Skip to main content
Top
Published in: Microsystem Technologies 12/2019

16-03-2019 | Review Paper

A review of MEMS inertial switches

Authors: Yun Cao, Zhanwen Xi

Published in: Microsystem Technologies | Issue 12/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A microelectromechanical system (MEMS) inertial switch is both a sensor and an actuator by only capturing a threshold and a close/open timestamp, yielding unique benefits like lower power consumption, lower costs, small size and large volume production. A comprehensive survey of the design schemes, performance aspects and dynamic test methods of the MEMS inertial switches is provided. Different reported varieties and design schemes of the switch have been reviewed emphasizing on directional sensitivity, acceleration threshold sensitivity, mechanism of contact-enhancement, and their advantages and disadvantages. Further, the dynamic test methods to provide feedback to the design-and-simulation process, including electrical method and optical methods, have been compared and discussed. In the end, a main summary and outlook about the MEMS inertial switches has been provided to aid in the development of the future research in this field.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Bao M, Yang H (2007) Squeeze film air damping in MEMS. Sens Actuators A Phys 136(1):3–27MathSciNet Bao M, Yang H (2007) Squeeze film air damping in MEMS. Sens Actuators A Phys 136(1):3–27MathSciNet
go back to reference Bosseboeuf A, Petitgrand S (2003) Characterization of the static and dynamic behaviour of M(O)EMS by optical techniques: status and trends. J Micromech Microeng 13(4):S23–S33 Bosseboeuf A, Petitgrand S (2003) Characterization of the static and dynamic behaviour of M(O)EMS by optical techniques: status and trends. J Micromech Microeng 13(4):S23–S33
go back to reference Brenner MP, Lang JH, Li J et al (2003) Optimal design of a bistable switch. Proc Natl Acad Sci 100(17):9663–9667MathSciNetMATH Brenner MP, Lang JH, Li J et al (2003) Optimal design of a bistable switch. Proc Natl Acad Sci 100(17):9663–9667MathSciNetMATH
go back to reference Burdess JS, Harris AJ, Wood D et al (1997) A system for the dynamic characterization of microstructures. J Microelectromech Syst 6(4):322–328 Burdess JS, Harris AJ, Wood D et al (1997) A system for the dynamic characterization of microstructures. J Microelectromech Syst 6(4):322–328
go back to reference Burns DJ, Helbig HF (1999) A system for automatic electrical and optical characterization of microelectromechanical devices. J Microelectromech Syst 8(4):473–482 Burns DJ, Helbig HF (1999) A system for automatic electrical and optical characterization of microelectromechanical devices. J Microelectromech Syst 8(4):473–482
go back to reference Cai HG, Ding GF, Yang ZQ et al (2008a) Design, simulation and fabrication of a novel contact-enhanced MEMS inertial switch with a movable contact point. J Micromech Microeng 18:115033 Cai HG, Ding GF, Yang ZQ et al (2008a) Design, simulation and fabrication of a novel contact-enhanced MEMS inertial switch with a movable contact point. J Micromech Microeng 18:115033
go back to reference Cai H, Yang Z, Ding G et al (2008b) Fabrication of a MEMS inertia switch on quartz substrate and evaluation of its threshold acceleration. Microelectron J 39(9):1112–1119 Cai H, Yang Z, Ding G et al (2008b) Fabrication of a MEMS inertia switch on quartz substrate and evaluation of its threshold acceleration. Microelectron J 39(9):1112–1119
go back to reference Cai H, Yang Z, Ding G et al (2009) Development of a novel MEMS inertial switch with a compliant stationary electrode. IEEE Sens J 9(7):801–808 Cai H, Yang Z, Ding G et al (2009) Development of a novel MEMS inertial switch with a compliant stationary electrode. IEEE Sens J 9(7):801–808
go back to reference Cao Y, Xi Z, Yu P et al (2015) A MEMS inertial switch with a single circular mass for universal sensitivity. J Micromech Microeng 25(10):105005 Cao Y, Xi Z, Yu P et al (2015) A MEMS inertial switch with a single circular mass for universal sensitivity. J Micromech Microeng 25(10):105005
go back to reference Cao Y, Xi Z, Yu P et al (2017) Optical measurement of the dynamic contact process of a MEMS inertial switch under high shock loads. IEEE Trans Ind Electron 64(1):701–709MathSciNet Cao Y, Xi Z, Yu P et al (2017) Optical measurement of the dynamic contact process of a MEMS inertial switch under high shock loads. IEEE Trans Ind Electron 64(1):701–709MathSciNet
go back to reference Chen GY, Yang LM (2007) Fabrication of a high-g micro impact switch. Explos Shock Waves 27(2):190–192 Chen GY, Yang LM (2007) Fabrication of a high-g micro impact switch. Explos Shock Waves 27(2):190–192
go back to reference Chen GY, Wu JL, Zhao L et al (2009) Low-g micro inertial switch based on Archimedes’ spiral. Opt Precis Eng 17(6):1257–1261 Chen GY, Wu JL, Zhao L et al (2009) Low-g micro inertial switch based on Archimedes’ spiral. Opt Precis Eng 17(6):1257–1261
