Skip to main content
Top
Published in: Wireless Networks 4/2020

18-03-2019

A survey of mmWave user association mechanisms and spectrum sharing approaches: an overview, open issues and challenges, future research trends

Authors: Mothana L. Attiah, A. A. M. Isa, Zahriladha Zakaria, M. K. Abdulhameed, Mowafak K. Mohsen, Ihab Ali

Published in: Wireless Networks | Issue 4/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Fifth generation (5G) cellular networks promise to support multi-radio access technologies (multi-RATs) with low and high frequencies aiming at delivering good coverage, several gigabits data rate, and ultra-reliable services. In this context, user-association and resource allocation appear to be a huge challenge due to the variety of specifications and varied propagation environments. In this treatise, the focus is on the technical and administrative difficulties of the adoption of user association (UA) mechanism and spectrum sharing approach (SSA) in millimeter wave (mmWave) systems, for example, the technical design considerations and their underlying options, as well as their impact on users and network performance. In addition, details on the importance of the rules and regulations of SSA are presented. This study also identified a few possible design solutions and potential promising technologies in both UA and SSA. In the context of UA, several mechanisms are identified, such as backhaul-, caching-, and hybrid multi-criteria-aware UA to achieve seamless connectivity and to enhance the network utility. In the context of SSA, this study pinpoints varied subjects that need to be explored, such as joint efficient rules and regulations enactment, assessment of fairness and independence in multi-independent mobile network operators (multi-IMNOs) that support SSA, as well as the implementation of hybrid-SSA via Virtualized Cloud Radio Access Network. Finally, attention is drawn to several key conclusions to enable readers and interested researchers to learn about the most controversial points of mmWave 5G cellular networks.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Majed, M. B., Rahman, T. A., & Aziz, O. A. (2018). Propagation path loss modeling and outdoor coverage measurements review in millimeter wave bands for 5G cellular communications. International Journal of Electrical and Computer Engineering (IJECE),8(4), 2254–2260.CrossRef Majed, M. B., Rahman, T. A., & Aziz, O. A. (2018). Propagation path loss modeling and outdoor coverage measurements review in millimeter wave bands for 5G cellular communications. International Journal of Electrical and Computer Engineering (IJECE),8(4), 2254–2260.CrossRef
2.
go back to reference Demestichas, P., Georgakopoulos, A., Tsagkaris, K., & Kotrotsos, S. (2015). Intelligent 5G networks: Managing 5G wireless/mobile broadband. IEEE Vehicular Technology Magazine,10(3), 41–50.CrossRef Demestichas, P., Georgakopoulos, A., Tsagkaris, K., & Kotrotsos, S. (2015). Intelligent 5G networks: Managing 5G wireless/mobile broadband. IEEE Vehicular Technology Magazine,10(3), 41–50.CrossRef
3.
go back to reference Chedia, J., & Belgacem, C. (2018). Performance of caching in wireless small cell networks. Journal of Telecommunication, Electronic and Computer Engineering,10(1), 35–43. Chedia, J., & Belgacem, C. (2018). Performance of caching in wireless small cell networks. Journal of Telecommunication, Electronic and Computer Engineering,10(1), 35–43.
4.
go back to reference Emmanuel, A. B., Tekanyi, A., Yahaya, M., & Gadam, M. A. (2017). Improving load balancing in various user distribution LTE advanced HetNets through a hybrid channel-gain access-aware cell selection scheme. Journal of Telecommunication, Electronic and Computer Engineering,10(1), 17–23. Emmanuel, A. B., Tekanyi, A., Yahaya, M., & Gadam, M. A. (2017). Improving load balancing in various user distribution LTE advanced HetNets through a hybrid channel-gain access-aware cell selection scheme. Journal of Telecommunication, Electronic and Computer Engineering,10(1), 17–23.
5.
go back to reference Sakaguchi, K., Haustein, T., Barbarossa, S., Strinati, E. C., Clemente, A., Destino, G., et al. (2017). Where, when, and how mmWave is used in 5G and beyond. IEICE Transactions on Electronics,100(10), 790–808.CrossRef Sakaguchi, K., Haustein, T., Barbarossa, S., Strinati, E. C., Clemente, A., Destino, G., et al. (2017). Where, when, and how mmWave is used in 5G and beyond. IEICE Transactions on Electronics,100(10), 790–808.CrossRef
6.
go back to reference Alsharif, M. H., & Nordin, R. (2017). Evolution towards fifth generation (5G) wireless networks: Current trends and challenges in the deployment of millimetre wave, massive MIMO, and small cells. Telecommunication Systems,64(4), 617–637.CrossRef Alsharif, M. H., & Nordin, R. (2017). Evolution towards fifth generation (5G) wireless networks: Current trends and challenges in the deployment of millimetre wave, massive MIMO, and small cells. Telecommunication Systems,64(4), 617–637.CrossRef
7.
go back to reference Andrews, J. G. (2013). Seven ways that HetNets are a cellular paradigm shift. IEEE Communications Magazine,51(3), 136–144.CrossRef Andrews, J. G. (2013). Seven ways that HetNets are a cellular paradigm shift. IEEE Communications Magazine,51(3), 136–144.CrossRef
8.
go back to reference Andrews, J. G., Bai, T., Kulkarni, M., Alkhateeb, A., Gupta, A., & Heath, R. W. (2017). Modeling and analyzing millimeter wave cellular systems. IEEE Transactions on Communications,65(1), 403–430. Andrews, J. G., Bai, T., Kulkarni, M., Alkhateeb, A., Gupta, A., & Heath, R. W. (2017). Modeling and analyzing millimeter wave cellular systems. IEEE Transactions on Communications,65(1), 403–430.
9.
go back to reference Rappaport, T. S., Heath, R. W., Daniels, R. C., & Murdock, J. N. (2014). Millimeter wave wireless communications. New York: Pearson Education. Rappaport, T. S., Heath, R. W., Daniels, R. C., & Murdock, J. N. (2014). Millimeter wave wireless communications. New York: Pearson Education.
