Skip to main content
Erschienen in: Microsystem Technologies 12/2017

18.03.2017 | Technical Paper

Nonlinear analysis of rotating nanocrystalline silicon microbeams for microgyroscope applications

verfasst von: M. Ghommem, A. Abdelkefi

Erschienen in: Microsystem Technologies | Ausgabe 12/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, we examine the nonlinear dynamical responses of a microgyroscope consisting of a rotating microbeam made of nanocrystalline material with attached proof mass, subject to electric actuation, and operating at high frequency. The working principle of this inertial sensor is based on exploiting the transfer of the mechanical energy among two vibrations modes (drive and sense) via the Coriolis effect to measure the rotation rate. A nonlinear reduced-order model (ROM) governing the microbeam dynamics is developed by the application of the differential quadrature method and finite difference method for space and time discretization, respectively. The developed ROM is used to study the nonlinear behavior of the microbeam near the primary resonance for various grain sizes of the nanocrystalline material and under different electric actuation configurations. The operating DC voltage of the drive mode is selected to ensure that the microgyroscope operates away from the pull-in instability. A sensitivity analysis of the microsystem output parameter to the rotation rate when varying the material properties of the microbeam and electric actuation is then performed. The fringing field of the electrostatic force is found to reduce slightly the pull-in voltage and the natural frequency of the microsystem, amplify the motion in the sense direction, and enlarge the dynamic snap-through bandwidth. As for the effect of the material properties, considering a microbeam with bigger grain size of the constituent nanocrystalline silicon is observed to reduce the motion of the sense mode, increase the natural frequency, and shrink the snap-through bandwidth. Furthermore, operating at high base rotation rates while deploying microbeams with small nanocrystalline grain size is found to switch the dynamic behavior of the sense mode from the nearly-linear to the softening type. Finally, introducing bias in the DC voltage applied along the drive and sense directions is observed to degrade the performance of the electrically-actuated microgyroscope.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Ayed SB, Abdelkefi A, Najar F, Hajj M (2014) Design and performance of variable-shaped piezoelectric energy harvesters. J Intell Mater Syst Struct 25:174–186CrossRef Ayed SB, Abdelkefi A, Najar F, Hajj M (2014) Design and performance of variable-shaped piezoelectric energy harvesters. J Intell Mater Syst Struct 25:174–186CrossRef
Zurück zum Zitat Bhadbhade V, Jalili N, Mahmoodi SN (2008) A novel piezoelectrically actuated flexural/torsional vibrating beam gyroscope. J Sound Vib 311:1305–1324CrossRef Bhadbhade V, Jalili N, Mahmoodi SN (2008) A novel piezoelectrically actuated flexural/torsional vibrating beam gyroscope. J Sound Vib 311:1305–1324CrossRef
Zurück zum Zitat Duan H, Wang J, Huang Z, Karihaloo B (2005) Size-dependent effective elastic constants of solids containing nano-inhomogeneities with interface stress. J Mech Phys Solids 53:1574–1596CrossRefMATHMathSciNet Duan H, Wang J, Huang Z, Karihaloo B (2005) Size-dependent effective elastic constants of solids containing nano-inhomogeneities with interface stress. J Mech Phys Solids 53:1574–1596CrossRefMATHMathSciNet
Zurück zum Zitat Esmaeili M, Jalili N, Durali M (2006) Dynamic modeling and performance evaluation of a vibrating beam microgyroscope under general support motion. J Sound Vib 301:146–164CrossRefMATH Esmaeili M, Jalili N, Durali M (2006) Dynamic modeling and performance evaluation of a vibrating beam microgyroscope under general support motion. J Sound Vib 301:146–164CrossRefMATH
Zurück zum Zitat Fitzsimmons M, Roll A, Burkel E, Sichafus K, Nastasi M, Smith G, Rynn R (1995) The magnetization of a grain boundary in nickel. Nanostruct Mater 6:539–542CrossRef Fitzsimmons M, Roll A, Burkel E, Sichafus K, Nastasi M, Smith G, Rynn R (1995) The magnetization of a grain boundary in nickel. Nanostruct Mater 6:539–542CrossRef