go back to reference Chen W, Wang Y, Ding G et al (2014a) Simulation, fabrication and characterization of an all-metal contact-enhanced triaxial inertial microswitch with low axial disturbance. Sens Actuators A Phys 220:194–203 Chen W, Wang Y, Ding G et al (2014a) Simulation, fabrication and characterization of an all-metal contact-enhanced triaxial inertial microswitch with low axial disturbance. Sens Actuators A Phys 220:194–203
go back to reference Chen W, Wang Y, Zhang Y et al (2014b) Fabrication of a novel contact-enhanced horizontal sensitive inertial micro-switch with electroplating nickel. Microelectron Eng 127:21–27 Chen W, Wang Y, Zhang Y et al (2014b) Fabrication of a novel contact-enhanced horizontal sensitive inertial micro-switch with electroplating nickel. Microelectron Eng 127:21–27
go back to reference Chen W, Yang Z, Wang Y et al (2016) Fabrication and characterization of a low-g inertial microswitch with flexible contact point and limit-block constraints. IEEE/ASME Trans Mechatron 21(2):963–972 Chen W, Yang Z, Wang Y et al (2016) Fabrication and characterization of a low-g inertial microswitch with flexible contact point and limit-block constraints. IEEE/ASME Trans Mechatron 21(2):963–972
go back to reference Choi J, Lee JI, Eun Y et al (2011) Aligned carbon nanotube arrays for degradation-resistant, intimate contact in micromechanical devices. Adv Mater 23(19):2231–2236 Choi J, Lee JI, Eun Y et al (2011) Aligned carbon nanotube arrays for degradation-resistant, intimate contact in micromechanical devices. Adv Mater 23(19):2231–2236
go back to reference Chung CH, Ma RP, Shieh YC et al (2011) A robust micro mechanical-latch shock switch with low contact resistance. In: IEEE 16th international conference on solid-state sensors, actuators and microsystems, pp 1046–1051 Chung CH, Ma RP, Shieh YC et al (2011) A robust micro mechanical-latch shock switch with low contact resistance. In: IEEE 16th international conference on solid-state sensors, actuators and microsystems, pp 1046–1051
go back to reference Churaman WA, Currano LJ, Gee D et al (2008) Three-axis MEMS threshold accelerometer switch for enhanced power conservation of MEMS sensors. Adv Sci Technol 54:384–389 Churaman WA, Currano LJ, Gee D et al (2008) Three-axis MEMS threshold accelerometer switch for enhanced power conservation of MEMS sensors. Adv Sci Technol 54:384–389
go back to reference Cook EH, Tomaino-Iannucci MJ, Reilly DP et al (2018) Low-power resonant acceleration switch for unattended sensor wake-up. J Microelectromech Syst 27(6):1071–1081 Cook EH, Tomaino-Iannucci MJ, Reilly DP et al (2018) Low-power resonant acceleration switch for unattended sensor wake-up. J Microelectromech Syst 27(6):1071–1081
go back to reference Currano LJ (2010a) Latching microelectromechanical shock sensor systems: design, modeling, and experiments. Dissertation, University of Maryland Currano LJ (2010a) Latching microelectromechanical shock sensor systems: design, modeling, and experiments. Dissertation, University of Maryland
go back to reference Currano LJ, Bauman S, Churaman W et al (2008) Latching ultra-low power MEMS shock sensors for acceleration monitoring. Sens Actuators A Phys 147(2):490–497 Currano LJ, Bauman S, Churaman W et al (2008) Latching ultra-low power MEMS shock sensors for acceleration monitoring. Sens Actuators A Phys 147(2):490–497
go back to reference Currano LJ, Yu M, Balachandran B (2010) Latching in a MEMS shock sensor: modeling and experiments. Sens Actuators A Phys 159(1):41–50 Currano LJ, Yu M, Balachandran B (2010) Latching in a MEMS shock sensor: modeling and experiments. Sens Actuators A Phys 159(1):41–50
go back to reference Currano LJ, Becker CR, Smith GL et al (2012) 3-axis acceleration switch for traumatic brain injury early warning. In: IEEE 25th international conference on MEMS, pp 484–487 Currano LJ, Becker CR, Smith GL et al (2012) 3-axis acceleration switch for traumatic brain injury early warning. In: IEEE 25th international conference on MEMS, pp 484–487
go back to reference Currano LJ, Becker CR, Lunking D et al (2013) Triaxial inertial switch with multiple thresholds and resistive ladder readout. Sens Actuators A Phys 195:191–197 Currano LJ, Becker CR, Lunking D et al (2013) Triaxial inertial switch with multiple thresholds and resistive ladder readout. Sens Actuators A Phys 195:191–197
go back to reference Davis CQ, Freeman DM (1998a) Statistics of subpixel registration algorithms based on spatiotemporal gradients or block matching. Opt Eng 37(4):1290–1299 Davis CQ, Freeman DM (1998a) Statistics of subpixel registration algorithms based on spatiotemporal gradients or block matching. Opt Eng 37(4):1290–1299
go back to reference Davis CQ, Freeman DM (1998b) Using a light microscope to measure motions with nanometer accuracy. Opt Eng 37(4):1299–1305 Davis CQ, Freeman DM (1998b) Using a light microscope to measure motions with nanometer accuracy. Opt Eng 37(4):1299–1305
