Skip to main content
Top
Published in: Polymer Bulletin 12/2020

02-01-2020 | Original Paper

A semi-empirical model for thermal conductivity of polymer nanocomposites containing carbon nanotubes

Authors: M. Safi, M. K. Hassanzadeh-Aghdam, M. J. Mahmoodi

Published in: Polymer Bulletin | Issue 12/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A new version of the semi-empirical Halpin–Tsai (H–T) model is presented to evaluate the effective thermal conductivity of general carbon nanotubes (CNTs)-reinforced polymer nanocomposites. The model captures the influences of the CNTs alignment, random orientation, aggregation, waviness, length, diameter and the CNT/polymer interfacial thermal resistance parameters. In order to verify the suitability of the new H–T model, the numerically calculated thermal conductivities are compared with existing experimentally measured ones. An excellent predictability is found of the modified H–T model over a wide range of the tests. The consideration of the CNT waviness and the interfacial thermal resistance parameters is seriously essential for a more realistic prediction in all conditions. For aligned CNT-reinforced polymer nanocomposites, considering the alignment factor seems to be very important. Moreover, in the case of well-dispersed CNTs into the matrix, it is necessary to incorporate the CNT random orientation parameter. Additionally, when CNTs are not well dispersed, the CNT aggregation and random orientation parameters must be incorporated in the analysis. The effects of the CNT volume fraction, length, diameter and non-straight shape on the nanocomposite thermal conducting behavior are estimated in details. The results clearly expose that it is needed to eliminate the aggregation, use the straight CNTs and form a strong interface if the full potential of CNT reinforcement is to be realized. Finally, the thermal conductivities of CNT-shape-memory polymer nanocomposites at different temperatures are obtained.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Doudou BB, Vivet A, Chen J, Laachachi A, Falher T, Poilâne C (2014) Hybrid carbon nanotube—silica/polyvinyl alcohol nanocomposites films: preparation and characterisation. J Polym Res 21(4):420CrossRef Doudou BB, Vivet A, Chen J, Laachachi A, Falher T, Poilâne C (2014) Hybrid carbon nanotube—silica/polyvinyl alcohol nanocomposites films: preparation and characterisation. J Polym Res 21(4):420CrossRef
2.
go back to reference Hassanzadeh-Aghdam MK, Ansari R, Darvizeh A (2017) Micromechanical modeling of thermal expansion coefficients for unidirectional glass fiber-reinforced polyimide composites containing silica nanoparticles. Compos Part A 96:110–121CrossRef Hassanzadeh-Aghdam MK, Ansari R, Darvizeh A (2017) Micromechanical modeling of thermal expansion coefficients for unidirectional glass fiber-reinforced polyimide composites containing silica nanoparticles. Compos Part A 96:110–121CrossRef
3.
go back to reference Chaudhary B, Panwar V, Roy T, Pal K (2019) Thermomechanical behaviour of zirconia-multiwalled carbon nanotube-reinforced polypropylene hybrid composites. Polym Bull 76(1):511–521CrossRef Chaudhary B, Panwar V, Roy T, Pal K (2019) Thermomechanical behaviour of zirconia-multiwalled carbon nanotube-reinforced polypropylene hybrid composites. Polym Bull 76(1):511–521CrossRef
4.
go back to reference Bui K, Papavassiliou DV (2013) Numerical calculation of the effective thermal conductivity of nanocomposites. Numer Heat Transf Part A: Appl 63(8):590–603CrossRef Bui K, Papavassiliou DV (2013) Numerical calculation of the effective thermal conductivity of nanocomposites. Numer Heat Transf Part A: Appl 63(8):590–603CrossRef
