Skip to main content
Top
Published in: Microsystem Technologies 12/2021

16-01-2021 | Review Paper

A review on vibrating beam-based micro/nano-gyroscopes

Authors: K. Larkin, M. Ghommem, M. Serrano, A. Abdelkefi

Published in: Microsystem Technologies | Issue 12/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A comprehensive review of the modeling approaches used to simulate the behaviors of micro/nano-gyroscopes is presented. The performance and sensitivity of these inertial sensors can be significantly improved through understanding their governing dynamics and exploiting specific phenomena and distinctive features. Such understanding can be developed by solving and analyzing their governing equations and boundary conditions that may comprise a set of highly nonlinear partial differential equations. The operating principle of vibrating beam gyroscopes is described and their main actuation and sensing mechanisms are reviewed and discussed. The multi-fidelity modeling approaches that have been used for the design, performance analysis, and control of vibratory micro/nano-gyroscopes are consolidated and reviewed. The use of these mathematical models has opened doors for the development of new sensing designs with unprecedented sensitivity and extended operating range. To date, extensive research has been conducted on modeling and simulations of micro/nano-gyroscopes. However, several open research topics have not been thoroughly explored yet. These include nanoscale experimentation for model validation, damage/fatigue modeling, and self-powered energy harvesting gyroscope systems. This review presents the current state of the art and highlights promising research directions for continued technological advancement of micro/nano-gyroscopes.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Acar C, Shkel A (2008) MEMS vibratory gyroscopes: structural approaches to improve robustness. Springer Science & Business Media Acar C, Shkel A (2008) MEMS vibratory gyroscopes: structural approaches to improve robustness. Springer Science & Business Media
go back to reference Acar C, Schofield AR, Trusov AA, Costlow LE, Shkel AM (2009) Environmentally robust MEMS vibratory gyroscopes for automotive applications. IEEE Sens J 9(12):1895–1906CrossRef Acar C, Schofield AR, Trusov AA, Costlow LE, Shkel AM (2009) Environmentally robust MEMS vibratory gyroscopes for automotive applications. IEEE Sens J 9(12):1895–1906CrossRef
go back to reference Adams SG, Groves J, Shaw KA, Davis TJ, Cardarelli D, Carroll R, Fontanella MD (1999) Single-crystal silicon gyroscope with decoupled drive and sense. Micromachined Devices Components V 3876:74–83CrossRef Adams SG, Groves J, Shaw KA, Davis TJ, Cardarelli D, Carroll R, Fontanella MD (1999) Single-crystal silicon gyroscope with decoupled drive and sense. Micromachined Devices Components V 3876:74–83CrossRef
go back to reference Alcheikh N, Hajjaj AZ, Jaber N, Younis MI (2018) Electrothermally actuated tunable clamped-guided resonant microbeams. Mech Syst Signal Proc 98:1069–1076CrossRef Alcheikh N, Hajjaj AZ, Jaber N, Younis MI (2018) Electrothermally actuated tunable clamped-guided resonant microbeams. Mech Syst Signal Proc 98:1069–1076CrossRef
go back to reference Alper SE, Azgin K, Akin T (2007) A high-performance silicon-on-insulator MEMS gyroscope operating at atmospheric pressure. Sens Actuators, A 135(1):34–42CrossRef Alper SE, Azgin K, Akin T (2007) A high-performance silicon-on-insulator MEMS gyroscope operating at atmospheric pressure. Sens Actuators, A 135(1):34–42CrossRef
go back to reference Bai Y, Tofel P, Palosaari J, Jantunen H, Juuti J (2017) A game changer: a multifunctional perovskite exhibiting giant ferroelectricity and narrow bandgap with potential application in a truly monolithic multienergy harvester or sensor. Adv Mater 29(29) Bai Y, Tofel P, Palosaari J, Jantunen H, Juuti J (2017) A game changer: a multifunctional perovskite exhibiting giant ferroelectricity and narrow bandgap with potential application in a truly monolithic multienergy harvester or sensor. Adv Mater 29(29)
go back to reference Bazaei A, Moheimani S (2014) A comprehensive analysis of MEMS electrothermal displacement sensors. IEEE Sens J 14(9):3183–3192CrossRef Bazaei A, Moheimani S (2014) A comprehensive analysis of MEMS electrothermal displacement sensors. IEEE Sens J 14(9):3183–3192CrossRef
go back to reference Bestetti M, Zega V, Langfelder G (2020) Modeling and first characterization of broad-spectrum vibration rejection of frequency modulated gyroscopes. 2020 IEEE 33rd International Conference on Micro Electro Mechanical Systems (MEMS), pp. 259–262 Bestetti M, Zega V, Langfelder G (2020) Modeling and first characterization of broad-spectrum vibration rejection of frequency modulated gyroscopes. 2020 IEEE 33rd International Conference on Micro Electro Mechanical Systems (MEMS), pp. 259–262
go back to reference Bevan J (1998) Analysis and testing of plates with piezoelectric sensors and actuators Bevan J (1998) Analysis and testing of plates with piezoelectric sensors and actuators
go back to reference Bhadbhade V, Jalili N, Mahmoodi SN (2008) A novel piezoelectrically actuated flexural/torsional vibrating beam gyroscope. J Sound Vib 311(3–5):1305–1324CrossRef Bhadbhade V, Jalili N, Mahmoodi SN (2008) A novel piezoelectrically actuated flexural/torsional vibrating beam gyroscope. J Sound Vib 311(3–5):1305–1324CrossRef
go back to reference Cao Y, Sepúlveda N (2019) Design of flexible piezoelectric gyroscope for structural health monitoring. Appl Phys Lett 115(24) Cao Y, Sepúlveda N (2019) Design of flexible piezoelectric gyroscope for structural health monitoring. Appl Phys Lett 115(24)
go back to reference Cao L, Fan S, Guo Z, Xu L (2016) A method to simulate the vibrating characters of the resonator for resonant MEMS gyroscope. Microsyst Technol 22(9):2315–2327CrossRef Cao L, Fan S, Guo Z, Xu L (2016) A method to simulate the vibrating characters of the resonator for resonant MEMS gyroscope. Microsyst Technol 22(9):2315–2327CrossRef