go back to reference Del Tin L, Iannacci J, Gaddi R et al (2007) Non linear compact modeling of RE-MEMS switches by means of model order reduction. In: Proceedings of IEEE TRANSDUCERS, pp 635–638 Del Tin L, Iannacci J, Gaddi R et al (2007) Non linear compact modeling of RE-MEMS switches by means of model order reduction. In: Proceedings of IEEE TRANSDUCERS, pp 635–638
go back to reference Deng KF, Su WG, Li S et al (2013) A novel inertial switch based on nonlinear-spring shock stop. In: Proceedings of the IEEE transducer 2013 conference, pp 2381–2384 Deng KF, Su WG, Li S et al (2013) A novel inertial switch based on nonlinear-spring shock stop. In: Proceedings of the IEEE transducer 2013 conference, pp 2381–2384
go back to reference Du L, Li Y, Zhao J et al (2018) A low-g MEMS inertial switch with a novel radial electrode for uniform omnidirectional sensitivity. Sens Actuators A Phys 270:214–222 Du L, Li Y, Zhao J et al (2018) A low-g MEMS inertial switch with a novel radial electrode for uniform omnidirectional sensitivity. Sens Actuators A Phys 270:214–222
go back to reference Freudenreich M, Mescheder U, Somogyi G (2004) Simulation and realization of a novel micromechanical bi-stable switch. Sens Actuators A Phys 114(2):451–459 Freudenreich M, Mescheder U, Somogyi G (2004) Simulation and realization of a novel micromechanical bi-stable switch. Sens Actuators A Phys 114(2):451–459
go back to reference Frobenius WD, Zeitman SA, White MH et al (1972) Microminiature ganged threshold accelerometers compatible with integrated circuit technology. IEEE Trans Electron Devices 19(1):37–40 Frobenius WD, Zeitman SA, White MH et al (1972) Microminiature ganged threshold accelerometers compatible with integrated circuit technology. IEEE Trans Electron Devices 19(1):37–40
go back to reference Gerson Y, Schreiber D, Grau H et al (2014) Meso scale MEMS inertial switch fabricated using an electroplated metal-on-insulator process. J Micromech Microeng 24(2):025008 Gerson Y, Schreiber D, Grau H et al (2014) Meso scale MEMS inertial switch fabricated using an electroplated metal-on-insulator process. J Micromech Microeng 24(2):025008
go back to reference Go JS, Cho YH, Kwak BM et al (1996) Snapping microswitches with adjustable acceleration threshold. Sens Actuators A Phys 54(1–3):579–583 Go JS, Cho YH, Kwak BM et al (1996) Snapping microswitches with adjustable acceleration threshold. Sens Actuators A Phys 54(1–3):579–583
go back to reference Granaldi A, Decuzzi P (2006) The dynamic response of resistive microswitches: switching time and bouncing. J Micromech Microeng 16(7):1108 Granaldi A, Decuzzi P (2006) The dynamic response of resistive microswitches: switching time and bouncing. J Micromech Microeng 16(7):1108
go back to reference Greywall DS (2007) MEMS-based inertial switch. US: 7,218,193 Greywall DS (2007) MEMS-based inertial switch. US: 7,218,193
go back to reference Guo ZY, Yang ZC, Lin LT et al (2009) A latching acceleration switch with cylindrical contacts independent to the proof-mass. In: Proceedings of the IEEE sensors, pp 1282–1285 Guo ZY, Yang ZC, Lin LT et al (2009) A latching acceleration switch with cylindrical contacts independent to the proof-mass. In: Proceedings of the IEEE sensors, pp 1282–1285
go back to reference Guo ZY, Zhang XY, Zhao QC et al (2010) A high-G acceleration latching switch with integrated normally-open/close paths independent to the proof-mass. In: Sensors, pp 885–888 Guo ZY, Zhang XY, Zhao QC et al (2010) A high-G acceleration latching switch with integrated normally-open/close paths independent to the proof-mass. In: Sensors, pp 885–888
go back to reference Guo ZY, Yang ZC, Lin LT et al (2011) Design, fabrication and characterization of a latching acceleration switch with multi-contacts independent to the proof-mass. Sens Actuators A Phys 166(2):187–192 Guo ZY, Yang ZC, Lin LT et al (2011) Design, fabrication and characterization of a latching acceleration switch with multi-contacts independent to the proof-mass. Sens Actuators A Phys 166(2):187–192
go back to reference Hart MR, Conant RA, Lau KY et al (2000) Stroboscopic interferometer system for dynamic MEMS characterization. J Microelectromech Syst 9(4):409–418 Hart MR, Conant RA, Lau KY et al (2000) Stroboscopic interferometer system for dynamic MEMS characterization. J Microelectromech Syst 9(4):409–418
go back to reference Hwang J, Ryu D, Park C et al (2017) Design and fabrication of a silicon-based MEMS acceleration switch working lower than 10 g. J Micromech Microeng 27(6):065009 Hwang J, Ryu D, Park C et al (2017) Design and fabrication of a silicon-based MEMS acceleration switch working lower than 10 g. J Micromech Microeng 27(6):065009