10.
go back to reference Rappaport, T. S., Sun, S., Mayzus, R., Zhao, H., Azar, Y., Wang, K., et al. (2013). Millimeter wave mobile communications for 5G cellular: It will work! IEEE Access,1, 335–349.CrossRef Rappaport, T. S., Sun, S., Mayzus, R., Zhao, H., Azar, Y., Wang, K., et al. (2013). Millimeter wave mobile communications for 5G cellular: It will work! IEEE Access,1, 335–349.CrossRef
11.
go back to reference Rangan, S., Rappaport, T. S., Erkip, E., Gomez-Cuba, F., Rappaport, T. S., & Erkip, E. (2015). Millimeter-wave cellular wireless networks: Potentials and challenges. Proceedings of the IEEE,102(3), 366–385.CrossRef Rangan, S., Rappaport, T. S., Erkip, E., Gomez-Cuba, F., Rappaport, T. S., & Erkip, E. (2015). Millimeter-wave cellular wireless networks: Potentials and challenges. Proceedings of the IEEE,102(3), 366–385.CrossRef
12.
go back to reference Boccardi, F., Heath, R., Lozano, A., Marzetta, T. L., & Popovski, P. (2014). Five disruptive technology directions for 5G. IEEE Communications Magazine,52(2), 74–80.CrossRef Boccardi, F., Heath, R., Lozano, A., Marzetta, T. L., & Popovski, P. (2014). Five disruptive technology directions for 5G. IEEE Communications Magazine,52(2), 74–80.CrossRef
13.
go back to reference Pi, Z., & Khan, F. (2011). An introduction to millimeter-wave mobile broadband systems. IEEE Communications Magazine,49(6), 101–107.CrossRef Pi, Z., & Khan, F. (2011). An introduction to millimeter-wave mobile broadband systems. IEEE Communications Magazine,49(6), 101–107.CrossRef
14.
go back to reference Mezzavilla, M., Zhang, M., Polese, M., Member, S., Ford, R., Dutta, S., et al. (2018). End-to-end simulation of 5G mmWave networks. IEEE Communications Surveys & Tutorials,20(3), 2237–2263.CrossRef Mezzavilla, M., Zhang, M., Polese, M., Member, S., Ford, R., Dutta, S., et al. (2018). End-to-end simulation of 5G mmWave networks. IEEE Communications Surveys & Tutorials,20(3), 2237–2263.CrossRef
15.
go back to reference Chaieb, C., Mlika, Z., Abdelkefi, F., & Ajib, W. (2017). On the user association and resource allocation in HetNets with mmWave BaseStations. In 2017 IEEE 28th annual international symposium on personal, indoor, and mobile radio communications (PIMRC) (pp. 1–5). Chaieb, C., Mlika, Z., Abdelkefi, F., & Ajib, W. (2017). On the user association and resource allocation in HetNets with mmWave BaseStations. In 2017 IEEE 28th annual international symposium on personal, indoor, and mobile radio communications (PIMRC) (pp. 1–5).
16.
go back to reference Semiari, O., Saad, W., & Bennis, M. (2016). Downlink cell association and load balancing for joint millimeter wave-microwave cellular networks. In 2016 IEEE global communications conference (GLOBECOM) (pp. 1–6). Wireless VT, Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA, United States. Semiari, O., Saad, W., & Bennis, M. (2016). Downlink cell association and load balancing for joint millimeter wave-microwave cellular networks. In 2016 IEEE global communications conference (GLOBECOM) (pp. 1–6). Wireless VT, Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA, United States.
17.
go back to reference Rebato, M., Mezzavilla, M., Rangan, S., & Zorzi, M. (2017). Hybrid spectrum sharing in mmWave cellular netwroks. IEEE Transactions On Cognitive Communications And Networking,3(2), 155–168.CrossRef Rebato, M., Mezzavilla, M., Rangan, S., & Zorzi, M. (2017). Hybrid spectrum sharing in mmWave cellular netwroks. IEEE Transactions On Cognitive Communications And Networking,3(2), 155–168.CrossRef
18.
go back to reference Parsaeefard, S., Dawadi, R., Derakhshani, M., & Le-Ngoc, T. (2016). Joint user-association and resource-allocation in virtualized wireless networks. IEEE Access,4, 2738–2750.CrossRef Parsaeefard, S., Dawadi, R., Derakhshani, M., & Le-Ngoc, T. (2016). Joint user-association and resource-allocation in virtualized wireless networks. IEEE Access,4, 2738–2750.CrossRef
19.
go back to reference Zhou, H., Ji, Y., Wang, X., & Zhao, B. (2015). Joint resource allocation and user association for SVC multicast over heterogeneous cellular networks. IEEE Transactions on Wireless Communications,14(7), 3673–3684.CrossRef Zhou, H., Ji, Y., Wang, X., & Zhao, B. (2015). Joint resource allocation and user association for SVC multicast over heterogeneous cellular networks. IEEE Transactions on Wireless Communications,14(7), 3673–3684.CrossRef
20.
go back to reference Azam, M. A., Ahmed, A., Naeem, M., Iqbal, M., Ejaz, W., Anpalagan, A., et al. (2017). Efficient joint user association and resource allocation for cloud radio access networks. IEEE Access,5, 1439–1448.CrossRef Azam, M. A., Ahmed, A., Naeem, M., Iqbal, M., Ejaz, W., Anpalagan, A., et al. (2017). Efficient joint user association and resource allocation for cloud radio access networks. IEEE Access,5, 1439–1448.CrossRef
21.
go back to reference Yanping, L., & Xuming, F. (2016). Joint user association and resource allocation for self-backhaul ultra-dense networks. China Communications,13(2), 1–10.CrossRef Yanping, L., & Xuming, F. (2016). Joint user association and resource allocation for self-backhaul ultra-dense networks. China Communications,13(2), 1–10.CrossRef
22.
go back to reference Zhou, T.-Q., Huang, Y.-M., & Yang, L.-X. (2015). Joint user association and resource partitioning with QoS support for heterogeneous cellular networks. Wireless Personal Communications,83(1), 383–397.CrossRef Zhou, T.-Q., Huang, Y.-M., & Yang, L.-X. (2015). Joint user association and resource partitioning with QoS support for heterogeneous cellular networks. Wireless Personal Communications,83(1), 383–397.CrossRef
23.
go back to reference Liu, Y., Lu, L., Li, G. Y., Cui, Q., & Han, W. (2016). Joint user association and spectrum allocation for small cell networks with wireless backhauls. IEEE Wireless Communications Letters,5(5), 496–499.CrossRef Liu, Y., Lu, L., Li, G. Y., Cui, Q., & Han, W. (2016). Joint user association and spectrum allocation for small cell networks with wireless backhauls. IEEE Wireless Communications Letters,5(5), 496–499.CrossRef
24.
go back to reference Gong, W., & Wang, X. (2015). Joint user association and resource allocation of device-to-device communication in small cell networks. KSII Transactions on Internet and Information Systems,9(1), 1–19.MathSciNet Gong, W., & Wang, X. (2015). Joint user association and resource allocation of device-to-device communication in small cell networks. KSII Transactions on Internet and Information Systems,9(1), 1–19.MathSciNet
25.