go back to reference Cao H, Liu Y, Kou Z, Zhang Y, Shao X, Gao J, Huang K, Shi Y, Tang J, Shen C, Liu J (2019) Design, fabrication and experiment of double U-beam MEMS vibration ring gyroscope. Micromachines 10(3):186CrossRef Cao H, Liu Y, Kou Z, Zhang Y, Shao X, Gao J, Huang K, Shi Y, Tang J, Shen C, Liu J (2019) Design, fabrication and experiment of double U-beam MEMS vibration ring gyroscope. Micromachines 10(3):186CrossRef
go back to reference Cao H, Xue R, Cai Q, Gao J, Zhao R, Shi Y, Shen C (2020a) Design and experiment for dual-mass MEMS gyroscope sensing closed-loop system. IEEE Access 8:48074–48087CrossRef Cao H, Xue R, Cai Q, Gao J, Zhao R, Shi Y, Shen C (2020a) Design and experiment for dual-mass MEMS gyroscope sensing closed-loop system. IEEE Access 8:48074–48087CrossRef
go back to reference Cao LM, Li JW, Liu XW, Sun FY (2020b) Research on an anchor point lever beam coupling type tuning fork micro-gyroscope. Int J Precision Eng Manufacturing: 1–13 Cao LM, Li JW, Liu XW, Sun FY (2020b) Research on an anchor point lever beam coupling type tuning fork micro-gyroscope. Int J Precision Eng Manufacturing: 1–13
go back to reference Chang H, Zhang Y, Xie J, Zhou Z, Yuan W (2010) Integrated behavior simulation and verification for a MEMS vibratory gyroscope using parametric model order reduction. J Microelectromech Syst 19(2):282–293CrossRef Chang H, Zhang Y, Xie J, Zhou Z, Yuan W (2010) Integrated behavior simulation and verification for a MEMS vibratory gyroscope using parametric model order reduction. J Microelectromech Syst 19(2):282–293CrossRef
go back to reference Chew Z, Ruan T, Zhu M, Bafleur M, Dilhac J (2016) A multifunctional device as both strain sensor and energy harvester for structural health monitoring. IEEE SENSORS 1–3 Chew Z, Ruan T, Zhu M, Bafleur M, Dilhac J (2016) A multifunctional device as both strain sensor and energy harvester for structural health monitoring. IEEE SENSORS 1–3
go back to reference Cho J, Kim K, Hwang W, Yang C, Ahn J, Hong S, Jeon D, Song G, Ryu C, Woo S, Kim J, Lee T, Choi J, Cheong H, Sung T (2019) A multifunctional road-compatible piezoelectric energy harvester for autonomous driver assited LED indicators with a self monotoring system. Appl Energy 242:294–301CrossRef Cho J, Kim K, Hwang W, Yang C, Ahn J, Hong S, Jeon D, Song G, Ryu C, Woo S, Kim J, Lee T, Choi J, Cheong H, Sung T (2019) A multifunctional road-compatible piezoelectric energy harvester for autonomous driver assited LED indicators with a self monotoring system. Appl Energy 242:294–301CrossRef
go back to reference Choa SH (2005) Reliability of vacuum packaged MEMS gyroscopes. Microelectron Reliab 45(2):361–369CrossRef Choa SH (2005) Reliability of vacuum packaged MEMS gyroscopes. Microelectron Reliab 45(2):361–369CrossRef
go back to reference Cook R, DelRio F, Boyce B (2019) Predicting strength distributions of MEMS structures using flaw size and spatial density. Microsyst Nanoeng 5(1):1–12CrossRef Cook R, DelRio F, Boyce B (2019) Predicting strength distributions of MEMS structures using flaw size and spatial density. Microsyst Nanoeng 5(1):1–12CrossRef
go back to reference Deng Q, Kammoun M, Erturk A, Sharma P (2014) Nanoscale flexoelectric energy harvesting. Int J Solids Struct 51(18):3218–3225CrossRef Deng Q, Kammoun M, Erturk A, Sharma P (2014) Nanoscale flexoelectric energy harvesting. Int J Solids Struct 51(18):3218–3225CrossRef
go back to reference Edamana B, Chen Y, Slavin D, Aktakka EE, Oldham KR (2015) Estimation with threshold sensing for gyroscope calibration using a piezoelectric microstage. IEEE Trans Control Syst Technol 23(5):1943–1951CrossRef Edamana B, Chen Y, Slavin D, Aktakka EE, Oldham KR (2015) Estimation with threshold sensing for gyroscope calibration using a piezoelectric microstage. IEEE Trans Control Syst Technol 23(5):1943–1951CrossRef
go back to reference Efimovskaya A, Wang D, Lin Y, Shkel A (2018) Electrostatic compensation of structural imperfections in dynamically amplified dual-mass gyroscope. Sens Actuators, A 275:99–108CrossRef Efimovskaya A, Wang D, Lin Y, Shkel A (2018) Electrostatic compensation of structural imperfections in dynamically amplified dual-mass gyroscope. Sens Actuators, A 275:99–108CrossRef
go back to reference Efimovskaya A, Wang D, Shkel A (2020) Mechanical trimming with focused ion beam for permanent tuning of MEMS dual-mass gyroscope. Sens Actuators, A 313:112189CrossRef Efimovskaya A, Wang D, Shkel A (2020) Mechanical trimming with focused ion beam for permanent tuning of MEMS dual-mass gyroscope. Sens Actuators, A 313:112189CrossRef
go back to reference Erturk A, Inman DJ (2008) On mechanical modeling of cantilevered piezoelectric vibration energy harvesters. J Intell Mater Syst Struct 19(11):1311–1325CrossRef Erturk A, Inman DJ (2008) On mechanical modeling of cantilevered piezoelectric vibration energy harvesters. J Intell Mater Syst Struct 19(11):1311–1325CrossRef
go back to reference Esmaeili M, Durali M, Jalili N (2006) Ring microgyroscope modeling and performance evaluation. J Vib Control 12(5):537–553MATHCrossRef Esmaeili M, Durali M, Jalili N (2006) Ring microgyroscope modeling and performance evaluation. J Vib Control 12(5):537–553MATHCrossRef
go back to reference Esmaeili M, Jalili N, Durali M (2007) Dynamic modeling and performance evaluation of a vibrating beam microgyroscope under general support motion. J Sound Vib 301(1–2):146–164CrossRef Esmaeili M, Jalili N, Durali M (2007) Dynamic modeling and performance evaluation of a vibrating beam microgyroscope under general support motion. J Sound Vib 301(1–2):146–164CrossRef
go back to reference Geiger W, Folkmer B, Merz J, Sandmaier H, Lang W (1999) A new silicon rate gyroscope. Sens Actuators, A 73(1–2):45–51CrossRef Geiger W, Folkmer B, Merz J, Sandmaier H, Lang W (1999) A new silicon rate gyroscope. Sens Actuators, A 73(1–2):45–51CrossRef
go back to reference Gentili E, Tabaglio L, Aggogeri F (2005) Review on micromachining techniques. In AMST’05 advanced manufacturing systems and technology, Vienna, Springer, pp. 387–396 Gentili E, Tabaglio L, Aggogeri F (2005) Review on micromachining techniques. In AMST’05 advanced manufacturing systems and technology, Vienna, Springer, pp. 387–396
go back to reference Ghommem M, Abdelkefi A (2017a) Nonlinear analysis of rotating nanocrystalline silicon microbeams for microgyroscope applications. Microsyst Technol 23(12):5931–5946CrossRef Ghommem M, Abdelkefi A (2017a) Nonlinear analysis of rotating nanocrystalline silicon microbeams for microgyroscope applications. Microsyst Technol 23(12):5931–5946CrossRef