go back to reference Iannacci J (2015) Reliability of MEMS: a perspective on failure mechanisms, improvement solutions and best practices at development level. Displays 37:62–71 Iannacci J (2015) Reliability of MEMS: a perspective on failure mechanisms, improvement solutions and best practices at development level. Displays 37:62–71
go back to reference Iannacci J, Repchankova A, Macii D et al (2009) A measurement procedure of technology-related model parameters for enhanced RF-MEMS design. In: Proceedings of IEEE AMUEM, pp 44–49 Iannacci J, Repchankova A, Macii D et al (2009) A measurement procedure of technology-related model parameters for enhanced RF-MEMS design. In: Proceedings of IEEE AMUEM, pp 44–49
go back to reference Jean D (2004) Integrated MEMS mechanical shock sensor. In: NDIA 48th annual fuze conference, pp 26–28 Jean D (2004) Integrated MEMS mechanical shock sensor. In: NDIA 48th annual fuze conference, pp 26–28
go back to reference Jean DJ (2007) MEMS multi-directional shock sensor. US: 7,159,442 Jean DJ (2007) MEMS multi-directional shock sensor. US: 7,159,442
go back to reference Jean D, Smith G, Kunstmann J (2007) MEMS multi-directional shock sensor with multiple masses. US: 7,194,889 Jean D, Smith G, Kunstmann J (2007) MEMS multi-directional shock sensor with multiple masses. US: 7,194,889
go back to reference Jia M, Li X, Song Z et al (2007) Micro-cantilever shocking-acceleration switches with threshold adjusting and ‘on’-state latching functions. J Micromech Microeng 17(3):567–575 Jia M, Li X, Song Z et al (2007) Micro-cantilever shocking-acceleration switches with threshold adjusting and ‘on’-state latching functions. J Micromech Microeng 17(3):567–575
go back to reference Kim H, Jang YH, Kim YK et al (2014) MEMS acceleration switch with bi-directionally tunable threshold. Sens Actuators A Phys 208:120–129 Kim H, Jang YH, Kim YK et al (2014) MEMS acceleration switch with bi-directionally tunable threshold. Sens Actuators A Phys 208:120–129
go back to reference Krehl P, Engemann S, Rembe C et al (1999) High-speed visualization, a powerful diagnostic tool for microactuators—retrospect and prospect. Microsyst Technol 5(3):113–132 Krehl P, Engemann S, Rembe C et al (1999) High-speed visualization, a powerful diagnostic tool for microactuators—retrospect and prospect. Microsyst Technol 5(3):113–132
go back to reference Kuenzig T, Iannacci J, Schrag G et al (2012) Study of an active thermal recovery mechanism for an electrostatically actuated RF-MEMS switch. In: Proceedings of IEEE EuroSime, pp 1–7 Kuenzig T, Iannacci J, Schrag G et al (2012) Study of an active thermal recovery mechanism for an electrostatically actuated RF-MEMS switch. In: Proceedings of IEEE EuroSime, pp 1–7
go back to reference Kwa T (2014) Low-G MEMS acceleration switch. US: 8,779,534 Kwa T (2014) Low-G MEMS acceleration switch. US: 8,779,534
go back to reference Lawrence EM, Rembe C (2003) MEMS characterization using new hybrid laser Doppler vibrometer/strobe video system. In: Proceedings of the SPIE reliability, testing, characterization. MEMS/MOEMS III, vol 5343, pp 45–55 Lawrence EM, Rembe C (2003) MEMS characterization using new hybrid laser Doppler vibrometer/strobe video system. In: Proceedings of the SPIE reliability, testing, characterization. MEMS/MOEMS III, vol 5343, pp 45–55
go back to reference Lawrence EM, Speller K, Yu D (2002) Laser Doppler vibrometry for optical MEMS. In: Proceedings of the 5th international conference on vibration measurement on laser technology, vol 4827, pp 80–88 Lawrence EM, Speller K, Yu D (2002) Laser Doppler vibrometry for optical MEMS. In: Proceedings of the 5th international conference on vibration measurement on laser technology, vol 4827, pp 80–88
go back to reference Lawrence EM, Speller KE, Yu D (2003) MEMS characterization using laser Doppler vibrometry. In: Reliability, testing, and characterization of MEMS/MOEMS II, Proceedings of SPIE, vol 4980, pp 51–63 Lawrence EM, Speller KE, Yu D (2003) MEMS characterization using laser Doppler vibrometry. In: Reliability, testing, and characterization of MEMS/MOEMS II, Proceedings of SPIE, vol 4980, pp 51–63
go back to reference Lee JI, Song Y, Jung HK et al (2011) Carbon nanotubes-integrated inertial switch for reliable detection of threshold acceleration. In: Proceedings of the international conference on solid-state sensors and actuators, pp 711–714 Lee JI, Song Y, Jung HK et al (2011) Carbon nanotubes-integrated inertial switch for reliable detection of threshold acceleration. In: Proceedings of the international conference on solid-state sensors and actuators, pp 711–714
go back to reference Lee JI, Song Y, Jung H et al (2012) Deformable carbon nanotube-contact pads for inertial microswitch to extend contact time. IEEE Trans Ind Electron 59(12):4914–4920 Lee JI, Song Y, Jung H et al (2012) Deformable carbon nanotube-contact pads for inertial microswitch to extend contact time. IEEE Trans Ind Electron 59(12):4914–4920