go back to reference Feng, M., Mao, S., & Jiang, T. (2018). Joint frame design, resource allocation and user association for massive MIMO heterogeneous networks with wireless backhaul. IEEE Transactions on Wireless Communications,17(3), 1937–1950.CrossRef Feng, M., Mao, S., & Jiang, T. (2018). Joint frame design, resource allocation and user association for massive MIMO heterogeneous networks with wireless backhaul. IEEE Transactions on Wireless Communications,17(3), 1937–1950.CrossRef
26.
go back to reference Ekti, A. R., Wang, X., Ismail, M., Serpedin, E., & Qaraqe, K. A. (2016). Joint user association and data-rate allocation in heterogeneous wireless networks. IEEE Transactions on Vehicular Technology,65(9), 7403–7414.CrossRef Ekti, A. R., Wang, X., Ismail, M., Serpedin, E., & Qaraqe, K. A. (2016). Joint user association and data-rate allocation in heterogeneous wireless networks. IEEE Transactions on Vehicular Technology,65(9), 7403–7414.CrossRef
27.
go back to reference Chen, Y., Li, J., Chen, W., Lin, Z., & Vucetic, B. (2016). Joint user association and resource allocation in the downlink of heterogeneous networks. IEEE Transactions on Vehicular Technology,65(7), 5701–5706.CrossRef Chen, Y., Li, J., Chen, W., Lin, Z., & Vucetic, B. (2016). Joint user association and resource allocation in the downlink of heterogeneous networks. IEEE Transactions on Vehicular Technology,65(7), 5701–5706.CrossRef
28.
go back to reference Zheng, J., Gao, L., Wang, H., Niu, J., Li, X., & Ren, J. (2017). EE-eICIC: Energy-efficient optimization of joint user association and ABS for eICIC in heterogeneous cellular networks. Wireless Communications & Mobile Computing,201, 1–11.CrossRef Zheng, J., Gao, L., Wang, H., Niu, J., Li, X., & Ren, J. (2017). EE-eICIC: Energy-efficient optimization of joint user association and ABS for eICIC in heterogeneous cellular networks. Wireless Communications & Mobile Computing,201, 1–11.CrossRef
29.
go back to reference Zhang, H., Huang, S., Jiang, C., Long, K., Leung, V. C. M., & Poor, H. V. (2017). Energy efficient user association and power allocation in millimeter-wave-based ultra dense networks with energy harvesting base stations. IEEE Journal on Selected Areas in Communications,35(9), 1936–1947.CrossRef Zhang, H., Huang, S., Jiang, C., Long, K., Leung, V. C. M., & Poor, H. V. (2017). Energy efficient user association and power allocation in millimeter-wave-based ultra dense networks with energy harvesting base stations. IEEE Journal on Selected Areas in Communications,35(9), 1936–1947.CrossRef
30.
go back to reference Zhou, T., Jiang, N., Liu, Z., & Li, C. (2018). Joint cell activation and selection for green communications in ultra-dense heterogeneous networks. IEEE Access,6, 1894–1904.CrossRef Zhou, T., Jiang, N., Liu, Z., & Li, C. (2018). Joint cell activation and selection for green communications in ultra-dense heterogeneous networks. IEEE Access,6, 1894–1904.CrossRef
31.
go back to reference Li, Y., Sheng, M., Sun, Y., & Shi, Y. (2016). Joint optimization of BS operation, user association, subcarrier assignment, and power allocation for energy-efficient HetNets. IEEE Journal on Selected Areas in Communications,34(12), 3339–3353.CrossRef Li, Y., Sheng, M., Sun, Y., & Shi, Y. (2016). Joint optimization of BS operation, user association, subcarrier assignment, and power allocation for energy-efficient HetNets. IEEE Journal on Selected Areas in Communications,34(12), 3339–3353.CrossRef
32.
go back to reference Zola, E., Kassler, A. J., & Kim, W. (2017). Joint user association and energy aware routing for green small cell mmWave backhaul networks. In 2017 IEEE wireless communications and networking conference (WCNC) (pp. 1–6). Dept. of Network Engineering, UPC—BarcelonaTECH, Spain. Zola, E., Kassler, A. J., & Kim, W. (2017). Joint user association and energy aware routing for green small cell mmWave backhaul networks. In 2017 IEEE wireless communications and networking conference (WCNC) (pp. 1–6). Dept. of Network Engineering, UPC—BarcelonaTECH, Spain.
33.
go back to reference Zhou, T., Liu, Z., Zhao, J., Li, C., & Yang, L. (2018). Joint user association and power control for load balancing in downlink heterogeneous cellular networks. IEEE Transactions on Vehicular Technology,67(3), 2582–2593.CrossRef Zhou, T., Liu, Z., Zhao, J., Li, C., & Yang, L. (2018). Joint user association and power control for load balancing in downlink heterogeneous cellular networks. IEEE Transactions on Vehicular Technology,67(3), 2582–2593.CrossRef
34.
go back to reference Semiari, O., Saad, W., & Bennis, M. (2016). Downlink cell association and load balancing for joint millimeter wave-microwave cellular networks. IEEE Global Communications Conference (GLOBECOM),2016, 1–6. Semiari, O., Saad, W., & Bennis, M. (2016). Downlink cell association and load balancing for joint millimeter wave-microwave cellular networks. IEEE Global Communications Conference (GLOBECOM),2016, 1–6.
35.
go back to reference Ge, X., Li, X., Jin, H., Cheng, J., & Leung, V. C. M. (2018). Joint user association and user scheduling for load balancing in heterogeneous networks. IEEE Transactions on Wireless Communications,17(5), 3211–3225.CrossRef Ge, X., Li, X., Jin, H., Cheng, J., & Leung, V. C. M. (2018). Joint user association and user scheduling for load balancing in heterogeneous networks. IEEE Transactions on Wireless Communications,17(5), 3211–3225.CrossRef
36.
go back to reference Weiss, T. A., & Jondral, F. K. (2004). Spectrum pooling: An innovative strategy for the enhancement of spectrum efficiency. IEEE Communications Magazine,42(3), 8–14.CrossRef Weiss, T. A., & Jondral, F. K. (2004). Spectrum pooling: An innovative strategy for the enhancement of spectrum efficiency. IEEE Communications Magazine,42(3), 8–14.CrossRef
37.
go back to reference Ramazanali, H., Mesodiakaki, A., Vinel, A., & Verikoukis, C. (2016). Survey of user association in 5G HetNets. In 2016 8th IEEE Latin-American conference on communications (LATINCOM) (pp. 1–6). Ramazanali, H., Mesodiakaki, A., Vinel, A., & Verikoukis, C. (2016). Survey of user association in 5G HetNets. In 2016 8th IEEE Latin-American conference on communications (LATINCOM) (pp. 1–6).