Zurück zum Zitat Ghayesha MH, Farokhib H, Alici G (2016) Size-dependent performance of microgyroscopes. Int J Eng Sci 100:99–111CrossRefMathSciNet Ghayesha MH, Farokhib H, Alici G (2016) Size-dependent performance of microgyroscopes. Int J Eng Sci 100:99–111CrossRefMathSciNet
Zurück zum Zitat Ghommem M, Nayfeh A, Choura S, Najar F, Abdel-Rahman E (2010) Modeling and performance study of a beam microgyroscope. J Sound Vib 329:4970–4979CrossRef Ghommem M, Nayfeh A, Choura S, Najar F, Abdel-Rahman E (2010) Modeling and performance study of a beam microgyroscope. J Sound Vib 329:4970–4979CrossRef
Zurück zum Zitat Ghommem M, Nayfeh A, Choura S (2013) Model reduction and analysis of a vibrating beam microgyroscope. J Vib Control 19:1240–1249CrossRefMathSciNet Ghommem M, Nayfeh A, Choura S (2013) Model reduction and analysis of a vibrating beam microgyroscope. J Vib Control 19:1240–1249CrossRefMathSciNet
Zurück zum Zitat Gleiter H (2000) Nanostructured materials: basic concepts and microstructure. Acta Mater 48:1–29CrossRef Gleiter H (2000) Nanostructured materials: basic concepts and microstructure. Acta Mater 48:1–29CrossRef
Zurück zum Zitat Lajimi SAM, Heppler GR, Abdel-Rahman EM (2015) Primary resonance of a beam rigid body microgyroscope. Int J Non-Linear Mech 77:364–375CrossRef Lajimi SAM, Heppler GR, Abdel-Rahman EM (2015) Primary resonance of a beam rigid body microgyroscope. Int J Non-Linear Mech 77:364–375CrossRef
Zurück zum Zitat Lajimi SAM, Heppler GR, Abdel-Rahman EM (2017) A mechanical-thermal noise analysis of a nonlinear microgyroscope. Mech Syst Signal Process 83:163–175CrossRef Lajimi SAM, Heppler GR, Abdel-Rahman EM (2017) A mechanical-thermal noise analysis of a nonlinear microgyroscope. Mech Syst Signal Process 83:163–175CrossRef
Zurück zum Zitat Li Y, Fan S, Guo Z, Li J, Cao L (2012) Frequency measurement study of resonant vibratory gyroscopes. J Sound Vib 331:4417–4424CrossRef Li Y, Fan S, Guo Z, Li J, Cao L (2012) Frequency measurement study of resonant vibratory gyroscopes. J Sound Vib 331:4417–4424CrossRef
Zurück zum Zitat Mohr M, Caron A, Engel P, Bennewitz R, Gluche P, Brhne K, Fecht H (2014) Young’s modulus, fracture strength, and poisson’s ratio of nanocrystalline diamond films. J Appl Phys 116:124308CrossRef Mohr M, Caron A, Engel P, Bennewitz R, Gluche P, Brhne K, Fecht H (2014) Young’s modulus, fracture strength, and poisson’s ratio of nanocrystalline diamond films. J Appl Phys 116:124308CrossRef
Zurück zum Zitat Mojahedi M, Ahmadian MT, Firoozbakhsh K (2013) Oscillatory behavior of an electrostatically actuated microcantilever gyroscope. Int J Struct Stab Dyn 13:1350030CrossRefMATHMathSciNet Mojahedi M, Ahmadian MT, Firoozbakhsh K (2013) Oscillatory behavior of an electrostatically actuated microcantilever gyroscope. Int J Struct Stab Dyn 13:1350030CrossRefMATHMathSciNet
Zurück zum Zitat Mojahedi M, Ahmadian MT, Firoozbakhsh K (2013) The oscillatory behavior, static and dynamic analyses of a micro/nano gyroscope considering geometric nonlinearities and intermolecular forces. Acta Mech Sin 29:851–863CrossRefMATHMathSciNet Mojahedi M, Ahmadian MT, Firoozbakhsh K (2013) The oscillatory behavior, static and dynamic analyses of a micro/nano gyroscope considering geometric nonlinearities and intermolecular forces. Acta Mech Sin 29:851–863CrossRefMATHMathSciNet
Zurück zum Zitat Mojahedi M, Ahmadian MT, Firoozbakhsh K (2014) The influence of the intermolecular surface forces on the static deflection and pull-in instability of the micro/nano cantilever gyroscopes. Composites: Part B 56:336–343CrossRefMATH Mojahedi M, Ahmadian MT, Firoozbakhsh K (2014) The influence of the intermolecular surface forces on the static deflection and pull-in instability of the micro/nano cantilever gyroscopes. Composites: Part B 56:336–343CrossRefMATH
Zurück zum Zitat Najar F, Choura S, El-Borgi S, Abdel-Rahman EM, Nayfeh AH (2005) Modeling and design of variable-geometry electrostatic microactuators. J Micromech Microeng 15:419–429CrossRefMATH Najar F, Choura S, El-Borgi S, Abdel-Rahman EM, Nayfeh AH (2005) Modeling and design of variable-geometry electrostatic microactuators. J Micromech Microeng 15:419–429CrossRefMATH
Zurück zum Zitat Najar F, Choura S, Abdel-Rahman EM, El-Borgi S, Nayfeh AH (2006) Dynamic analysis of variable-geometry electrostatic microactuators. J Micromech Microeng 16:2449–2457CrossRefMATH Najar F, Choura S, Abdel-Rahman EM, El-Borgi S, Nayfeh AH (2006) Dynamic analysis of variable-geometry electrostatic microactuators. J Micromech Microeng 16:2449–2457CrossRefMATH