go back to reference Li XJ, Niu LJ, Zhai R et al (2013) MEMS omni-directional inertial switch with the slant of mass. J Detect Control 34(6):26–30 Li XJ, Niu LJ, Zhai R et al (2013) MEMS omni-directional inertial switch with the slant of mass. J Detect Control 34(6):26–30
go back to reference Li J, Wang Y, Li Y et al (2018) A contact-enhanced MEMS inertial switch with electrostatic force assistance and multi-step pulling action for prolonging contact time. In: Microsystem Technologies, pp 1–13 Li J, Wang Y, Li Y et al (2018) A contact-enhanced MEMS inertial switch with electrostatic force assistance and multi-step pulling action for prolonging contact time. In: Microsystem Technologies, pp 1–13
go back to reference Lin HF, He HT, Bian YM et al (2009) Novel passive MEMS universal crash switch. MEMS Device Technol 46(6):358–361 Lin HF, He HT, Bian YM et al (2009) Novel passive MEMS universal crash switch. MEMS Device Technol 46(6):358–361
go back to reference Lin L, Zhao Q, Yang Z et al (2014) Design and simulation of a 2-axis low g acceleration switch with multi-folded beams. In: IEEE international conference on solid-state and integrated circuit technology, pp 1–3 Lin L, Zhao Q, Yang Z et al (2014) Design and simulation of a 2-axis low g acceleration switch with multi-folded beams. In: IEEE international conference on solid-state and integrated circuit technology, pp 1–3
go back to reference Liu SJ, Hao YP (2013) Annular passive universal MEMS inertial switch. J Chin Inert Technol 21(2):240–244 Liu SJ, Hao YP (2013) Annular passive universal MEMS inertial switch. J Chin Inert Technol 21(2):240–244
go back to reference Liu SJ, Hao YP, Liu FL (2014) Design and fabrication of universal inertial switch based on MEMS technology. Key Eng Mater 609:689–695 Liu SJ, Hao YP, Liu FL (2014) Design and fabrication of universal inertial switch based on MEMS technology. Key Eng Mater 609:689–695
go back to reference Loke Y, McKinnon GH, Brett MJ (1991) Fabrication and characterization of silicon micromachined threshold accelerometers. Sens Actuators A Phys 29(3):235–240 Loke Y, McKinnon GH, Brett MJ (1991) Fabrication and characterization of silicon micromachined threshold accelerometers. Sens Actuators A Phys 29(3):235–240
go back to reference Ma W, Zohar Y, Wong M (2003) Design and characterization of inertia-activated electrical micro-switches fabricated and packaged using low-temperature photoresist molded metal-electroplating technology. J Micromech Microeng 13(6):892 Ma W, Zohar Y, Wong M (2003) Design and characterization of inertia-activated electrical micro-switches fabricated and packaged using low-temperature photoresist molded metal-electroplating technology. J Micromech Microeng 13(6):892
go back to reference Ma CW, Huang PC, Kuo JC et al (2013) A novel inertial switch with an adjustable acceleration threshold using an MEMS digital-to-analog converter. Microelectron Eng 69(2):1–7 Ma CW, Huang PC, Kuo JC et al (2013) A novel inertial switch with an adjustable acceleration threshold using an MEMS digital-to-analog converter. Microelectron Eng 69(2):1–7
go back to reference Matsunaga T, Esashi M (2002) Acceleration switch with extended holding time using squeeze film effect for side airbag systems. Sens Actuators A Phys 100(1):10–17 Matsunaga T, Esashi M (2002) Acceleration switch with extended holding time using squeeze film effect for side airbag systems. Sens Actuators A Phys 100(1):10–17
go back to reference Michaelis S, Timme HJ, Wycisk M et al (2000) Additive electroplating technology as a post-CMOS process for the production of MEMS acceleration-threshold switches for transportation applications. J Micromech Microeng 10(2):120 Michaelis S, Timme HJ, Wycisk M et al (2000) Additive electroplating technology as a post-CMOS process for the production of MEMS acceleration-threshold switches for transportation applications. J Micromech Microeng 10(2):120
go back to reference Mu FQ (2006) Design and test of high-g MEMS acceleration switch used in fuze safety system. Dissertation, Nanjing University of Science and Technology Mu FQ (2006) Design and test of high-g MEMS acceleration switch used in fuze safety system. Dissertation, Nanjing University of Science and Technology
go back to reference Narasimhan V, Li H, Jianmin M (2015) Micromachined high-g accelerometers: a review. J Micromech Microeng 25(3):033001 Narasimhan V, Li H, Jianmin M (2015) Micromachined high-g accelerometers: a review. J Micromech Microeng 25(3):033001
go back to reference Niessner M, Iannacci J, Peller A et al (2010) Macromodel-based simulation and measurement of the dynamic pull-in of viscously damped RF-MEMS switches. In: Proceedings of Eurosensors XXIV conference, pp 78–81 Niessner M, Iannacci J, Peller A et al (2010) Macromodel-based simulation and measurement of the dynamic pull-in of viscously damped RF-MEMS switches. In: Proceedings of Eurosensors XXIV conference, pp 78–81