38.
go back to reference Liu, D., Wang, L., Chen, Y., Elkashlan, M., Wong, K. K., Schober, R., et al. (2016). User association in 5G networks: A survey and an outlook. IEEE Communications Surveys and Tutorials,18(2), 1018–1044.CrossRef Liu, D., Wang, L., Chen, Y., Elkashlan, M., Wong, K. K., Schober, R., et al. (2016). User association in 5G networks: A survey and an outlook. IEEE Communications Surveys and Tutorials,18(2), 1018–1044.CrossRef
39.
go back to reference Zhou, H., Xu, W., Bi, Y., Chen, J., Yu, Q., & Shen, X. S. (2017). Toward 5G spectrum sharing for immersive-experience-driven vehicular communications. IEEE Wireless Communications,24(6), 30–37.CrossRef Zhou, H., Xu, W., Bi, Y., Chen, J., Yu, Q., & Shen, X. S. (2017). Toward 5G spectrum sharing for immersive-experience-driven vehicular communications. IEEE Wireless Communications,24(6), 30–37.CrossRef
40.
go back to reference Massaro, M. (2017). Next generation of radio spectrum management: Licensed shared access for 5G. Telecommunications Policy,41(5–6), 422–433.CrossRef Massaro, M. (2017). Next generation of radio spectrum management: Licensed shared access for 5G. Telecommunications Policy,41(5–6), 422–433.CrossRef
41.
go back to reference Kour, H., Jha, R. K., & Jain, S. (2018). A comprehensive survey on spectrum sharing: Architecture, energy efficiency and security issues. Journal of Network and Computer Applications,103, 29–57.CrossRef Kour, H., Jha, R. K., & Jain, S. (2018). A comprehensive survey on spectrum sharing: Architecture, energy efficiency and security issues. Journal of Network and Computer Applications,103, 29–57.CrossRef
42.
go back to reference Yang, C., Li, J., Guizani, M., Anpalagan, A., & Elkashlan, M. (2016). Advanced spectrum sharing in 5G cognitive heterogeneous networks. IEEE Wireless Communications,23(2), 94–101.CrossRef Yang, C., Li, J., Guizani, M., Anpalagan, A., & Elkashlan, M. (2016). Advanced spectrum sharing in 5G cognitive heterogeneous networks. IEEE Wireless Communications,23(2), 94–101.CrossRef
43.
go back to reference Mustonen, M., Matinmikko, M., Holland, O., & Roberson, D. (2017). Process model for recent spectrum sharing concepts in policy making. Telecommunications Policy,41(5–6), 391–404.CrossRef Mustonen, M., Matinmikko, M., Holland, O., & Roberson, D. (2017). Process model for recent spectrum sharing concepts in policy making. Telecommunications Policy,41(5–6), 391–404.CrossRef
44.
go back to reference Miia Mustonen, A. M. P., Chen, Tao, Saarnisaari, Harri, & Marja Matinmikko, S. Y. (2014). Cellular architecture enhancement for licensed shared access concept supporting the European Licensed Shared access concept. IEEE Wireless Communications,21(3), 37–43.CrossRef Miia Mustonen, A. M. P., Chen, Tao, Saarnisaari, Harri, & Marja Matinmikko, S. Y. (2014). Cellular architecture enhancement for licensed shared access concept supporting the European Licensed Shared access concept. IEEE Wireless Communications,21(3), 37–43.CrossRef
45.
go back to reference Bose, J. C. (1927). Collected physical papers (pp. 1–373). New York, NY: Longmans, Green and Co.MATH Bose, J. C. (1927). Collected physical papers (pp. 1–373). New York, NY: Longmans, Green and Co.MATH
46.
go back to reference Sengupta, D. L., Sarkar, T. K., & Sen, D. (1998). Centennial of the semiconductor diode detector. Proceedings of the IEEE,86(1), 235–242.CrossRef Sengupta, D. L., Sarkar, T. K., & Sen, D. (1998). Centennial of the semiconductor diode detector. Proceedings of the IEEE,86(1), 235–242.CrossRef
47.
go back to reference Emerson, D. T. (1997). The work of Jagadis Chandra Bose: 100 years of millimeter-wave research. IEEE Transactions on Microwave Theory and Techniques,45(12), 2267–2273.CrossRef Emerson, D. T. (1997). The work of Jagadis Chandra Bose: 100 years of millimeter-wave research. IEEE Transactions on Microwave Theory and Techniques,45(12), 2267–2273.CrossRef
48.
go back to reference Marcus, M., & Pattan, B. (2005). Millimeter wave propagation: Spectrum management implications. IEEE Microwave Magazine,6(2), 54–62.CrossRef Marcus, M., & Pattan, B. (2005). Millimeter wave propagation: Spectrum management implications. IEEE Microwave Magazine,6(2), 54–62.CrossRef
49.
go back to reference Matinmikko, M., Latva-aho, M., Ahokangas, P., & Seppänen, V. (2018). On regulations for 5G: Micro licensing for locally operated networks. Telecommunications Policy,24(8), 622–635.CrossRef Matinmikko, M., Latva-aho, M., Ahokangas, P., & Seppänen, V. (2018). On regulations for 5G: Micro licensing for locally operated networks. Telecommunications Policy,24(8), 622–635.CrossRef
50.
go back to reference Hemadeh, I. A., Satyanarayana, K., El-Hajjar, M., & Hanzo, L. (2018). Millimeter-wave communications: Physical channel models, design considerations, antenna constructions and link-budget. IEEE Communications Surveys & Tutorials,20(2), 870–913.CrossRef Hemadeh, I. A., Satyanarayana, K., El-Hajjar, M., & Hanzo, L. (2018). Millimeter-wave communications: Physical channel models, design considerations, antenna constructions and link-budget. IEEE Communications Surveys & Tutorials,20(2), 870–913.CrossRef
51.
go back to reference Rappaport, T. S., Xing, Y., MacCartney, G. R., Molisch, A. F., Mellios, E., & Zhang, J. (2017). Overview of millimeter wave communications for fifth-generation (5G) wireless networks-with a focus on propagation models. IEEE Transactions on Antennas and Propagation,65(12), 6213–6230.CrossRef Rappaport, T. S., Xing, Y., MacCartney, G. R., Molisch, A. F., Mellios, E., & Zhang, J. (2017). Overview of millimeter wave communications for fifth-generation (5G) wireless networks-with a focus on propagation models. IEEE Transactions on Antennas and Propagation,65(12), 6213–6230.CrossRef
52.
