ni cobalt-based superalloy. J Alloys Compd. 2016;676:527.
[18]
go back to reference Ueki K, Ueda K, Narushima T. Microstructure and mechanical properties of heat-treated Co–20Cr–15W–10Ni alloy for biomedical application. Metall Mater Trans A. 2016;47:2773. Ueki K, Ueda K, Narushima T. Microstructure and mechanical properties of heat-treated Co–20Cr–15W–10Ni alloy for biomedical application. Metall Mater Trans A. 2016;47:2773.
[19]
go back to reference Teague J, Cerreta E, Stout M. Tensile properties and microstructure of Haynes 25 alloy after aging at elevated temperatures for extended times. Metall Mater Trans A. 2004;35:2767. Teague J, Cerreta E, Stout M. Tensile properties and microstructure of Haynes 25 alloy after aging at elevated temperatures for extended times. Metall Mater Trans A. 2004;35:2767.
[20]
go back to reference Ueki K, Yanagihara S, Ueda K, Nakai M, Nakano T, Narushima T. Overcoming the strength-ductility trade-off by the combination of static recrystallization and low-temperature heat-treatment in Co–Cr–W–Ni alloy for stent application. Mater Sci Eng A. 2019;766:138400. Ueki K, Yanagihara S, Ueda K, Nakai M, Nakano T, Narushima T. Overcoming the strength-ductility trade-off by the combination of static recrystallization and low-temperature heat-treatment in Co–Cr–W–Ni alloy for stent application. Mater Sci Eng A. 2019;766:138400.
[21]
go back to reference Ueki K, Ueda K, Nakai M, Nakano T, Narushima T. Microstructural changes during plastic deformation and corrosion properties of biomedical Co–20Cr–15W–10Ni alloy heat-treated at 873 K. Metall Mater Trans A. 2018;49:2393. Ueki K, Ueda K, Nakai M, Nakano T, Narushima T. Microstructural changes during plastic deformation and corrosion properties of biomedical Co–20Cr–15W–10Ni alloy heat-treated at 873 K. Metall Mater Trans A. 2018;49:2393.
[22]
go back to reference Wu X, Zhu Y. Heterogeneous materials: a new class of materials with unprecedented mechanical properties. Mater Res Lett. 2017;5(8):527. Wu X, Zhu Y. Heterogeneous materials: a new class of materials with unprecedented mechanical properties. Mater Res Lett. 2017;5(8):527.
[23]
go back to reference Zheng R, Li G, Zhang Z, Zhang Y, Yue S, Chen X, Ameyema K, Ma C. Manipulating the powder size to achieve enhanced strength and ductility in harmonic structured Al alloy. Mater Res Lett. 2019;7(6):217. Zheng R, Li G, Zhang Z, Zhang Y, Yue S, Chen X, Ameyema K, Ma C. Manipulating the powder size to achieve enhanced strength and ductility in harmonic structured Al alloy. Mater Res Lett. 2019;7(6):217.
[25]
go back to reference Favre J, Fabrègue D, Maire E, Chiba A. Grain growth and static recrystallization kinetics in Co–20Cr–15W–10Ni (L-605) cobalt-base superalloy. Philos Mag. 2014;94(18):1992. Favre J, Fabrègue D, Maire E, Chiba A. Grain growth and static recrystallization kinetics in Co–20Cr–15W–10Ni (L-605) cobalt-base superalloy. Philos Mag. 2014;94(18):1992.
[26]
go back to reference Li CL, Oh JM, Yeom JT, Park CH. Bimodal grain-structure formation in a Co–Cr-based superalloy during ultrahigh-homologous-temperature annealing without severe plastic deformation. J Alloys Compd. 2019;783:173. Li CL, Oh JM, Yeom JT, Park CH. Bimodal grain-structure formation in a Co–Cr-based superalloy during ultrahigh-homologous-temperature annealing without severe plastic deformation. J Alloys Compd. 2019;783:173.
[27]
go back to reference Li CL, Park CH, Choi SW, Lee SW, Hong JK, Yeom JT. High strength and high ductility in the Co–20Cr–15W–10Ni alloy having a bimodal grain structure achieved by static recrystallization. Mater Sci Eng A. 2018;732:70. Li CL, Park CH, Choi SW, Lee SW, Hong JK, Yeom JT. High strength and high ductility in the Co–20Cr–15W–10Ni alloy having a bimodal grain structure achieved by static recrystallization. Mater Sci Eng A. 2018;732:70.
[28]
go back to reference Li CL, Oh JM, Choi SW, Hong JK, Yeom JT, Mei XM, Mei QS, Yu ZT, Park CH. Study on microstructure and mechanical property of a biomedical Co–20Cr–15W–10Ni alloy during multi-pass thermomechanical processing. Mater Sci Eng A. 2020;785:139388. Li CL, Oh JM, Choi SW, Hong JK, Yeom JT, Mei XM, Mei QS, Yu ZT, Park CH. Study on microstructure and mechanical property of a biomedical Co–20Cr–15W–10Ni alloy during multi-pass thermomechanical processing. Mater Sci Eng A. 2020;785:139388.