go back to reference Noetzel J, Tönnesen T, Benecke W et al (1996) Quasianalog accelerometer using microswitch array. Sens Actuators A Phys 54(1):574–578 Noetzel J, Tönnesen T, Benecke W et al (1996) Quasianalog accelerometer using microswitch array. Sens Actuators A Phys 54(1):574–578
go back to reference Ongkodjojo A, Tay FEH (2006) Optimized design of a micromachined G-switch based on contactless configuration for health care applications. J Phys Conf Ser 34(1):1044 Ongkodjojo A, Tay FEH (2006) Optimized design of a micromachined G-switch based on contactless configuration for health care applications. J Phys Conf Ser 34(1):1044
go back to reference Osterberg PM, Senturia SD (1997) M-TEST: a test chip for MEMS material property measurement using electrostatically actuated test structures. J Microelectromech Syst 6(2):107–118 Osterberg PM, Senturia SD (1997) M-TEST: a test chip for MEMS material property measurement using electrostatically actuated test structures. J Microelectromech Syst 6(2):107–118
go back to reference Rembe C, Muller RS (2002) Measurement system for full three-dimensional motion characterization of MEMS. J Microelectromech Syst 11(5):479–488 Rembe C, Muller RS (2002) Measurement system for full three-dimensional motion characterization of MEMS. J Microelectromech Syst 11(5):479–488
go back to reference Rembe C, Aschemann H, aus der Wiesche S et al (2001a) Testing and improvement of micro-optical-switch dynamics. Microelectron Reliab 41(3):471–480 Rembe C, Aschemann H, aus der Wiesche S et al (2001a) Testing and improvement of micro-optical-switch dynamics. Microelectron Reliab 41(3):471–480
go back to reference Rembe C, Muller L, Muller RS et al (2001b) Full three-dimensional motion characterization of a gimballed electrostatic microactuator. In: Proceedings of IEEE international reliability symposium, pp 91–98 Rembe C, Muller L, Muller RS et al (2001b) Full three-dimensional motion characterization of a gimballed electrostatic microactuator. In: Proceedings of IEEE international reliability symposium, pp 91–98
go back to reference Rembe C, Kant R, Muller RS (2001c) Optical measurement methods to study dynamic behavior in MEMS. Proc SPIE 4000:127–137 Rembe C, Kant R, Muller RS (2001c) Optical measurement methods to study dynamic behavior in MEMS. Proc SPIE 4000:127–137
go back to reference Rembe C, Tibken B, Hofer EP (2001d) Analysis of the dynamics in microactuators using high-speed cine photomicrography. J Microelectromech Syst 10(1):137–145 Rembe C, Tibken B, Hofer EP (2001d) Analysis of the dynamics in microactuators using high-speed cine photomicrography. J Microelectromech Syst 10(1):137–145
go back to reference Robinson CH (2004) Omnidirectional microscale impact switch. US: 6,765,160 Robinson CH (2004) Omnidirectional microscale impact switch. US: 6,765,160
go back to reference Selvakumar A, Yazdi N, Najafi K (2001) A wide-range micromachined threshold accelerometer array and interface circuit. J Micromech Microeng 11(2):118 Selvakumar A, Yazdi N, Najafi K (2001) A wide-range micromachined threshold accelerometer array and interface circuit. J Micromech Microeng 11(2):118
go back to reference Smith GL (2012) Triaxial MEMS acceleration switch. US: 8,237,521 Smith GL (2012) Triaxial MEMS acceleration switch. US: 8,237,521
go back to reference Speller K, Goldberg H, Gannon J et al (2002) Unique MEMS characterization solutions enabled by laser Doppler vibrometer measurements. Proc SPIE 4827:478–486 Speller K, Goldberg H, Gannon J et al (2002) Unique MEMS characterization solutions enabled by laser Doppler vibrometer measurements. Proc SPIE 4827:478–486
go back to reference Tao YK, Liu YF, Dong JX (2014) Flexible stop and double-cascaded stop to improve shock reliability of MEMS accelerometer. Microelectron Reliab 54(6–7):1328–1337 Tao YK, Liu YF, Dong JX (2014) Flexible stop and double-cascaded stop to improve shock reliability of MEMS accelerometer. Microelectron Reliab 54(6–7):1328–1337
go back to reference Tønnesen T, Lüdtke O, Noetzel J et al (1997) Simulation, design and fabrication of electroplated acceleration switches. J Micromech Microeng 7(3):237–239 Tønnesen T, Lüdtke O, Noetzel J et al (1997) Simulation, design and fabrication of electroplated acceleration switches. J Micromech Microeng 7(3):237–239
go back to reference Van Spengen WM (2003) MEMS reliability from a failure mechanisms perspective. Microelectron Reliab 43(7):1049–1060 Van Spengen WM (2003) MEMS reliability from a failure mechanisms perspective. Microelectron Reliab 43(7):1049–1060
go back to reference Wang Y, Feng Q, Wang Y et al (2013) The design, simulation and fabrication of a novel horizontal sensitive inertial micro-switch with low g value based on MEMS micromachining technology. J Micromech Microeng 23(10):105013 Wang Y, Feng Q, Wang Y et al (2013) The design, simulation and fabrication of a novel horizontal sensitive inertial micro-switch with low g value based on MEMS micromachining technology. J Micromech Microeng 23(10):105013