go back to reference Ghommem M, Abdelkefi A (2017b) Performance analysis of differential-frequency microgyroscopes made of nanocrystalline material. Int J Mech Sci 133:495–503CrossRef Ghommem M, Abdelkefi A (2017b) Performance analysis of differential-frequency microgyroscopes made of nanocrystalline material. Int J Mech Sci 133:495–503CrossRef
go back to reference Ghommem M, Abdelkefi A (2017c) Novel design of microgyroscopes employing electrostatic actuation and resistance-change based sensing. J Sound Vib 411:278–288CrossRef Ghommem M, Abdelkefi A (2017c) Novel design of microgyroscopes employing electrostatic actuation and resistance-change based sensing. J Sound Vib 411:278–288CrossRef
go back to reference Ghommem M, Abdelkefi A (2017d) Modeling and Design Enhancement of Differential-Frequency Microgyroscopes Made of Nanocrystalline Material. In ASME 2017 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers Digital Collection Ghommem M, Abdelkefi A (2017d) Modeling and Design Enhancement of Differential-Frequency Microgyroscopes Made of Nanocrystalline Material. In ASME 2017 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers Digital Collection
go back to reference Ghommem M, Nayfeh AH, Choura S, Najar F, Abdel-Rahman EM (2010) Modeling and performance study of a beam microgyroscope. J Sound Vib 329(23):4970–4979CrossRef Ghommem M, Nayfeh AH, Choura S, Najar F, Abdel-Rahman EM (2010) Modeling and performance study of a beam microgyroscope. J Sound Vib 329(23):4970–4979CrossRef
go back to reference Ghommem M, Nayfeh AH, Choura S (2013) Model reduction and analysis of a vibrating beam microgyroscope. J Vib Control 19(8):1240–1249MathSciNetCrossRef Ghommem M, Nayfeh AH, Choura S (2013) Model reduction and analysis of a vibrating beam microgyroscope. J Vib Control 19(8):1240–1249MathSciNetCrossRef
go back to reference Giannini D, Braghin F, Aage N (2020) Topology optimization of 2D in-plane single mass MEMS gyroscopes. Structural and Multidisciplinary Optimization, pp. 1–21 Giannini D, Braghin F, Aage N (2020) Topology optimization of 2D in-plane single mass MEMS gyroscopes. Structural and Multidisciplinary Optimization, pp. 1–21
go back to reference Giner J, Maeda D, Ono K, Shkel A, Sekiguchi T (2018) MEMS gyroscope with concentrated springs suspensions demonstrating single digit frequency split and temperature robustness. J Microelectromech Syst 28(1):25–35CrossRef Giner J, Maeda D, Ono K, Shkel A, Sekiguchi T (2018) MEMS gyroscope with concentrated springs suspensions demonstrating single digit frequency split and temperature robustness. J Microelectromech Syst 28(1):25–35CrossRef
go back to reference Gupta R, Rana L, Tomar M, Gupta V (2018) Characterization of lead zirconium titanate thin films based multifunctional energy harvesters. Thin Solid Films 652:39–42CrossRef Gupta R, Rana L, Tomar M, Gupta V (2018) Characterization of lead zirconium titanate thin films based multifunctional energy harvesters. Thin Solid Films 652:39–42CrossRef
go back to reference Hadjesfandiari AR, Dargush GF (2011) Couple stress theory for solids. Int J Solids Struct 48(10):2496–2510CrossRef Hadjesfandiari AR, Dargush GF (2011) Couple stress theory for solids. Int J Solids Struct 48(10):2496–2510CrossRef
go back to reference Hajjaj AZ, Ramini A, Alcheikh N, Younis MI (2017) Electrothermally tunable arch resonator. J Microelectromech Syst 26(4):837–845CrossRef Hajjaj AZ, Ramini A, Alcheikh N, Younis MI (2017) Electrothermally tunable arch resonator. J Microelectromech Syst 26(4):837–845CrossRef
go back to reference Hong YS, Lee JH, Kim SH (2000) A laterally driven symmetric micro-resonator for gyroscopic applications. J Micromech Microeng 10(3):452CrossRef Hong YS, Lee JH, Kim SH (2000) A laterally driven symmetric micro-resonator for gyroscopic applications. J Micromech Microeng 10(3):452CrossRef
go back to reference Hong Y, Kim S, Lee JH (2003) Modeling of angular-rate bandwidth for a vibrating microgyroscope. Microsyst Tech 9(6–7):441–448CrossRef Hong Y, Kim S, Lee JH (2003) Modeling of angular-rate bandwidth for a vibrating microgyroscope. Microsyst Tech 9(6–7):441–448CrossRef
go back to reference Jain A, Gopal R (2017) Structural design of torsional micro-gyroscope having robust drive and sense modes. Microsyst Technol 23(8):3429–3441CrossRef Jain A, Gopal R (2017) Structural design of torsional micro-gyroscope having robust drive and sense modes. Microsyst Technol 23(8):3429–3441CrossRef
go back to reference Kagawa Y, Tsuchiya T, Kawashima T (1996) Finite element simulation of piezoelectric vibrator gyroscopes. IEEE Trans Ultrason Ferroelectr Freq Control 43(4):509–518CrossRef Kagawa Y, Tsuchiya T, Kawashima T (1996) Finite element simulation of piezoelectric vibrator gyroscopes. IEEE Trans Ultrason Ferroelectr Freq Control 43(4):509–518CrossRef
go back to reference Kagawa Y, Tsuchiya T, Sakai T (2001) Three-dimensional finite-element simulation of a piezoelectric vibrator under gyration. IEEE Trans Ultrason Ferroelectr Freq Control 48(1):180–188CrossRef Kagawa Y, Tsuchiya T, Sakai T (2001) Three-dimensional finite-element simulation of a piezoelectric vibrator under gyration. IEEE Trans Ultrason Ferroelectr Freq Control 48(1):180–188CrossRef
go back to reference Kagawa Y, Wakatsuki N, Tsuchiya T, Terada Y (2006) A tubular piezoelectric vibrator gyroscope. IEEE Sens J 6(2):325–330CrossRef Kagawa Y, Wakatsuki N, Tsuchiya T, Terada Y (2006) A tubular piezoelectric vibrator gyroscope. IEEE Sens J 6(2):325–330CrossRef
go back to reference Kambali PN, Pandey AK (2015) Capacitance and force computation due to direct and fringing effects in MEMS/NEMS arrays. IEEE Sens J 16(2):375–382CrossRef Kambali PN, Pandey AK (2015) Capacitance and force computation due to direct and fringing effects in MEMS/NEMS arrays. IEEE Sens J 16(2):375–382CrossRef