[29]
go back to reference Ramazani A, Mukherjee K, Schwedt A, Goravanchi P, Prahl U, Bleck W. Quantification of the effect of transformation-induced geometrically necessary dislocations on the flow-curve modelling of dual-phase steels. Int J Plast. 2013;43:128. Ramazani A, Mukherjee K, Schwedt A, Goravanchi P, Prahl U, Bleck W. Quantification of the effect of transformation-induced geometrically necessary dislocations on the flow-curve modelling of dual-phase steels. Int J Plast. 2013;43:128.
[30]
go back to reference Calcagnotto M, Ponge D, Demir E, Raabe D. Orientation gradients and geometrically necessary dislocations in ultrafine grained dual-phase steels studied by 2D and 3D EBSD. Mater Sci Eng A. 2010;527:2738. Calcagnotto M, Ponge D, Demir E, Raabe D. Orientation gradients and geometrically necessary dislocations in ultrafine grained dual-phase steels studied by 2D and 3D EBSD. Mater Sci Eng A. 2010;527:2738.
[31]
go back to reference Moussa C, Bernacki M, Besnard R, Bozzolo N. Statistical analysis of dislocations and dislocation boundaries from EBSD data. Ultramicroscopy. 2017;179:63. Moussa C, Bernacki M, Besnard R, Bozzolo N. Statistical analysis of dislocations and dislocation boundaries from EBSD data. Ultramicroscopy. 2017;179:63.
[32]
go back to reference Wu X, Jiang P, Chen L, Yuan F, Zhu YT. Extraordinary strain hardening by gradient structure. Proc Natl Acad Sci. 2014;111(20):7197. Wu X, Jiang P, Chen L, Yuan F, Zhu YT. Extraordinary strain hardening by gradient structure. Proc Natl Acad Sci. 2014;111(20):7197.
[33]
go back to reference Wu XL, Jiang P, Chen L, Zhang JF, Yuan FP, Zhu YT. Synergetic strengthening by gradient structure. Mater Res Lett. 2014;2(4):185. Wu XL, Jiang P, Chen L, Zhang JF, Yuan FP, Zhu YT. Synergetic strengthening by gradient structure. Mater Res Lett. 2014;2(4):185.
[34]
go back to reference Yang M, Pan Y, Yuan F, Zhu Y, Wu X. Back stress strengthening and strain hardening in gradient structure. Mater Res Lett. 2016;4:145. Yang M, Pan Y, Yuan F, Zhu Y, Wu X. Back stress strengthening and strain hardening in gradient structure. Mater Res Lett. 2016;4:145.
[35]
go back to reference Tian YZ, Zhao LJ, Chen S, Shibata A, Zhang ZF, Tsuji N. Significant contribution of stacking faults to the strain hardening behavior of Cu–15% Al alloy with different grain sizes. Sci Rep. 2015;5:16707. Tian YZ, Zhao LJ, Chen S, Shibata A, Zhang ZF, Tsuji N. Significant contribution of stacking faults to the strain hardening behavior of Cu–15% Al alloy with different grain sizes. Sci Rep. 2015;5:16707.
[36]
go back to reference Knezevic M, Carpenter JS, Lovato ML, Mccabe RJ. Deformation behavior of the cobalt-based superalloy Haynes 25: experimental characterization and crystal plasticity modeling. Acta Mater. 2014;63:162. Knezevic M, Carpenter JS, Lovato ML, Mccabe RJ. Deformation behavior of the cobalt-based superalloy Haynes 25: experimental characterization and crystal plasticity modeling. Acta Mater. 2014;63:162.
[37]
go back to reference Bao HS, Gong ZH, Chen ZZ, Yang G. Evolution of precipitates in Ni–Co–Cr–W–Mo superalloys with different tungsten contents. Rare Met. 2020;39(6):716. Bao HS, Gong ZH, Chen ZZ, Yang G. Evolution of precipitates in Ni–Co–Cr–W–Mo superalloys with different tungsten contents. Rare Met. 2020;39(6):716.
[38]
go back to reference Raabe D, Zhao Z, Park S-J, Roters F. Theory of orientation gradients in plastically strained crystals. Acta Mater. 2002;50:421. Raabe D, Zhao Z, Park S-J, Roters F. Theory of orientation gradients in plastically strained crystals. Acta Mater. 2002;50:421.
[39]
go back to reference Mao W. On the Taylor principles for plastic deformation of polycrystalline metals. Front Mater Sci. 2016;10:335. Mao W. On the Taylor principles for plastic deformation of polycrystalline metals. Front Mater Sci. 2016;10:335.