5.
go back to reference Kochetov R, Korobko AV, Andritsch T, Morshuis PHF, Picken SJ, Smit JJ (2011) Modelling of the thermal conductivity in polymer nanocomposites and the impact of the interface between filler and matrix. J Phys D Appl Phys 44(39):395401CrossRef Kochetov R, Korobko AV, Andritsch T, Morshuis PHF, Picken SJ, Smit JJ (2011) Modelling of the thermal conductivity in polymer nanocomposites and the impact of the interface between filler and matrix. J Phys D Appl Phys 44(39):395401CrossRef
6.
go back to reference Omidi M, Milani AS, Seethaler RJ, Arasteh R (2010) Prediction of the mechanical characteristics of multi-walled carbon nanotube/epoxy composites using a new form of the rule of mixtures. Carbon 48(11):3218–3228CrossRef Omidi M, Milani AS, Seethaler RJ, Arasteh R (2010) Prediction of the mechanical characteristics of multi-walled carbon nanotube/epoxy composites using a new form of the rule of mixtures. Carbon 48(11):3218–3228CrossRef
7.
go back to reference Philip B, Xie J, Abraham JK, Varadan VK (2005) Polyaniline/carbon nanotube composites: starting with phenylamino functionalized carbon nanotubes. Polym Bull 53(2):127–138CrossRef Philip B, Xie J, Abraham JK, Varadan VK (2005) Polyaniline/carbon nanotube composites: starting with phenylamino functionalized carbon nanotubes. Polym Bull 53(2):127–138CrossRef
8.
go back to reference Bakshi SR, Patel RR, Agarwal A (2010) Thermal conductivity of carbon nanotube reinforced aluminum composites: a multi-scale study using object oriented finite element method. Comput Mater Sci 50(2):419–428CrossRef Bakshi SR, Patel RR, Agarwal A (2010) Thermal conductivity of carbon nanotube reinforced aluminum composites: a multi-scale study using object oriented finite element method. Comput Mater Sci 50(2):419–428CrossRef
9.
go back to reference Bryning MB, Milkie DE, Islam MF, Kikkawa JM, Yodh AG (2005) Thermal conductivity and interfacial resistance in single-wall carbon nanotube epoxy composites. Appl Phys Lett 87(16):161909CrossRef Bryning MB, Milkie DE, Islam MF, Kikkawa JM, Yodh AG (2005) Thermal conductivity and interfacial resistance in single-wall carbon nanotube epoxy composites. Appl Phys Lett 87(16):161909CrossRef
10.
go back to reference Xu Y, Ray G, Abdel-Magid B (2006) Thermal behavior of single-walled carbon nanotube polymer–matrix composites. Compos Part A 37(1):114–121CrossRef Xu Y, Ray G, Abdel-Magid B (2006) Thermal behavior of single-walled carbon nanotube polymer–matrix composites. Compos Part A 37(1):114–121CrossRef
11.
go back to reference Bonnet P, Sireude D, Garnier B, Chauvet O (2007) Thermal properties and percolation in carbon nanotube-polymer composites. Appl Phys Lett 91(20):201910CrossRef Bonnet P, Sireude D, Garnier B, Chauvet O (2007) Thermal properties and percolation in carbon nanotube-polymer composites. Appl Phys Lett 91(20):201910CrossRef
12.
go back to reference Kim YA, Kamio S, Tajiri T, Hayashi T, Song SM, Endo M, Dresselhaus MS (2007) Enhanced thermal conductivity of carbon fiber/phenolic resin composites by the introduction of carbon nanotubes. Appl Phys Lett 90(9):093125CrossRef Kim YA, Kamio S, Tajiri T, Hayashi T, Song SM, Endo M, Dresselhaus MS (2007) Enhanced thermal conductivity of carbon fiber/phenolic resin composites by the introduction of carbon nanotubes. Appl Phys Lett 90(9):093125CrossRef
13.
go back to reference Haggenmueller R, Guthy C, Lukes JR, Fischer JE, Winey KI (2007) Single wall carbon nanotube/polyethylene nanocomposites: thermal and electrical conductivity. Macromolecules 40(7):2417–2421CrossRef Haggenmueller R, Guthy C, Lukes JR, Fischer JE, Winey KI (2007) Single wall carbon nanotube/polyethylene nanocomposites: thermal and electrical conductivity. Macromolecules 40(7):2417–2421CrossRef