go back to reference Karan S, Maiti S, Agrawal A, Das A, Maitra A, Paria S, Bera A, Bera R, Halder L, Mishra A, Kim J, Khatua B (2019) Designing high energy conversion efficient bio-inspired vitamin assisted single-structured based self-powered piezolectric/wind/accoustic multi-energy harvestyer with remarkable energy density. Nano Energy 59:169–183CrossRef Karan S, Maiti S, Agrawal A, Das A, Maitra A, Paria S, Bera A, Bera R, Halder L, Mishra A, Kim J, Khatua B (2019) Designing high energy conversion efficient bio-inspired vitamin assisted single-structured based self-powered piezolectric/wind/accoustic multi-energy harvestyer with remarkable energy density. Nano Energy 59:169–183CrossRef
go back to reference Kawai H, Atsuchi KI, Tamura M, Ohwada K (2001) High-resolution microgyroscope using vibratory motion adjustment technology. Sens Actuators A: Phys 90(1–2):153–159CrossRef Kawai H, Atsuchi KI, Tamura M, Ohwada K (2001) High-resolution microgyroscope using vibratory motion adjustment technology. Sens Actuators A: Phys 90(1–2):153–159CrossRef
go back to reference Keivani M, Mokhtari J, Kanani A, Abadian N, Rach R, Abadyan M (2017) A size-dependent model for instability analysis of paddle-type and double-sided NEMS measurement sensors in the presence of centrifugal force. Mech Adv Mater Struct 24(10):809–819CrossRef Keivani M, Mokhtari J, Kanani A, Abadian N, Rach R, Abadyan M (2017) A size-dependent model for instability analysis of paddle-type and double-sided NEMS measurement sensors in the presence of centrifugal force. Mech Adv Mater Struct 24(10):809–819CrossRef
go back to reference Khandelwal G, Chandrasekhar A, Pandey R, Raj N, Kim S (2019) Phase inversion enabled energy scavenger: a multifunctional triboelectric nanogenerator as benzene monitoring system. Sens Actuat B-Chem 282:590–598CrossRef Khandelwal G, Chandrasekhar A, Pandey R, Raj N, Kim S (2019) Phase inversion enabled energy scavenger: a multifunctional triboelectric nanogenerator as benzene monitoring system. Sens Actuat B-Chem 282:590–598CrossRef
go back to reference Khodaei MJ, Mehrvarz A, Candelino N, Jalili N (2019) Theoretical and experimental analysis of coupled flexural-torsional vibrations of rotating beams. In ASME 2018 Dynamic Systems and Control Conference. American Society of Mechanical Engineers Digital Collection Khodaei MJ, Mehrvarz A, Candelino N, Jalili N (2019) Theoretical and experimental analysis of coupled flexural-torsional vibrations of rotating beams. In ASME 2018 Dynamic Systems and Control Conference. American Society of Mechanical Engineers Digital Collection
go back to reference Kim K, Song G, Park C, Yun K (2017) Multifunctional Woven structure operating as triboelectric energy harvester, capacitive tactile sensor array, and piezoresistive strain sensor array. Sensors (Basel, Switzerland) 17 Kim K, Song G, Park C, Yun K (2017) Multifunctional Woven structure operating as triboelectric energy harvester, capacitive tactile sensor array, and piezoresistive strain sensor array. Sensors (Basel, Switzerland) 17
go back to reference Kuehnel W (1995) Modelling of the mechanical behavior of a differential capacitor acceleration sensor. Sens Actu A 48:101–108CrossRef Kuehnel W (1995) Modelling of the mechanical behavior of a differential capacitor acceleration sensor. Sens Actu A 48:101–108CrossRef
go back to reference Kugi A, Thull D, Seidel H (2004) December. Modelling and optimization of a silicon tuning fork gyroscope. In PAMM: Proceedings in Applied Mathematics and Mechanics, Berlin Kugi A, Thull D, Seidel H (2004) December. Modelling and optimization of a silicon tuning fork gyroscope. In PAMM: Proceedings in Applied Mathematics and Mechanics, Berlin
go back to reference Kumari K, Khanna G (2016) Design and simulation of array of rectangular micro cantilevers piezoelectric energy harvester. Int J Eng Res Appl 6:41–49 Kumari K, Khanna G (2016) Design and simulation of array of rectangular micro cantilevers piezoelectric energy harvester. Int J Eng Res Appl 6:41–49
go back to reference Kwon H, Seok S, Lim G (2017) System modeling of a MEMS vibratory gyroscope and integration to circuit simulation. Sensors 17(11):2663CrossRef Kwon H, Seok S, Lim G (2017) System modeling of a MEMS vibratory gyroscope and integration to circuit simulation. Sensors 17(11):2663CrossRef
go back to reference Lajimi SAM, Heppler GR, Abdel-Rahman M (2015) Primary resonance of a beam-rigid body microgyroscope. Int J Non-Linear Mech 77:364–375CrossRef Lajimi SAM, Heppler GR, Abdel-Rahman M (2015) Primary resonance of a beam-rigid body microgyroscope. Int J Non-Linear Mech 77:364–375CrossRef
go back to reference Lajimi SAM, Heppler GR, Abdel-Rahman EM (2017a) A parametric study of the nonlinear dynamics and sensitivity of a beam-rigid body microgyroscope. Commun Nonlinear Sci Numer Simul 50:180–192MathSciNetMATHCrossRef Lajimi SAM, Heppler GR, Abdel-Rahman EM (2017a) A parametric study of the nonlinear dynamics and sensitivity of a beam-rigid body microgyroscope. Commun Nonlinear Sci Numer Simul 50:180–192MathSciNetMATHCrossRef
go back to reference Lajimi SAM, Heppler GR, Abdel-Rahman EM (2017c) A mechanical–thermal noise analysis of a nonlinear microgyroscope. Mech Syst Signal Proc 83:163–175CrossRef Lajimi SAM, Heppler GR, Abdel-Rahman EM (2017c) A mechanical–thermal noise analysis of a nonlinear microgyroscope. Mech Syst Signal Proc 83:163–175CrossRef
go back to reference Larkin K, Ghommem M, Abdelkefi A (2018) Significance of size dependent and material structure coupling on the characteristics and performance of nanocrystalline micro/nano gyroscopes. Phys E: Low-Dimensional Syst Nanostruct 99:169–181CrossRef Larkin K, Ghommem M, Abdelkefi A (2018) Significance of size dependent and material structure coupling on the characteristics and performance of nanocrystalline micro/nano gyroscopes. Phys E: Low-Dimensional Syst Nanostruct 99:169–181CrossRef
go back to reference Larkin K, Ghommem M, Hunter A, Abdelkefi A (2020a) Nonlinear size dependent analysis and effectiveness of nanocrystalline micro/nanogyroscopes. Physica E 117:113808CrossRef Larkin K, Ghommem M, Hunter A, Abdelkefi A (2020a) Nonlinear size dependent analysis and effectiveness of nanocrystalline micro/nanogyroscopes. Physica E 117:113808CrossRef
go back to reference Larkin K, Ghommem M, Hunter A, Abdelkefi A (2020b) Nonlinear modeling and performance analysis of cracked beam microgyroscopes. Int J Mech Sci:105965 Larkin K, Ghommem M, Hunter A, Abdelkefi A (2020b) Nonlinear modeling and performance analysis of cracked beam microgyroscopes. Int J Mech Sci:105965