[40]
go back to reference Raabe D. Recovery and recrystallization: phenomena, physics, models, simulation. Phys Metall Fifth Ed. 2014. Raabe D. Recovery and recrystallization: phenomena, physics, models, simulation. Phys Metall Fifth Ed. 2014.
[41]
go back to reference Miller MK, Beaven PA, Brenner SS, Smith GDW. An atom probe study of the aging of iron-nickel-carbon martensite. Metall Trans A. 1983;14:1021. Miller MK, Beaven PA, Brenner SS, Smith GDW. An atom probe study of the aging of iron-nickel-carbon martensite. Metall Trans A. 1983;14:1021.
[42]
go back to reference Mishin Y, Herzig C. Grain boundary diffusion: recent progress and future research. Mater Sci Eng A. 1999;260:55. Mishin Y, Herzig C. Grain boundary diffusion: recent progress and future research. Mater Sci Eng A. 1999;260:55.
[43]
go back to reference Dépinoy S, Marini B, Toffolon-Masclet C, Roch F, Gourgues-Lorenzon AF. Austenite grain growth in a 2.25Cr–1Mo vanadium-free steel accounting for zener pinning and solute drag: experimental study and modeling. Metall Mater Trans A. 2017;48:2289. Dépinoy S, Marini B, Toffolon-Masclet C, Roch F, Gourgues-Lorenzon AF. Austenite grain growth in a 2.25Cr–1Mo vanadium-free steel accounting for zener pinning and solute drag: experimental study and modeling. Metall Mater Trans A. 2017;48:2289.
[44]
go back to reference Aghaie-Khafri M. Formability of AA8011 aluminum alloy sheet in homogenized and unhomogenized conditions. J Mater Sci. 2004;39:6467. Aghaie-Khafri M. Formability of AA8011 aluminum alloy sheet in homogenized and unhomogenized conditions. J Mater Sci. 2004;39:6467.
[45]
go back to reference Hansen N. Boundary strengthening in undeformed and deformed polycrystals. Mater Sci Eng A. 2005;409:39. Hansen N. Boundary strengthening in undeformed and deformed polycrystals. Mater Sci Eng A. 2005;409:39.
[46]
go back to reference Yamanaka K, Mori M, Chiba A. Mechanical properties of as-forged Ni-free Co–29Cr–6Mo alloys with ultrafine-grained microstructure. Mater Sci Eng A. 2011;528:5961. Yamanaka K, Mori M, Chiba A. Mechanical properties of as-forged Ni-free Co–29Cr–6Mo alloys with ultrafine-grained microstructure. Mater Sci Eng A. 2011;528:5961.
[47]
go back to reference Yang M, Yan D, Yuan F, Jiang P, Ma E, Wu X. Dynamically reinforced heterogeneous grain structure prolongs ductility in a medium-entropy alloy with gigapascal yield strength. Proc Natl Acad Sci. 2018;115(28):7224. Yang M, Yan D, Yuan F, Jiang P, Ma E, Wu X. Dynamically reinforced heterogeneous grain structure prolongs ductility in a medium-entropy alloy with gigapascal yield strength. Proc Natl Acad Sci. 2018;115(28):7224.
[48]
go back to reference Shukla S, Choudhuri D, Wang T, Liu K, Wheeler R, Williams S, Gwalani B, Mishra RS. Hierarchical features infused heterogeneous grain structure for extraordinary strength-ductility synergy. Mater Res Lett. 2018;6(12):676. Shukla S, Choudhuri D, Wang T, Liu K, Wheeler R, Williams S, Gwalani B, Mishra RS. Hierarchical features infused heterogeneous grain structure for extraordinary strength-ductility synergy. Mater Res Lett. 2018;6(12):676.
[49]
go back to reference Ma E, Zhu T. Towards strength–ductility synergy through the design of heterogeneous nanostructures in metals. Mater Today. 2017;20(6):323. Ma E, Zhu T. Towards strength–ductility synergy through the design of heterogeneous nanostructures in metals. Mater Today. 2017;20(6):323.
Metadata
Title
Bimodal grain structures and tensile properties of a biomedical Co–20Cr–15W–10Ni alloy with different pre-strains
Authors
Cheng-Lin Li
Seong-Woo Choi
Jeong Mok Oh
Jae-Keun Hong
Jong-Taek Yeom
Joo-Hee Kang
Qing-Song Mei
Chan Hee Park
Publication date
02-09-2020
Publisher
Nonferrous Metals Society of China
Published in
Rare Metals / Issue 1/2021
Print ISSN: 1001-0521
Electronic ISSN: 1867-7185
DOI
https://doi.org/10.1007/s12598-020-01566-3

Other articles of this Issue 1/2021

Rare Metals 1/2021 Go to the issue

Premium Partners