go back to reference Wang Y, Yang Z, Xu Q et al (2015) Design, simulation and characterization of a MEMS inertia switch with flexible CNTs/Cu composite array layer between electrodes for prolonging contact time. J Micromech Microeng 25(8):085012 Wang Y, Yang Z, Xu Q et al (2015) Design, simulation and characterization of a MEMS inertia switch with flexible CNTs/Cu composite array layer between electrodes for prolonging contact time. J Micromech Microeng 25(8):085012
go back to reference Whitley MR, Kranz MS, Kesmodel R et al (2005) Latching shock sensors for health monitoring and quality control. Prog Biomed Opt Imaging Proc SPIE 5717:185–195 Whitley MR, Kranz MS, Kesmodel R et al (2005) Latching shock sensors for health monitoring and quality control. Prog Biomed Opt Imaging Proc SPIE 5717:185–195
go back to reference Wittwer JW, Baker MS, Epp DS et al (2008) MEMS passive latching mechanical shock sensor. In: Proceedings of the ASME, international design engineering technical conference and computers and information in engineering conference, pp 581–587 Wittwer JW, Baker MS, Epp DS et al (2008) MEMS passive latching mechanical shock sensor. In: Proceedings of the ASME, international design engineering technical conference and computers and information in engineering conference, pp 581–587
go back to reference Wu YB, Ding GF, Wang J et al (2010) Fabrication of low-stress low-stiffness leveraged cantilever beam for bistable mechanism. Microelectron Eng 87(11):2035–2041 Wu YB, Ding GF, Wang J et al (2010) Fabrication of low-stress low-stiffness leveraged cantilever beam for bistable mechanism. Microelectron Eng 87(11):2035–2041
go back to reference Wycisk M, Tönnesen T, Binder J et al (2000) Low-cost post-CMOS integration of electroplated microstructures for inertial sensing. Sens Actuators A Phys 83(1–3):93–100 Wycisk M, Tönnesen T, Binder J et al (2000) Low-cost post-CMOS integration of electroplated microstructures for inertial sensing. Sens Actuators A Phys 83(1–3):93–100
go back to reference Xi Z, Zhang P, Nie W et al (2014) A novel MEMS omnidirectional inertial switch with flexible electrodes. Sens Actuators A Phys 212:93–101 Xi Z, Zhang P, Nie W et al (2014) A novel MEMS omnidirectional inertial switch with flexible electrodes. Sens Actuators A Phys 212:93–101
go back to reference Xie YJ (2006) Study on measurement methods and key technologies for dynamic characterization of MEMS microstructures. Dissertation, Huazhong University of Science and Technology Xie YJ (2006) Study on measurement methods and key technologies for dynamic characterization of MEMS microstructures. Dissertation, Huazhong University of Science and Technology
go back to reference Xu Q, Yang Z, Sun Y et al (2017) Shock-resistibility of mems-based inertial microswitch under reverse directional ultra-high g acceleration for IoT applications. Sci Rep 7:45512 Xu Q, Yang Z, Sun Y et al (2017) Shock-resistibility of mems-based inertial microswitch under reverse directional ultra-high g acceleration for IoT applications. Sci Rep 7:45512
go back to reference Yang Z, Ding G, Chen W et al (2007) Design, simulation and characterization of an inertia micro-switch fabricated by non-silicon surface micromachining. J Micromech Microeng 17(8):1598 Yang Z, Ding G, Chen W et al (2007) Design, simulation and characterization of an inertia micro-switch fabricated by non-silicon surface micromachining. J Micromech Microeng 17(8):1598
go back to reference Yang Z, Ding G, Cai H et al (2008) A MEMS inertia switch with bridge-type elastic fixed electrode for long duration contact. IEEE Trans Electron Devices 55(9):2492–2497 Yang Z, Ding G, Cai H et al (2008) A MEMS inertia switch with bridge-type elastic fixed electrode for long duration contact. IEEE Trans Electron Devices 55(9):2492–2497
go back to reference Yang HL, Yang HW, Wang J (2009a) Design of high gn micro acceleration switch. Transducer Microsyst Technol 28(5):84–86 Yang HL, Yang HW, Wang J (2009a) Design of high gn micro acceleration switch. Transducer Microsyst Technol 28(5):84–86
go back to reference Yang ZQ, Ding GF, Cai HG et al (2009b) Development of a shock acceleration microswitch with enhanced-contact and low off-axis sensitivity. In: Proceedings of the international conference on solid-state sensors, actuators, and microsystems conference transducer, pp 1940–1943 Yang ZQ, Ding GF, Cai HG et al (2009b) Development of a shock acceleration microswitch with enhanced-contact and low off-axis sensitivity. In: Proceedings of the international conference on solid-state sensors, actuators, and microsystems conference transducer, pp 1940–1943
go back to reference Yang Z, Ding G, Cai H et al (2009c) Analysis and elimination of the ‘skip contact’phenomenon in an inertial micro-switch for prolonging its contact time. J Micromech Microeng 19(4):045017 Yang Z, Ding G, Cai H et al (2009c) Analysis and elimination of the ‘skip contact’phenomenon in an inertial micro-switch for prolonging its contact time. J Micromech Microeng 19(4):045017