go back to reference Elkashlan, M., Duong, T. Q., & Chen, H. H. (2014). Millimeter-wave communications for 5G: Fundamentals: Part I. IEEE Communications Magazine,52(9), 52–54.CrossRef Elkashlan, M., Duong, T. Q., & Chen, H. H. (2014). Millimeter-wave communications for 5G: Fundamentals: Part I. IEEE Communications Magazine,52(9), 52–54.CrossRef
53.
go back to reference Shokri-Ghadikolaei, H., Fischione, C., Fodor, G., Popovski, P., & Zorzi, M. (2015). Millimeter wave cellular networks: A MAC layer perspective. IEEE Transactions on Communications,63(10), 3437–3458.CrossRef Shokri-Ghadikolaei, H., Fischione, C., Fodor, G., Popovski, P., & Zorzi, M. (2015). Millimeter wave cellular networks: A MAC layer perspective. IEEE Transactions on Communications,63(10), 3437–3458.CrossRef
54.
go back to reference Qiu, Y., Zhang, H., Long, K., Huang, Y., Song, X., & Leung, V. C. M. (2018). Energy-efficient power allocation with interference mitigation in MmWave-based fog radio access networks. IEEE Wireless Communications,25(4), 25–31.CrossRef Qiu, Y., Zhang, H., Long, K., Huang, Y., Song, X., & Leung, V. C. M. (2018). Energy-efficient power allocation with interference mitigation in MmWave-based fog radio access networks. IEEE Wireless Communications,25(4), 25–31.CrossRef
55.
go back to reference FCC. (2016). Report and order and further notice of proposed rulemaking. Federal Communications Commission, FCC, 16–89 FCC. (2016). Report and order and further notice of proposed rulemaking. Federal Communications Commission, FCC, 16–89
56.
go back to reference Al-Falahy, N., & Alani, O. Y. (2017). Technologies for 5G networks: Challenges and opportunities. IT Professional,19(1), 12–20.CrossRef Al-Falahy, N., & Alani, O. Y. (2017). Technologies for 5G networks: Challenges and opportunities. IT Professional,19(1), 12–20.CrossRef
57.
go back to reference Yu, Y., Baltus, P. G. M., & Roermund, A. H. M. van. (2011). Integrated 60 GHz RF Beamforming in CMOS. Springer Science & Business Media. Yu, Y., Baltus, P. G. M., & Roermund, A. H. M. van. (2011). Integrated 60 GHz RF Beamforming in CMOS. Springer Science & Business Media.
58.
go back to reference Busari, S. A., Member, S., Mohammed, K., Huq, S., Member, S., & Mumtaz, S. (2018). Millimeter-wave massive MIMO communication for future wireless systems: A Survey. IEEE Communications Surveys & Tutorials,20(2), 836–869.CrossRef Busari, S. A., Member, S., Mohammed, K., Huq, S., Member, S., & Mumtaz, S. (2018). Millimeter-wave massive MIMO communication for future wireless systems: A Survey. IEEE Communications Surveys & Tutorials,20(2), 836–869.CrossRef
59.
go back to reference Shokri-Ghadikolaei, H., Boccardi, F., Fischione, C., Fodor, G., & Zorzi, M. (2016). Spectrum sharing in mmWave cellular networks via cell association, coordination, and beamforming. IEEE Journal on Selected Areas in Communications,34(11), 2902–2917.CrossRef Shokri-Ghadikolaei, H., Boccardi, F., Fischione, C., Fodor, G., & Zorzi, M. (2016). Spectrum sharing in mmWave cellular networks via cell association, coordination, and beamforming. IEEE Journal on Selected Areas in Communications,34(11), 2902–2917.CrossRef
60.
go back to reference Gupta, A. K., Andrews, J. G., & Heath, R. W. (2016). On the feasibility of sharing spectrum licenses in mmWave cellular systems. IEEE Transactions on Communications,64(9), 3981–3995.CrossRef Gupta, A. K., Andrews, J. G., & Heath, R. W. (2016). On the feasibility of sharing spectrum licenses in mmWave cellular systems. IEEE Transactions on Communications,64(9), 3981–3995.CrossRef
61.
go back to reference Berraki, D. E., Armour, S. M. D., & Nix, A. R. (2014). Codebook based beamforming and multiuser scheduling scheme for mmWave outdoor cellular systems in the 28, 38 and 60 GHz bands. In 2014 IEEE Globecom workshops (GC Wkshps) (pp. 382–387). Berraki, D. E., Armour, S. M. D., & Nix, A. R. (2014). Codebook based beamforming and multiuser scheduling scheme for mmWave outdoor cellular systems in the 28, 38 and 60 GHz bands. In 2014 IEEE Globecom workshops (GC Wkshps) (pp. 382–387).
62.
go back to reference Ko, J., Cho, Y. J., Hur, S., Kim, T., Park, J., Molisch, A. F., et al. (2017). Millimeter-wave channel measurements and analysis for statistical spatial channel model in in-building and urban environments at 28 GHz. IEEE Transactions on Wireless Communications,16(9), 5853–5868.CrossRef Ko, J., Cho, Y. J., Hur, S., Kim, T., Park, J., Molisch, A. F., et al. (2017). Millimeter-wave channel measurements and analysis for statistical spatial channel model in in-building and urban environments at 28 GHz. IEEE Transactions on Wireless Communications,16(9), 5853–5868.CrossRef
63.
go back to reference Lee, J. H., Choi, J. S., & Kim, S. C. (2018). Cell coverage analysis of 28 GHZ millimeter wave in urban microcell environment using 3-D ray tracing. IEEE Transactions on Antennas and Propagation,66(3), 1479–1487.CrossRef Lee, J. H., Choi, J. S., & Kim, S. C. (2018). Cell coverage analysis of 28 GHZ millimeter wave in urban microcell environment using 3-D ray tracing. IEEE Transactions on Antennas and Propagation,66(3), 1479–1487.CrossRef
64.
go back to reference Attiah, M. L., Isa, A. A. M., Zakaria, Z., Abdullah, N. F., Ismail, M., & Nordin, R. (2018). Adaptive multi-state millimeter wave cell selection scheme for 5G communications. International Journal of Electrical and Computer Engineering (IJECE),8(5), 2967–2978.CrossRef Attiah, M. L., Isa, A. A. M., Zakaria, Z., Abdullah, N. F., Ismail, M., & Nordin, R. (2018). Adaptive multi-state millimeter wave cell selection scheme for 5G communications. International Journal of Electrical and Computer Engineering (IJECE),8(5), 2967–2978.CrossRef
65.
go back to reference Wei, L., Hu, R. Q., Qian, Y., & Wu, G. (2014). Key elements to enable millimeter wave communications for 5G wireless systems. IEEE Wireless Communications,21(6), 136–143.CrossRef Wei, L., Hu, R. Q., Qian, Y., & Wu, G. (2014). Key elements to enable millimeter wave communications for 5G wireless systems. IEEE Wireless Communications,21(6), 136–143.CrossRef
66.