go back to reference Lavrik N, Datskos P (2019) Optically read Coriolis vibratory gyroscope based on a silicon tuning fork. Microsyst Nanoeng 5(1):1–11CrossRef Lavrik N, Datskos P (2019) Optically read Coriolis vibratory gyroscope based on a silicon tuning fork. Microsyst Nanoeng 5(1):1–11CrossRef
go back to reference Li Y, Fan S, Guo Z, Li J, Cao L (2012) Frequency measurement study of resonant vibratory gyroscopes. J Sound Vib 331(20):4417–4424CrossRef Li Y, Fan S, Guo Z, Li J, Cao L (2012) Frequency measurement study of resonant vibratory gyroscopes. J Sound Vib 331(20):4417–4424CrossRef
go back to reference Li Z, Gao S, Jin L, Liu H, Guan Y, Peng S (2019a) Design and mechanical sensitivity analysis of a MEMS tuning fork gyroscope with an anchored leverage mechanism. Sensors 19(16):3455CrossRef Li Z, Gao S, Jin L, Liu H, Guan Y, Peng S (2019a) Design and mechanical sensitivity analysis of a MEMS tuning fork gyroscope with an anchored leverage mechanism. Sensors 19(16):3455CrossRef
go back to reference Li Z, Li T, Yang Z, Naguib H (2019b) Toward a 0.33 W piezoelectric and electromagnetic hybrid energy harvester: design, experimental studies and self-powered applications. Appl Energy 255:113805CrossRef Li Z, Li T, Yang Z, Naguib H (2019b) Toward a 0.33 W piezoelectric and electromagnetic hybrid energy harvester: design, experimental studies and self-powered applications. Appl Energy 255:113805CrossRef
go back to reference Li L, Lin R, Ng TY (2020) Contribution of nonlocality to surface elasticity. Int J Eng Sci 152 Li L, Lin R, Ng TY (2020) Contribution of nonlocality to surface elasticity. Int J Eng Sci 152
go back to reference Liang X, Hu S, Shen S (2017) Nanoscale mechanical energy harvesting using piezoelectricity and flexoelectricity. Smart Mater Struct 26(3):035050CrossRef Liang X, Hu S, Shen S (2017) Nanoscale mechanical energy harvesting using piezoelectricity and flexoelectricity. Smart Mater Struct 26(3):035050CrossRef
go back to reference Liao F, Park S, Larson JM, Zachariah MR, Girshick SL (2003) High-rate chemical vapor deposition of nanocrystalline silicon carbide films by radio frequency thermal plasma. Mater Lett 57(13–14):1982–1986CrossRef Liao F, Park S, Larson JM, Zachariah MR, Girshick SL (2003) High-rate chemical vapor deposition of nanocrystalline silicon carbide films by radio frequency thermal plasma. Mater Lett 57(13–14):1982–1986CrossRef
go back to reference Liu Y, Ge H, Fan Z, Chen X, Huang F, Wang Y, Hou Z, Bai G (2019a) Failure analysis and experimental validation of mems gyro under random vibration condition. In Prognostics and System Health Management Conference (PHM-Qingdao) Liu Y, Ge H, Fan Z, Chen X, Huang F, Wang Y, Hou Z, Bai G (2019a) Failure analysis and experimental validation of mems gyro under random vibration condition. In Prognostics and System Health Management Conference (PHM-Qingdao)
go back to reference Liu H, Wei Z, Tan G, Han Y, Liu Z (2019b) Vibratory characteristics of cracked non-uniform beams with different boundary conditions. J Mech Sci Technol 33(1):377–392CrossRef Liu H, Wei Z, Tan G, Han Y, Liu Z (2019b) Vibratory characteristics of cracked non-uniform beams with different boundary conditions. J Mech Sci Technol 33(1):377–392CrossRef
go back to reference Liu Y, Zhang S, Hou Z, Fan Z, Wang Y, Peng X, Chen X (2020) An investigate on degradation models of resonant frequency and mechanical sensitivity for butterfly resonator gyroscope. J Microelectromech Syst 29(4):468–479CrossRef Liu Y, Zhang S, Hou Z, Fan Z, Wang Y, Peng X, Chen X (2020) An investigate on degradation models of resonant frequency and mechanical sensitivity for butterfly resonator gyroscope. J Microelectromech Syst 29(4):468–479CrossRef
go back to reference Maenaka K, Kohara H, Nishimura M, Fujita T, Takayama Y (2006) Novel solid micro-gyroscope. In 19th IEEE International Conference on Micro Electro Mechanical Systems, pp. 634–637 Maenaka K, Kohara H, Nishimura M, Fujita T, Takayama Y (2006) Novel solid micro-gyroscope. In 19th IEEE International Conference on Micro Electro Mechanical Systems, pp. 634–637
go back to reference Marschner U, Graham F, Mudivarthi C, Yoo JH, Neubert H, Flatau AB (2010) Finite element model-simulation-based characterization of a magnetostrictive gyrosensor. J Appl Phys 107(9):09E705CrossRef Marschner U, Graham F, Mudivarthi C, Yoo JH, Neubert H, Flatau AB (2010) Finite element model-simulation-based characterization of a magnetostrictive gyrosensor. J Appl Phys 107(9):09E705CrossRef
go back to reference Menéndez RJP (2019) IFOG and IORG Gyros: a study of comparative performance. In Gyroscopes-Principles and Applications. IntechOpen Menéndez RJP (2019) IFOG and IORG Gyros: a study of comparative performance. In Gyroscopes-Principles and Applications. IntechOpen
go back to reference Menon PK, Nayak J, Pratap R (2018) Sensitivity analysis of an in-plane MEMS vibratory gyroscope. Microsyst Technol 24(5):2199–2213CrossRef Menon PK, Nayak J, Pratap R (2018) Sensitivity analysis of an in-plane MEMS vibratory gyroscope. Microsyst Technol 24(5):2199–2213CrossRef
go back to reference Mian M, Dennis J, Khir M, Riaz K, Iqbal A, Bazaz S, Tang T (2015) MEMS 3-DoF gyroscope design, modeling and simulation through equivalent circuit lumped parameter model. In AIP Conference Proceedings Mian M, Dennis J, Khir M, Riaz K, Iqbal A, Bazaz S, Tang T (2015) MEMS 3-DoF gyroscope design, modeling and simulation through equivalent circuit lumped parameter model. In AIP Conference Proceedings
go back to reference Mindlin RD, Tiersten HF (1962) Effects of couple-stresses in linear elasticity. Columbia University, New YorkCrossRef Mindlin RD, Tiersten HF (1962) Effects of couple-stresses in linear elasticity. Columbia University, New YorkCrossRef
go back to reference Mohanty A, Parida S, Behera RK, Roy T (2019) Vibration energy harvesting: a review. J Adv Dielectr 9(4):1930001CrossRef Mohanty A, Parida S, Behera RK, Roy T (2019) Vibration energy harvesting: a review. J Adv Dielectr 9(4):1930001CrossRef