14.
go back to reference Guthy C, Du F, Brand S, Winey KI, Fischer JE (2007) Thermal conductivity of single-walled carbon nanotube/PMMA nanocomposites. J Heat Transf 129(8):1096–1099CrossRef Guthy C, Du F, Brand S, Winey KI, Fischer JE (2007) Thermal conductivity of single-walled carbon nanotube/PMMA nanocomposites. J Heat Transf 129(8):1096–1099CrossRef
15.
go back to reference Marconnet AM, Yamamoto N, Panzer MA, Wardle BL, Goodson KE (2011) Thermal conduction in aligned carbon nanotube-polymer nanocomposites with high packing density. ACS Nano 5(6):4818–4825CrossRef Marconnet AM, Yamamoto N, Panzer MA, Wardle BL, Goodson KE (2011) Thermal conduction in aligned carbon nanotube-polymer nanocomposites with high packing density. ACS Nano 5(6):4818–4825CrossRef
16.
go back to reference Ji T, Feng Y, Qin M, Feng W (2016) Thermal conducting properties of aligned carbon nanotubes and their polymer composites. Compos Part A 91:351–369CrossRef Ji T, Feng Y, Qin M, Feng W (2016) Thermal conducting properties of aligned carbon nanotubes and their polymer composites. Compos Part A 91:351–369CrossRef
17.
go back to reference Bouchard J, Cayla A, Devaux E, Campagne C (2013) Electrical and thermal conductivities of multiwalled carbon nanotubes-reinforced high performance polymer nanocomposites. Compos Sci Technol 86:177–184CrossRef Bouchard J, Cayla A, Devaux E, Campagne C (2013) Electrical and thermal conductivities of multiwalled carbon nanotubes-reinforced high performance polymer nanocomposites. Compos Sci Technol 86:177–184CrossRef
18.
go back to reference Kwon SY, Kwon IM, Kim YG, Lee S, Seo YS (2013) A large increase in the thermal conductivity of carbon nanotube/polymer composites produced by percolation phenomena. Carbon 55:285–290CrossRef Kwon SY, Kwon IM, Kim YG, Lee S, Seo YS (2013) A large increase in the thermal conductivity of carbon nanotube/polymer composites produced by percolation phenomena. Carbon 55:285–290CrossRef
19.
go back to reference Kim HS, Jang JU, Yu J, Kim SY (2015) Thermal conductivity of polymer composites based on the length of multi-walled carbon nanotubes. Compos Part B 79:505–512CrossRef Kim HS, Jang JU, Yu J, Kim SY (2015) Thermal conductivity of polymer composites based on the length of multi-walled carbon nanotubes. Compos Part B 79:505–512CrossRef
20.
go back to reference Yu K, Liu Y, Liu Y, Peng HX, Leng J (2014) Mechanical and shape recovery properties of shape memory polymer composite embedded with cup-stacked carbon nanotubes. J Intell Mater Syst Struct 25(10):1264–1275CrossRef Yu K, Liu Y, Liu Y, Peng HX, Leng J (2014) Mechanical and shape recovery properties of shape memory polymer composite embedded with cup-stacked carbon nanotubes. J Intell Mater Syst Struct 25(10):1264–1275CrossRef
21.
22.
go back to reference Dastgerdi JN, Marquis G, Salimi M (2013) The effect of nanotubes waviness on mechanical properties of CNT/SMP composites. Compos Sci Technol 86:164–169CrossRef Dastgerdi JN, Marquis G, Salimi M (2013) The effect of nanotubes waviness on mechanical properties of CNT/SMP composites. Compos Sci Technol 86:164–169CrossRef
23.
go back to reference Yang QS, He XQ, Liu X, Leng FF, Mai YW (2012) The effective properties and local aggregation effect of CNT/SMP composites. Compos Part B 43(1):33–38CrossRef Yang QS, He XQ, Liu X, Leng FF, Mai YW (2012) The effective properties and local aggregation effect of CNT/SMP composites. Compos Part B 43(1):33–38CrossRef
24.