go back to reference Busari, S. A., Member, S., Mohammed, K., Huq, S., Member, S., & Mumtaz, S. (2018). Millimeter-wave massive MIMO communication for future wireless systems: A survey. IEEE Communications Surveys & Tutorials,20(2), 836–869.CrossRef Busari, S. A., Member, S., Mohammed, K., Huq, S., Member, S., & Mumtaz, S. (2018). Millimeter-wave massive MIMO communication for future wireless systems: A survey. IEEE Communications Surveys & Tutorials,20(2), 836–869.CrossRef
67.
go back to reference Asghar, A., Farooq, H., & Imran, A. (2018). On concurrent optimization of coverage, capacity and load balance in HetNets through joint self-organization of soft and hard cell association parameters. IEEE Transactions on Vehicular Technology,67(9), 8781–8795.CrossRef Asghar, A., Farooq, H., & Imran, A. (2018). On concurrent optimization of coverage, capacity and load balance in HetNets through joint self-organization of soft and hard cell association parameters. IEEE Transactions on Vehicular Technology,67(9), 8781–8795.CrossRef
68.
go back to reference Han, Q., Yang, B., Chen, C., & Guan, X. (2016). Energy-aware and QoS-aware load balancing for HetNets powered by renewable energy. Computer Networks,94, 250–262.CrossRef Han, Q., Yang, B., Chen, C., & Guan, X. (2016). Energy-aware and QoS-aware load balancing for HetNets powered by renewable energy. Computer Networks,94, 250–262.CrossRef
69.
go back to reference Kyocera. (2010). Potential performance of range expansion in macro-pico deployment (r1-104355). In Proceedings of the 3GPP TSG RAN WG1 Meeting-62, Madrid, Spain (pp. 23–27). Kyocera. (2010). Potential performance of range expansion in macro-pico deployment (r1-104355). In Proceedings of the 3GPP TSG RAN WG1 Meeting-62, Madrid, Spain (pp. 23–27).
70.
go back to reference Al-rubaye, S., Senior, M., Al-dulaimi, A., Senior, M., Cosmas, J., et al. (2018). Call admission control for non-standalone 5G ultra-dense networks. IEEECommunications Letters,22(5), 1058–1061. Al-rubaye, S., Senior, M., Al-dulaimi, A., Senior, M., Cosmas, J., et al. (2018). Call admission control for non-standalone 5G ultra-dense networks. IEEECommunications Letters,22(5), 1058–1061.
71.
go back to reference Tesema, F. B., Awada, A., Viering, I., Simsek, M., & Fettweis, G. P. (2017). Multiconnectivity for mobility robustness in standalone 5G ultra dense networks with intrafrequency cloud radio access. Wireless Communications and Mobile Computing, 2017(Volume 2017, Article ID 2038078). Tesema, F. B., Awada, A., Viering, I., Simsek, M., & Fettweis, G. P. (2017). Multiconnectivity for mobility robustness in standalone 5G ultra dense networks with intrafrequency cloud radio access. Wireless Communications and Mobile Computing, 2017(Volume 2017, Article ID 2038078).
72.
go back to reference Kitindi, E. J., Fu, S. H. U., Jia, Y., Kabir, A., & Wang, Y. (2017). Wireless network virtualization with SDN and C-RAN for 5G networks: Requirements, opportunities, and challenges. IEEE Access,5, 19099–19115.CrossRef Kitindi, E. J., Fu, S. H. U., Jia, Y., Kabir, A., & Wang, Y. (2017). Wireless network virtualization with SDN and C-RAN for 5G networks: Requirements, opportunities, and challenges. IEEE Access,5, 19099–19115.CrossRef
73.
go back to reference Kamel, M., Member, S., Hamouda, W., & Member, S. (2019). Ultra-dense networks: A survey,18(4), 2522–2545. Kamel, M., Member, S., Hamouda, W., & Member, S. (2019). Ultra-dense networks: A survey,18(4), 2522–2545.
74.
go back to reference Andrews, J. G., Singh, S., & Lin, X. (2014). An overview of load balancing in HetNets: old myths and open problems. IEEE Wireless Communications,21(2), 18–25.CrossRef Andrews, J. G., Singh, S., & Lin, X. (2014). An overview of load balancing in HetNets: old myths and open problems. IEEE Wireless Communications,21(2), 18–25.CrossRef
75.
go back to reference Chowdhury, M. Z., & Jang, Y. M. (2013). Handover management in high-dense femtocellular networks. Journal on Wireless Communications and Networking,1, 1–21. Chowdhury, M. Z., & Jang, Y. M. (2013). Handover management in high-dense femtocellular networks. Journal on Wireless Communications and Networking,1, 1–21.
76.
go back to reference Chen, S., Qin, F., Hu, B., Li, X., & Chen, Z. (2016). User-centric ultra-dense networks for 5G: Challenges, methodologies, and directions. IEEE Wireless Communications,23(2), 78–85.CrossRef Chen, S., Qin, F., Hu, B., Li, X., & Chen, Z. (2016). User-centric ultra-dense networks for 5G: Challenges, methodologies, and directions. IEEE Wireless Communications,23(2), 78–85.CrossRef
77.
go back to reference Mesodiakaki, A., Adelantado, F., Alonso, L., Di Renzo, M., & Verikoukis, C. (2017). Energy- and spectrum-efficient user association in millimeter-wave backhaul small-cell networks. IEEE Transactions on Vehicular Technology,66(2), 1810–1821.CrossRef Mesodiakaki, A., Adelantado, F., Alonso, L., Di Renzo, M., & Verikoukis, C. (2017). Energy- and spectrum-efficient user association in millimeter-wave backhaul small-cell networks. IEEE Transactions on Vehicular Technology,66(2), 1810–1821.CrossRef
78.
go back to reference Mesodiakaki, A., Zola, E., & Kassler, A. (2017). User association in 5G heterogeneous networks with mesh millimeter wave backhaul links. In 18th IEEE international symposium on a world of wireless, mobile and multimedia networks, WoWMoM 2017 conference. Mesodiakaki, A., Zola, E., & Kassler, A. (2017). User association in 5G heterogeneous networks with mesh millimeter wave backhaul links. In 18th IEEE international symposium on a world of wireless, mobile and multimedia networks, WoWMoM 2017 conference.