go back to reference Mohite S, Patil N, Pratap R (2006) Design, modelling and simulation of vibratory micromachined gyroscopes. In J Phys: Conf Series Mohite S, Patil N, Pratap R (2006) Design, modelling and simulation of vibratory micromachined gyroscopes. In J Phys: Conf Series
go back to reference Mojahedi M, Ahmadian MT, Firoozbakhsh K (2013a) Dynamic pull-in instability and vibration analysis of a nonlinear microcantilever gyroscope under step voltage considering squeeze film damping. Int J Appl Mech 5(3):1350032CrossRef Mojahedi M, Ahmadian MT, Firoozbakhsh K (2013a) Dynamic pull-in instability and vibration analysis of a nonlinear microcantilever gyroscope under step voltage considering squeeze film damping. Int J Appl Mech 5(3):1350032CrossRef
go back to reference Mojahedi M, Ahmadian MT, Firoozbakhsh K (2013b) Oscillatory behavior of an electrostatically actuated microcantilever gyroscope. Int J Struct Stab Dyn 13(6):1350030MathSciNetMATHCrossRef Mojahedi M, Ahmadian MT, Firoozbakhsh K (2013b) Oscillatory behavior of an electrostatically actuated microcantilever gyroscope. Int J Struct Stab Dyn 13(6):1350030MathSciNetMATHCrossRef
go back to reference Mojahedi M, Ahmadian M, Firoozbakhsh K (2013c) Static deflection and pull-in instability analysis of an electrostatically actuated mirocantilever gyroscope considering geometric nonlinearities. J Mech Sci Technol 27(8):2425–2434CrossRef Mojahedi M, Ahmadian M, Firoozbakhsh K (2013c) Static deflection and pull-in instability analysis of an electrostatically actuated mirocantilever gyroscope considering geometric nonlinearities. J Mech Sci Technol 27(8):2425–2434CrossRef
go back to reference Mojahedi M, Ahmadian MT, Firoozbakhsh K (2013d) The oscillatory behavior, static and dynamic analyses of a micro/nano gyroscope considering geometric nonlinearities and intermolecular forces. Acta Mech Sin 29(6):851–863MathSciNetMATHCrossRef Mojahedi M, Ahmadian MT, Firoozbakhsh K (2013d) The oscillatory behavior, static and dynamic analyses of a micro/nano gyroscope considering geometric nonlinearities and intermolecular forces. Acta Mech Sin 29(6):851–863MathSciNetMATHCrossRef
go back to reference Mojahedi M, Ahmadian MT, Firoozbakhsh K (2014a) The influence of the intermolecular surface forces on the static deflection and pull-in instability of the micro/nano cantilever gyroscopes. Compos B Eng 56:336–343MATHCrossRef Mojahedi M, Ahmadian MT, Firoozbakhsh K (2014a) The influence of the intermolecular surface forces on the static deflection and pull-in instability of the micro/nano cantilever gyroscopes. Compos B Eng 56:336–343MATHCrossRef
go back to reference Mojahedi M, Ahmadian MT, Firoozbakhsh K (2014b) Effects of Casimir and Van der waals forces on the pull-in instability of the nonlinear micro and nano-bridge gyroscopes. Int J Struct Stab Dyn 14(2):1350059MathSciNetMATHCrossRef Mojahedi M, Ahmadian MT, Firoozbakhsh K (2014b) Effects of Casimir and Van der waals forces on the pull-in instability of the nonlinear micro and nano-bridge gyroscopes. Int J Struct Stab Dyn 14(2):1350059MathSciNetMATHCrossRef
go back to reference Mokhtari MA, Askari AR, Tahani M (2017) Effect of the casimir force on size-dependent dynamic pull-in instability in micro-bridge gyroscopes with a proof mass. In 7th International Conference on Acoustics and Vibration (ISAV2017) Mokhtari MA, Askari AR, Tahani M (2017) Effect of the casimir force on size-dependent dynamic pull-in instability in micro-bridge gyroscopes with a proof mass. In 7th International Conference on Acoustics and Vibration (ISAV2017)
go back to reference Nayfeh AH, Abdel-Rahman EM, Ghommem M (2015) A novel differential frequency micro-gyroscope. J Vib Control 21(5):872–882MathSciNetCrossRef Nayfeh AH, Abdel-Rahman EM, Ghommem M (2015) A novel differential frequency micro-gyroscope. J Vib Control 21(5):872–882MathSciNetCrossRef
go back to reference Osterberg PM, Senturia SD (1997) M-TEST: a test chip for MEMS material property measurement using electrostatically actuated test structures. J Microelectromech Syst 6(2):107–118CrossRef Osterberg PM, Senturia SD (1997) M-TEST: a test chip for MEMS material property measurement using electrostatically actuated test structures. J Microelectromech Syst 6(2):107–118CrossRef
go back to reference Ouakad HM (2019) Nonlinear structural behavior of a size-dependent MEMS gyroscope assuming a non-trivial shaped proof mass. Microsyst Tech: 1–10 Ouakad HM (2019) Nonlinear structural behavior of a size-dependent MEMS gyroscope assuming a non-trivial shaped proof mass. Microsyst Tech: 1–10
go back to reference Ozer Z, Mamedov AM, Ozbay E (2013) Modeling and simulation of the ferroelectric based micro gyroscope: FEM analysis. Ferroelectrics 446(1):46–58CrossRef Ozer Z, Mamedov AM, Ozbay E (2013) Modeling and simulation of the ferroelectric based micro gyroscope: FEM analysis. Ferroelectrics 446(1):46–58CrossRef
go back to reference Painter C, Shkel A (2003) Active structural error suppression in MEMS vibratory rate integrating gyroscopes. IEEE Sens J 3(5):595–606CrossRef Painter C, Shkel A (2003) Active structural error suppression in MEMS vibratory rate integrating gyroscopes. IEEE Sens J 3(5):595–606CrossRef
go back to reference Prikhodko IP, Zotov SA, Trusov AA, Shkel AM (2012) Sub-degree-per-hour silicon MEMS rate sensor with 1 million Q-factor. 16th International Solid-State Sensors, Actuators and Microsystems Conference, pp. 2809–2812 Prikhodko IP, Zotov SA, Trusov AA, Shkel AM (2012) Sub-degree-per-hour silicon MEMS rate sensor with 1 million Q-factor. 16th International Solid-State Sensors, Actuators and Microsystems Conference, pp. 2809–2812
go back to reference Prikhodko IP, Trusov AA, Shkel AM (2013) Compensation of drifts in high-Q MEMS gyroscopes using temperature self-sensing. Sens Actuators, A 201:517–524CrossRef Prikhodko IP, Trusov AA, Shkel AM (2013) Compensation of drifts in high-Q MEMS gyroscopes using temperature self-sensing. Sens Actuators, A 201:517–524CrossRef
go back to reference Rajendran S, Liew KM (2004) Design and simulation of an angular-rate vibrating microgyroscope. Sens Actuators, A 116(2):241–256CrossRef Rajendran S, Liew KM (2004) Design and simulation of an angular-rate vibrating microgyroscope. Sens Actuators, A 116(2):241–256CrossRef