Zurück zum Zitat Nayfeh A, Abdel-Rahman E, Ghommem M (2015) A novel differential frequency micro-gyroscope. J Vib Control 21:872–882CrossRefMathSciNet Nayfeh A, Abdel-Rahman E, Ghommem M (2015) A novel differential frequency micro-gyroscope. J Vib Control 21:872–882CrossRefMathSciNet
Zurück zum Zitat Rasekh M, Khadem S (2013) Design and performance analysis of a nanogyroscope based on electrostatic actuation and capacitive sensing. J Sound Vib 332:6155–6168CrossRef Rasekh M, Khadem S (2013) Design and performance analysis of a nanogyroscope based on electrostatic actuation and capacitive sensing. J Sound Vib 332:6155–6168CrossRef
Zurück zum Zitat Sassen S, Voss R, Schalk J, Stenzel E, Gleissner T, Gruenberger R, Neubauer F, Ficker W, Kupke W, Bauer K, Rose M (2000) Tuning fork silicon angular rate sensor with enhanced performance for automative applications. Sens Actuators 83:80–86CrossRef Sassen S, Voss R, Schalk J, Stenzel E, Gleissner T, Gruenberger R, Neubauer F, Ficker W, Kupke W, Bauer K, Rose M (2000) Tuning fork silicon angular rate sensor with enhanced performance for automative applications. Sens Actuators 83:80–86CrossRef
Zurück zum Zitat Shaat M, Abdelkefi A (2015a) Modeling the material structure and couple stress effects of nanocrystalline silicon beams for pull-in and bio-mass sensing applications. Int J Mech Sci 101–102:280–291CrossRef Shaat M, Abdelkefi A (2015a) Modeling the material structure and couple stress effects of nanocrystalline silicon beams for pull-in and bio-mass sensing applications. Int J Mech Sci 101–102:280–291CrossRef
Zurück zum Zitat Shaat M, Abdelkefi A (2015b) Pull-in instability of multi-phase nanocrystalline silicon beams under distributed electrostatic force. Int J Eng Sci 90:58–75CrossRefMathSciNet Shaat M, Abdelkefi A (2015b) Pull-in instability of multi-phase nanocrystalline silicon beams under distributed electrostatic force. Int J Eng Sci 90:58–75CrossRefMathSciNet
Zurück zum Zitat Shaat M, Abdelkefi A (2017) Material structure and size effects on the nonlinear dynamics of electrostatically-actuated nano-beams. Int J Non-Linear Mech 89:25–42CrossRef Shaat M, Abdelkefi A (2017) Material structure and size effects on the nonlinear dynamics of electrostatically-actuated nano-beams. Int J Non-Linear Mech 89:25–42CrossRef
Zurück zum Zitat Shaat M, Khorshidi MA, Abdelkefi A, Shariati M (2016) Modeling and vibration characteristics of cracked nano-beams made of nanocrystalline materials. Int J Mech Sci 115–116:574–585CrossRef Shaat M, Khorshidi MA, Abdelkefi A, Shariati M (2016) Modeling and vibration characteristics of cracked nano-beams made of nanocrystalline materials. Int J Mech Sci 115–116:574–585CrossRef
Zurück zum Zitat Wang G-F, Feng X-Q, Yu S-W, Nan C-W (2003) Interface effects on effective elastic moduli of nanocrystalline materials. Mater Sci Eng A 363:1–8CrossRef Wang G-F, Feng X-Q, Yu S-W, Nan C-W (2003) Interface effects on effective elastic moduli of nanocrystalline materials. Mater Sci Eng A 363:1–8CrossRef
Zurück zum Zitat Williams CB, Shearwood C, Mellor PH, Mattingley AD, Gibbs MR, Yates RB (1996) Initial fabrication of a micro-induction gyroscope. Microelectron Eng 30:531–534CrossRef Williams CB, Shearwood C, Mellor PH, Mattingley AD, Gibbs MR, Yates RB (1996) Initial fabrication of a micro-induction gyroscope. Microelectron Eng 30:531–534CrossRef
Zurück zum Zitat Yazdi N, Ayazi F, Najafi K (1996) Micromachined inertial sensors. IEEE 86:1640–1659CrossRef Yazdi N, Ayazi F, Najafi K (1996) Micromachined inertial sensors. IEEE 86:1640–1659CrossRef
Zurück zum Zitat Younes MI (2011) MEMS linear and nonlinear statics and dynamics. Springer, BerlinCrossRef Younes MI (2011) MEMS linear and nonlinear statics and dynamics. Springer, BerlinCrossRef
Metadaten
Titel
Nonlinear analysis of rotating nanocrystalline silicon microbeams for microgyroscope applications
verfasst von
M. Ghommem
A. Abdelkefi
Publikationsdatum
18.03.2017
Verlag
Springer Berlin Heidelberg
Erschienen in
Microsystem Technologies / Ausgabe 12/2017
Print ISSN: 0946-7076
Elektronische ISSN: 1432-1858
DOI
https://doi.org/10.1007/s00542-017-3366-0

Weitere Artikel der Ausgabe 12/2017

Microsystem Technologies 12/2017 Zur Ausgabe

Neuer Inhalt