79.
go back to reference Singh, S., Kulkarni, M. N., Ghosh, A., & Andrews, J. G. (2015). Tractable model for rate in self-backhauled millimeter wave cellular networks. IEEE Journal on Selected Areas in Communications,33(10), 2191–2211.CrossRef Singh, S., Kulkarni, M. N., Ghosh, A., & Andrews, J. G. (2015). Tractable model for rate in self-backhauled millimeter wave cellular networks. IEEE Journal on Selected Areas in Communications,33(10), 2191–2211.CrossRef
80.
go back to reference Yanping, L., & Xuming, F. (2016). Joint user association and resource allocation for self-backhaul ultra-dense networks. China Communications,13(2), 1–10.CrossRef Yanping, L., & Xuming, F. (2016). Joint user association and resource allocation for self-backhaul ultra-dense networks. China Communications,13(2), 1–10.CrossRef
81.
go back to reference Buzzi, S., Member, S., Member, S., Klein, T. E., Poor, V., Yang, C., et al. (2016). A survey of energy-efficient techniques for 5G networks and challenges ahead. IEEE Journal on Selected Areas in Communications,34(4), 697–709.CrossRef Buzzi, S., Member, S., Member, S., Klein, T. E., Poor, V., Yang, C., et al. (2016). A survey of energy-efficient techniques for 5G networks and challenges ahead. IEEE Journal on Selected Areas in Communications,34(4), 697–709.CrossRef
82.
go back to reference Munir, H., Hassan, S. A., Pervaiz, H., Ni, Q., & Musavian, L. (2016). Energy efficient resource allocation in 5 g hybrid heterogeneous networks: A game theoretic approach. In: 2016 IEEE 84th vehicular technology conference (VTC-Fall) (pp. 1–5). Munir, H., Hassan, S. A., Pervaiz, H., Ni, Q., & Musavian, L. (2016). Energy efficient resource allocation in 5 g hybrid heterogeneous networks: A game theoretic approach. In: 2016 IEEE 84th vehicular technology conference (VTC-Fall) (pp. 1–5).
83.
go back to reference Xu, B., Chen, Y., Elkashlan, M., Zhang, T., & Wong, K. K. (2016). User association in massive MIMO and mmWave enabled HetNets powered by renewable energy. IEEE Wireless Communications and Networking Conference (WCNC),2016, (pp. 1–6). Xu, B., Chen, Y., Elkashlan, M., Zhang, T., & Wong, K. K. (2016). User association in massive MIMO and mmWave enabled HetNets powered by renewable energy. IEEE Wireless Communications and Networking Conference (WCNC),2016, (pp. 1–6).
84.
go back to reference Niu, Y., Li, Y., Jin, D., Su, L., & Vasilakos, A. V. (2015). A survey of millimeter wave communications (mmWave) for 5G: Opportunities and challenges. Wireless Networks,21(8), 2657–2676.CrossRef Niu, Y., Li, Y., Jin, D., Su, L., & Vasilakos, A. V. (2015). A survey of millimeter wave communications (mmWave) for 5G: Opportunities and challenges. Wireless Networks,21(8), 2657–2676.CrossRef
85.
go back to reference Bai, T., & Heath Jr., R. W. (2014). Analysis of self-body blocking effects in millimeter wave cellular networks. In 2014 48th Asilomar conference on signals, systems and computers (pp. 1921–1925). Bai, T., & Heath Jr., R. W. (2014). Analysis of self-body blocking effects in millimeter wave cellular networks. In 2014 48th Asilomar conference on signals, systems and computers (pp. 1921–1925).
86.
go back to reference Bai, T., & Heath, R. W. (2015). Coverage and rate analysis for millimeter-wave cellular networks. IEEE Transactions on Wireless Communications,14(2), 1100–1114.CrossRef Bai, T., & Heath, R. W. (2015). Coverage and rate analysis for millimeter-wave cellular networks. IEEE Transactions on Wireless Communications,14(2), 1100–1114.CrossRef
87.
go back to reference Sattar, Z., Evangelista, J. V. C., Kaddoum, G., & Batani, N. (2018). Analysis of the cell association for decoupled wireless access in a two tier network. 2017 IEEE 28th annual international symposium on personal, indoor, and mobile radio communications (PIMRC) (pp. 1–6). Sattar, Z., Evangelista, J. V. C., Kaddoum, G., & Batani, N. (2018). Analysis of the cell association for decoupled wireless access in a two tier network. 2017 IEEE 28th annual international symposium on personal, indoor, and mobile radio communications (PIMRC) (pp. 1–6).
88.
go back to reference Qiao, J., Cai, L. X., Shen, X. S., Mark, J. W., & Fellow, L. (2011). Enabling multi-hop concurrent transmissions in 60 GHz. Wireless Personal Area Networks,10(11), 3824–3833. Qiao, J., Cai, L. X., Shen, X. S., Mark, J. W., & Fellow, L. (2011). Enabling multi-hop concurrent transmissions in 60 GHz. Wireless Personal Area Networks,10(11), 3824–3833.
89.
go back to reference Wu, S., Member, S., Atat, R., & Member, S. (2018). Improving the coverage and spectral efficiency of millimeter-wave cellular networks using device-to-device relays. IEEE Transactions on Communications,66(5), 2251–2265.CrossRef Wu, S., Member, S., Atat, R., & Member, S. (2018). Improving the coverage and spectral efficiency of millimeter-wave cellular networks using device-to-device relays. IEEE Transactions on Communications,66(5), 2251–2265.CrossRef
90.
go back to reference Boccardi, F., Andrews, J., Elshaer, H., Dohler, M., Parkvall, S., Popovski, P., et al. (2016). Why to decouple the uplink and downlink in cellular networks and how to do it. IEEE Communications Magazine,54(3), 110–117.CrossRef Boccardi, F., Andrews, J., Elshaer, H., Dohler, M., Parkvall, S., Popovski, P., et al. (2016). Why to decouple the uplink and downlink in cellular networks and how to do it. IEEE Communications Magazine,54(3), 110–117.CrossRef
91.
go back to reference Elshaer, H., Kulkarni, M. N., Boccardi, F., Andrews, J. G., & Dohler, M. (2016). Downlink and uplink cell association with traditional macrocells and millimeter wave small cells. IEEE Transactions on Wireless Communications,15(9), 6244–6258.CrossRef Elshaer, H., Kulkarni, M. N., Boccardi, F., Andrews, J. G., & Dohler, M. (2016). Downlink and uplink cell association with traditional macrocells and millimeter wave small cells. IEEE Transactions on Wireless Communications,15(9), 6244–6258.CrossRef
92.
go back to reference Bhatti, O. W., Suhail, H., Akbar, U., Hassan, S. A., Pervaiz, H., Musavian, L., & Ni, Q. (2017). Performance analysis of decoupled cell association in multi-tier hybrid networks using real blockage environments. In 2017 13th International wireless communications and mobile computing conference (IWCMC) (pp. 62–67). Bhatti, O. W., Suhail, H., Akbar, U., Hassan, S. A., Pervaiz, H., Musavian, L., & Ni, Q. (2017). Performance analysis of decoupled cell association in multi-tier hybrid networks using real blockage environments. In 2017 13th International wireless communications and mobile computing conference (IWCMC) (pp. 62–67).