go back to reference Rasekh M, Khadem SE (2013) Design and performance analysis of a nanogyroscope based on electrostatic actuation and capacitive sensing. J Sound Vib 332(23):6155–6168CrossRef Rasekh M, Khadem SE (2013) Design and performance analysis of a nanogyroscope based on electrostatic actuation and capacitive sensing. J Sound Vib 332(23):6155–6168CrossRef
go back to reference Riaz K, Bazaz SA, Saleem MM, Shakoor RI (2011) Design, damping estimation and experimental characterization of decoupled 3-DoF robust MEMS gyroscope. Sens Actuators, A 172(2):523–532CrossRef Riaz K, Bazaz SA, Saleem MM, Shakoor RI (2011) Design, damping estimation and experimental characterization of decoupled 3-DoF robust MEMS gyroscope. Sens Actuators, A 172(2):523–532CrossRef
go back to reference Saqib M, Mubasher Saleem M, Mazhar N, Awan S, Shahbaz Khan U (2018) Design and analysis of a high-gain and robust multi-DOF electro-thermally actuated MEMS gyroscope. Micromachines 9(11):577CrossRef Saqib M, Mubasher Saleem M, Mazhar N, Awan S, Shahbaz Khan U (2018) Design and analysis of a high-gain and robust multi-DOF electro-thermally actuated MEMS gyroscope. Micromachines 9(11):577CrossRef
go back to reference Satz A, Hammerschmidt D (2007) Dynamical charaterization of a vibrating member gyroscope using finite element method Satz A, Hammerschmidt D (2007) Dynamical charaterization of a vibrating member gyroscope using finite element method
go back to reference Saukoski M, Aaltonen L, Halonen K (2008) Effects of synchronous demodulation in vibratory MEMS gyroscopes: a theoretical study. IEEE Sens J 8:1722–1733CrossRef Saukoski M, Aaltonen L, Halonen K (2008) Effects of synchronous demodulation in vibratory MEMS gyroscopes: a theoretical study. IEEE Sens J 8:1722–1733CrossRef
go back to reference Senturia SD (2007) Microsystem design, Springer Science & Business Media Senturia SD (2007) Microsystem design, Springer Science & Business Media
go back to reference Shaat M, Abdelkefi A (2015) Modeling the material structure and couple stress effects of nanocrystalline silicon beams for pull-in and bio-mass sensing applications. Int J Mech Sci 101:280–291CrossRef Shaat M, Abdelkefi A (2015) Modeling the material structure and couple stress effects of nanocrystalline silicon beams for pull-in and bio-mass sensing applications. Int J Mech Sci 101:280–291CrossRef
go back to reference Shaat M, Khorshidi MA, Abdelkefi A, Shariati M (2016) Modeling and vibration characteristics of cracked nano-beams made of nanocrystalline materials. Int J Mech Sci 115:574–585CrossRef Shaat M, Khorshidi MA, Abdelkefi A, Shariati M (2016) Modeling and vibration characteristics of cracked nano-beams made of nanocrystalline materials. Int J Mech Sci 115:574–585CrossRef
go back to reference Shakoor RI, Bazaz SA, Lai Y, Hasan MM (2008) Comparative study on finite element analysis & system model extraction for non-resonant 3-DoF microgyroscope. In IEEE International Behavioral Modeling and Simulation Workshop Shakoor RI, Bazaz SA, Lai Y, Hasan MM (2008) Comparative study on finite element analysis & system model extraction for non-resonant 3-DoF microgyroscope. In IEEE International Behavioral Modeling and Simulation Workshop
go back to reference Shakoor RI, Bazaz SA, Kraft M, Lai Y, Hassan U, Masood M (2009) Thermal actuation based 3-DoF non-resonant microgyroscope using MetalMUMPs. Sensors 9(4):2389–2414CrossRef Shakoor RI, Bazaz SA, Kraft M, Lai Y, Hassan U, Masood M (2009) Thermal actuation based 3-DoF non-resonant microgyroscope using MetalMUMPs. Sensors 9(4):2389–2414CrossRef
go back to reference Shakoor R, Bazaz S, Burnie M, Lai Y, Hasan M (2011a) Electrothermally actuated resonant rate gyroscope fabricated using the MetalMUMPs. Microelectron J 42(4):585–593CrossRef Shakoor R, Bazaz S, Burnie M, Lai Y, Hasan M (2011a) Electrothermally actuated resonant rate gyroscope fabricated using the MetalMUMPs. Microelectron J 42(4):585–593CrossRef
go back to reference Shakoor R, Bazaz S, Saleem M (2011b) Mechanically amplified 3-dof nonresonant microelectromechanical systems gyroscope fabricated in low cost metalmumps process. J Mech Design 133(11) Shakoor R, Bazaz S, Saleem M (2011b) Mechanically amplified 3-dof nonresonant microelectromechanical systems gyroscope fabricated in low cost metalmumps process. J Mech Design 133(11)
go back to reference Shakoor R, Burnie M, Iqbal S (2018) Experimental evaluation of resonant frequencies with associated mode shapes and power analysis of thermally actuated vibratory microgyroscope. Microsyst Technol 24(9):3601–3613CrossRef Shakoor R, Burnie M, Iqbal S (2018) Experimental evaluation of resonant frequencies with associated mode shapes and power analysis of thermally actuated vibratory microgyroscope. Microsyst Technol 24(9):3601–3613CrossRef
go back to reference Sharma A, Zaman MF, Zucher M, Ayazi F (2008) A 0.1/HR bias drift electronically matched tuning fork microgyroscope. 21st International Conference on Micro Electro Mechanical Systems (pp. 6–9). IEEE, pp. 5–7 Sharma A, Zaman MF, Zucher M, Ayazi F (2008) A 0.1/HR bias drift electronically matched tuning fork microgyroscope. 21st International Conference on Micro Electro Mechanical Systems (pp. 6–9). IEEE, pp. 5–7
go back to reference Skogström L, Li J, Mattila TT, Vuorinen V (2020) MEMS reliability. In Handbook of Silicon Based MEMS Materials and Technologies, Elsevier, pp. 851–876 Skogström L, Li J, Mattila TT, Vuorinen V (2020) MEMS reliability. In Handbook of Silicon Based MEMS Materials and Technologies, Elsevier, pp. 851–876
go back to reference Smith G, Pulskamp J, Sanchez L, Potrepka D, Proie R, Ivanov T, Rudy R, Nothwang W, Bedair S, Meyer C, Polcawich R (2012) PZT-based piezoelectric MEMS technology. J Am Ceram Soc 95(11):1777–1792CrossRef Smith G, Pulskamp J, Sanchez L, Potrepka D, Proie R, Ivanov T, Rudy R, Nothwang W, Bedair S, Meyer C, Polcawich R (2012) PZT-based piezoelectric MEMS technology. J Am Ceram Soc 95(11):1777–1792CrossRef
go back to reference Tatar E, Alper SE, Akin T (2012) Quadrature-error compensation and corresponding effects on the performance of fully decoupled MEMS gyroscopes. J Microelectromech Syst 21(3):656–667CrossRef Tatar E, Alper SE, Akin T (2012) Quadrature-error compensation and corresponding effects on the performance of fully decoupled MEMS gyroscopes. J Microelectromech Syst 21(3):656–667CrossRef