go back to reference Yang Z, Zhu B, Chen W et al (2012) Fabrication and characterization of a multidirectional-sensitive contact-enhanced inertial microswitch with a electrophoretic flexible composite fixed electrode. J Micromech Microeng 22(4):045006 Yang Z, Zhu B, Chen W et al (2012) Fabrication and characterization of a multidirectional-sensitive contact-enhanced inertial microswitch with a electrophoretic flexible composite fixed electrode. J Micromech Microeng 22(4):045006
go back to reference Yang Z, Ding G, Wang Y et al (2018) A MEMS inertial switch based on nonsilicon surface micromachining technology. In: Huang QA (ed) Micro electro mechanical systems, Micro/nano technologies, vol 2. Springer, Singapore, pp 945–995 Yang Z, Ding G, Wang Y et al (2018) A MEMS inertial switch based on nonsilicon surface micromachining technology. In: Huang QA (ed) Micro electro mechanical systems, Micro/nano technologies, vol 2. Springer, Singapore, pp 945–995
go back to reference Yoo K, Kim J (2009) A novel configurable MEMS inertial switch using microscale liquid-metal droplet. In: IEEE international conference on MEMS’09, pp 793–796 Yoo K, Kim J (2009) A novel configurable MEMS inertial switch using microscale liquid-metal droplet. In: IEEE international conference on MEMS’09, pp 793–796
go back to reference Yoo K, Park U, Kim J (2011) Development and characterization of a novel configurable MEMS inertial switch using a microscale liquid-metal droplet in a microstructured channel. Sens Actuators A Phys 166(2):234–240 Yoo K, Park U, Kim J (2011) Development and characterization of a novel configurable MEMS inertial switch using a microscale liquid-metal droplet in a microstructured channel. Sens Actuators A Phys 166(2):234–240
go back to reference Zhang ZM, Wang XS, Yang LM (2002) Impact switch for low acceleration. J Transducer Technol 21(7):28–30 Zhang ZM, Wang XS, Yang LM (2002) Impact switch for low acceleration. J Transducer Technol 21(7):28–30
go back to reference Zhang Q, Yang Z, Xu Q et al (2016) Design and fabrication of a laterally-driven inertial micro-switch with multi-directional constraint structures for lowering off-axis sensitivity. J Micromech Microeng 26(5):055008 Zhang Q, Yang Z, Xu Q et al (2016) Design and fabrication of a laterally-driven inertial micro-switch with multi-directional constraint structures for lowering off-axis sensitivity. J Micromech Microeng 26(5):055008
go back to reference Zhang F, Wang C, Yuan M et al (2017a) Conception, fabrication and characterization of a silicon based MEMS inertial switch with a threshold value of 5 g. J Micromech Microeng 27(12):125001 Zhang F, Wang C, Yuan M et al (2017a) Conception, fabrication and characterization of a silicon based MEMS inertial switch with a threshold value of 5 g. J Micromech Microeng 27(12):125001
go back to reference Zhang F, Yuan M, Jin W et al (2017b) Fabrication of a silicon based vertical sensitive low-g inertial micro-switch for linear acceleration sensing. Microsyst Technol 23(7):2467–2473 Zhang F, Yuan M, Jin W et al (2017b) Fabrication of a silicon based vertical sensitive low-g inertial micro-switch for linear acceleration sensing. Microsyst Technol 23(7):2467–2473
go back to reference Zhao J, Jia J, Wang H et al (2007) A novel threshold accelerometer with postbuckling structures for airbag restraint systems. IEEE Sens J 7(8):1102–1109 Zhao J, Jia J, Wang H et al (2007) A novel threshold accelerometer with postbuckling structures for airbag restraint systems. IEEE Sens J 7(8):1102–1109
go back to reference Zhao J, Yang Y, Fan K et al (2010) A bistable threshold accelerometer with fully compliant clamped-clamped mechanism. IEEE Sens J 10(5):1019–1024 Zhao J, Yang Y, Fan K et al (2010) A bistable threshold accelerometer with fully compliant clamped-clamped mechanism. IEEE Sens J 10(5):1019–1024
go back to reference Zhong Y, Zhang G, Leng C, Zhang T (2007) A differential laser Doppler system for one-dimensional in-plane motion measurement of MEMS. Measurement 40(6):623–627 Zhong Y, Zhang G, Leng C, Zhang T (2007) A differential laser Doppler system for one-dimensional in-plane motion measurement of MEMS. Measurement 40(6):623–627
go back to reference Zhou Z, Nie W, Xi Z et al (2016) A high-electrical-reliability MEMS inertial switch based on latching mechanism and debounce circuit. IEEE Sens J 16(7):1918–1925 Zhou Z, Nie W, Xi Z et al (2016) A high-electrical-reliability MEMS inertial switch based on latching mechanism and debounce circuit. IEEE Sens J 16(7):1918–1925
Metadata
Title
A review of MEMS inertial switches
Authors
Yun Cao
Zhanwen Xi
Publication date
16-03-2019
Publisher
Springer Berlin Heidelberg
Published in
Microsystem Technologies / Issue 12/2019
Print ISSN: 0946-7076
Electronic ISSN: 1432-1858
DOI
https://doi.org/10.1007/s00542-019-04393-4

Other articles of this Issue 12/2019

Microsystem Technologies 12/2019 Go to the issue