go back to reference Kundalwal SI, Ray MC (2014) Estimation of thermal conductivities of a novel fuzzy fiber reinforced composite. Int J Therm Sci 76:90–100CrossRef Kundalwal SI, Ray MC (2014) Estimation of thermal conductivities of a novel fuzzy fiber reinforced composite. Int J Therm Sci 76:90–100CrossRef
25.
go back to reference Hassanzadeh-Aghdam MK, Ansari R, Darvizeh A (2017) A new micromechanics approach for predicting the elastic response of polymer nanocomposites reinforced with randomly oriented and distributed wavy carbon nanotubes. J Compos Mater 51(20):2899–2912CrossRef Hassanzadeh-Aghdam MK, Ansari R, Darvizeh A (2017) A new micromechanics approach for predicting the elastic response of polymer nanocomposites reinforced with randomly oriented and distributed wavy carbon nanotubes. J Compos Mater 51(20):2899–2912CrossRef
26.
go back to reference Jia Y, Peng K, Gong XL, Zhang Z (2011) Creep and recovery of polypropylene/carbon nanotube composites. Int J Plast 27(8):1239–1251CrossRef Jia Y, Peng K, Gong XL, Zhang Z (2011) Creep and recovery of polypropylene/carbon nanotube composites. Int J Plast 27(8):1239–1251CrossRef
27.
go back to reference Kumlutas D, Tavman IH (2006) A numerical and experimental study on thermal conductivity of particle filled polymer composites. J Therm Compos Mater 19(4):441–455CrossRef Kumlutas D, Tavman IH (2006) A numerical and experimental study on thermal conductivity of particle filled polymer composites. J Therm Compos Mater 19(4):441–455CrossRef
28.
go back to reference Nan CW, Liu G, Lin Y, Li M (2004) Interface effect on thermal conductivity of carbon nanotube composites. Appl Phys Lett 85(16):3549–3551CrossRef Nan CW, Liu G, Lin Y, Li M (2004) Interface effect on thermal conductivity of carbon nanotube composites. Appl Phys Lett 85(16):3549–3551CrossRef
29.
go back to reference Ginga NJ, Chen W, Sitaraman SK (2014) Waviness reduces effective modulus of carbon nanotube forests by several orders of magnitude. Carbon 66:57–66CrossRef Ginga NJ, Chen W, Sitaraman SK (2014) Waviness reduces effective modulus of carbon nanotube forests by several orders of magnitude. Carbon 66:57–66CrossRef
30.
go back to reference Yeh MK, Tai NH, Liu JH (2006) Mechanical behavior of phenolic-based composites reinforced with multi-walled carbon nanotubes. Carbon 44(1):1–9CrossRef Yeh MK, Tai NH, Liu JH (2006) Mechanical behavior of phenolic-based composites reinforced with multi-walled carbon nanotubes. Carbon 44(1):1–9CrossRef
31.
go back to reference Aliev AE, Lima MH, Silverman EM, Baughman RH (2009) Thermal conductivity of multi-walled carbon nanotube sheets: radiation losses and quenching of phonon modes. Nanotechnology 21(3):035709CrossRef Aliev AE, Lima MH, Silverman EM, Baughman RH (2009) Thermal conductivity of multi-walled carbon nanotube sheets: radiation losses and quenching of phonon modes. Nanotechnology 21(3):035709CrossRef
32.
go back to reference Weidenfeller B, Anhalt M (2014) Polyurethane-magnetite composite shape-memory polymer: thermal properties. J Therm Compos Mater 27(7):895–908CrossRef Weidenfeller B, Anhalt M (2014) Polyurethane-magnetite composite shape-memory polymer: thermal properties. J Therm Compos Mater 27(7):895–908CrossRef
Metadata
Title
A semi-empirical model for thermal conductivity of polymer nanocomposites containing carbon nanotubes
Authors
M. Safi
M. K. Hassanzadeh-Aghdam
M. J. Mahmoodi
Publication date
02-01-2020
Publisher
Springer Berlin Heidelberg
Published in
Polymer Bulletin / Issue 12/2020
Print ISSN: 0170-0839
Electronic ISSN: 1436-2449
DOI
https://doi.org/10.1007/s00289-019-03082-6

Other articles of this Issue 12/2020

Polymer Bulletin 12/2020 Go to the issue

Premium Partners