go back to reference Tatar E, Mukherjee T, Fedder GK (2014) Simulation of stress effects on mode-matched MEMS gyroscope bias and scale factor. In 2014 IEEE/ION Position, Location and Navigation Symposium-PLANS 2014, pp. 16–20 Tatar E, Mukherjee T, Fedder GK (2014) Simulation of stress effects on mode-matched MEMS gyroscope bias and scale factor. In 2014 IEEE/ION Position, Location and Navigation Symposium-PLANS 2014, pp. 16–20
go back to reference Toupin R (1962) Elastic materials with couple-stresses Toupin R (1962) Elastic materials with couple-stresses
go back to reference Trusov AA, Schofield AR, Shkel AM (2011) Micromachined rate gyroscope architecture with ultra-high quality factor and improved mode ordering. Sensors Actuators A: Phys 165(1):26–34CrossRef Trusov AA, Schofield AR, Shkel AM (2011) Micromachined rate gyroscope architecture with ultra-high quality factor and improved mode ordering. Sensors Actuators A: Phys 165(1):26–34CrossRef
go back to reference Van Der Meijs NP, Fokkema JT (1984) VLSI circuit reconstruction from mask topology. Integration 2(2):85–119CrossRef Van Der Meijs NP, Fokkema JT (1984) VLSI circuit reconstruction from mask topology. Integration 2(2):85–119CrossRef
go back to reference Verma P, Gopal R, Arya S (2013) Analytical modeling and simulation of a 2-DOF drive and 1-DOF sense gyro-accelerometer. Microsyst Technol 19:1238–1249CrossRef Verma P, Gopal R, Arya S (2013) Analytical modeling and simulation of a 2-DOF drive and 1-DOF sense gyro-accelerometer. Microsyst Technol 19:1238–1249CrossRef
go back to reference Verma P, Arya SK, Gopal R (2015) Lumped parameter analytic modeling and behavioral simulation of a 3-DOF MEMS gyro-accelerometer. Acta Mech Sin 31(6):910–919MathSciNetMATHCrossRef Verma P, Arya SK, Gopal R (2015) Lumped parameter analytic modeling and behavioral simulation of a 3-DOF MEMS gyro-accelerometer. Acta Mech Sin 31(6):910–919MathSciNetMATHCrossRef
go back to reference Wu X, Chen W, Lu Y, Xiao Q, Ma G, Zhang W, Cui F (2009) Vibration analysis of a piezoelectric micromachined modal gyroscope (PMMG). J Micromech Microeng 19(12):125008CrossRef Wu X, Chen W, Lu Y, Xiao Q, Ma G, Zhang W, Cui F (2009) Vibration analysis of a piezoelectric micromachined modal gyroscope (PMMG). J Micromech Microeng 19(12):125008CrossRef
go back to reference Xu Q, Hou Z, Kuang Y, Miao T, Ou F, Zhuo M, Xiao D, Wu X (2019) A tuning fork gyroscope with a polygon-shaped vibration beam. Micromachines 10(12):813CrossRef Xu Q, Hou Z, Kuang Y, Miao T, Ou F, Zhuo M, Xiao D, Wu X (2019) A tuning fork gyroscope with a polygon-shaped vibration beam. Micromachines 10(12):813CrossRef
go back to reference Yang FACM, Chong ACM, Lam DCC, Tong P (2002) Couple stress based strain gradient theory for elasticity. Int J Solids Struct 39(10):2731–2743MATHCrossRef Yang FACM, Chong ACM, Lam DCC, Tong P (2002) Couple stress based strain gradient theory for elasticity. Int J Solids Struct 39(10):2731–2743MATHCrossRef
go back to reference Yeh BY, Liang YC, Tay FE (2001) Mathematical modelling on the quadrature error of low-rate microgyroscope for aerospace applications. Analog Integr Circuits Signal Proc 29(1–2):85–94CrossRef Yeh BY, Liang YC, Tay FE (2001) Mathematical modelling on the quadrature error of low-rate microgyroscope for aerospace applications. Analog Integr Circuits Signal Proc 29(1–2):85–94CrossRef
go back to reference Yi-Hsuan T, Peng CC (2020) An ARMA based digital twin for MEMS gyroscope drift dynamics modeling and real-time compensation. IEEE Sensors J Yi-Hsuan T, Peng CC (2020) An ARMA based digital twin for MEMS gyroscope drift dynamics modeling and real-time compensation. IEEE Sensors J
go back to reference Yoon S, Park U, Rhim J, Yang SS (2015) Tactical grade MEMS vibrating ring gyroscope with high shock reliability. Microelectr Eng (142): 22–29 Yoon S, Park U, Rhim J, Yang SS (2015) Tactical grade MEMS vibrating ring gyroscope with high shock reliability. Microelectr Eng (142): 22–29
go back to reference Younis MI (2011) MEMS linear and nonlinear statics and dynamics. Springer Science & Business Media, vol. 20 Younis MI (2011) MEMS linear and nonlinear statics and dynamics. Springer Science & Business Media, vol. 20
go back to reference Yu X, Long X (2015) Parametric design of mechanical dither with bimorph piezoelectric actuator for ring laser gyroscope. Int J Appl Electromagnet Mech 47(2):305–312CrossRef Yu X, Long X (2015) Parametric design of mechanical dither with bimorph piezoelectric actuator for ring laser gyroscope. Int J Appl Electromagnet Mech 47(2):305–312CrossRef
go back to reference Yuan W (2017) Development and application of high-end aerospace MEMS. Front Mech Eng 12(4):567–573CrossRef Yuan W (2017) Development and application of high-end aerospace MEMS. Front Mech Eng 12(4):567–573CrossRef
go back to reference Zhang R, Chen Z, Zhang R (2012) A micro-machined silicon vibrating ring gyroscope. In Advanced Materials Research, 403: 4244–4251 Zhang R, Chen Z, Zhang R (2012) A micro-machined silicon vibrating ring gyroscope. In Advanced Materials Research, 403: 4244–4251
go back to reference Zhao G, Wu Z (2017) Coupling vibration analysis of rotating three-dimensional cantilever beam. Comput Struct 179:64–74CrossRef Zhao G, Wu Z (2017) Coupling vibration analysis of rotating three-dimensional cantilever beam. Comput Struct 179:64–74CrossRef
go back to reference Zhou B, Gao ZY, Chen H, Zhang R, Chen ZY (2006) Digital readout system for micromachined gyroscope and analysis for its demodulation algorithm. Front Mech Eng China 1(1):106–110CrossRef Zhou B, Gao ZY, Chen H, Zhang R, Chen ZY (2006) Digital readout system for micromachined gyroscope and analysis for its demodulation algorithm. Front Mech Eng China 1(1):106–110CrossRef
Metadata
Title
A review on vibrating beam-based micro/nano-gyroscopes
Authors
K. Larkin
M. Ghommem
M. Serrano
A. Abdelkefi
Publication date
16-01-2021
Publisher
Springer Berlin Heidelberg
Published in
Microsystem Technologies / Issue 12/2021
Print ISSN: 0946-7076
Electronic ISSN: 1432-1858
DOI
https://doi.org/10.1007/s00542-020-05191-z

Other articles of this Issue 12/2021

Microsystem Technologies 12/2021 Go to the issue