93.
go back to reference Gao, X., Edfors, O., Rusek, F., & Tufvesson, F. (2015). Massive MIMO performance evaluation based on measured propagation data. IEEE Transactions on Wireless Communications,14(7), 3899–3911.CrossRef Gao, X., Edfors, O., Rusek, F., & Tufvesson, F. (2015). Massive MIMO performance evaluation based on measured propagation data. IEEE Transactions on Wireless Communications,14(7), 3899–3911.CrossRef
94.
go back to reference Umer, A., Hassan, S. A., Pervaiz, H., Ni, Q., & Musavian, L. (2017). Coverage and rate analysis for massive mimo-enabled heterogeneous networks with millimeter wave small cells. In 2017 IEEE 85th vehicular technology conference (VTC Spring) (pp. 1–5) Umer, A., Hassan, S. A., Pervaiz, H., Ni, Q., & Musavian, L. (2017). Coverage and rate analysis for massive mimo-enabled heterogeneous networks with millimeter wave small cells. In 2017 IEEE 85th vehicular technology conference (VTC Spring) (pp. 1–5)
95.
go back to reference Xia, W., Zhang, J., Jin, S., & Zhu, H. (2017). Delay-based user association in heterogeneous networks with Backhaul. China Communications,14(10), 130–141.CrossRef Xia, W., Zhang, J., Jin, S., & Zhu, H. (2017). Delay-based user association in heterogeneous networks with Backhaul. China Communications,14(10), 130–141.CrossRef
96.
go back to reference Ghatak, G., De Domenico, A., & Coupechoux, M. (2018). Modeling and analysis of HetNets with mm-Wave Multi-RAT small cells deployed along roads. In: 2017 IEEE global communications conference (GLOBECOM 2017) (pp. 1–7) Ghatak, G., De Domenico, A., & Coupechoux, M. (2018). Modeling and analysis of HetNets with mm-Wave Multi-RAT small cells deployed along roads. In: 2017 IEEE global communications conference (GLOBECOM 2017) (pp. 1–7)
97.
go back to reference Mezzavilla, M., Goyal, S., Panwar, S., Rangan, S., & Zorzi, M. (2016). An MDP model for optimal handover decisions in mmWave cellular networks. In: 2016 European conference on networks and communications (EuCNC) (pp. 100–105) Mezzavilla, M., Goyal, S., Panwar, S., Rangan, S., & Zorzi, M. (2016). An MDP model for optimal handover decisions in mmWave cellular networks. In: 2016 European conference on networks and communications (EuCNC) (pp. 100–105)
98.
go back to reference Cacciapuoti, A. S. (2017). Mobility-aware user association for 5G mmWave networks. IEEE Access,5, 21497–21507.CrossRef Cacciapuoti, A. S. (2017). Mobility-aware user association for 5G mmWave networks. IEEE Access,5, 21497–21507.CrossRef
99.
go back to reference Shokri-Ghadikolaei, H., Xu, Y., Gkatzikis, L., & Fischione, C. (2015). User association and the alignment-Throughput tradeoff in millimeter wave networks. In 2015 IEEE 1st international forum on research and technologies for society and industry leveraging a better tomorrow (RTSI) (pp. 100–105) Shokri-Ghadikolaei, H., Xu, Y., Gkatzikis, L., & Fischione, C. (2015). User association and the alignment-Throughput tradeoff in millimeter wave networks. In 2015 IEEE 1st international forum on research and technologies for society and industry leveraging a better tomorrow (RTSI) (pp. 100–105)
100.
go back to reference Akyildiz, I. F., Lin, S., & Wang, P. (2015). Wireless software-defined networks (W-SDNs) and network function virtualization (NFV) for 5G cellular systems: An overview and qualitative evaluation. Computer Networks,93(1), 66–79.CrossRef Akyildiz, I. F., Lin, S., & Wang, P. (2015). Wireless software-defined networks (W-SDNs) and network function virtualization (NFV) for 5G cellular systems: An overview and qualitative evaluation. Computer Networks,93(1), 66–79.CrossRef
101.
go back to reference Lin, S. C., & Akyildiz, I. F. (2017). Dynamic base station formation for solving NLOS problem in 5G millimeter-wave communication. IEEE INFOCOM 2017-IEEE conference on computer communications. Lin, S. C., & Akyildiz, I. F. (2017). Dynamic base station formation for solving NLOS problem in 5G millimeter-wave communication. IEEE INFOCOM 2017-IEEE conference on computer communications.
102.
go back to reference Kar, U. N., & Sanyal, D. K. (2018). An overview of device-to-device communication in cellular networks. ICT Express,4(4), 203–208.CrossRef Kar, U. N., & Sanyal, D. K. (2018). An overview of device-to-device communication in cellular networks. ICT Express,4(4), 203–208.CrossRef
103.
go back to reference Yi, W., Liu, Y., & Nallanathan, A. (2017). Modeling and analysis of D2D millimeter-wave networks with poisson cluster processes. IEEE Transactions on Communications,65(12), 5574–5588.CrossRef Yi, W., Liu, Y., & Nallanathan, A. (2017). Modeling and analysis of D2D millimeter-wave networks with poisson cluster processes. IEEE Transactions on Communications,65(12), 5574–5588.CrossRef
104.
go back to reference Kusaladharma, S., Zhang, Z., & Tellambura, C. (2018). Interference and outage analysis of random D2D networks underlaying millimeter wave cellular networks. IEEE Transactions on Communications,67(1), 778–790.CrossRef Kusaladharma, S., Zhang, Z., & Tellambura, C. (2018). Interference and outage analysis of random D2D networks underlaying millimeter wave cellular networks. IEEE Transactions on Communications,67(1), 778–790.CrossRef
105.
go back to reference Kim, J., Park, J., Kim, S., Kim, S. L., Sung, K. W., & Kim, K. S. (2018). Millimeter-wave interference avoidance via building-aware associations. IEEE Access,6, 10618–10634.CrossRef Kim, J., Park, J., Kim, S., Kim, S. L., Sung, K. W., & Kim, K. S. (2018). Millimeter-wave interference avoidance via building-aware associations. IEEE Access,6, 10618–10634.CrossRef
106.
go back to reference Biswas, S., Vuppala, S., & Xue, J. (2016). On the performance of relay aided millimeter wave networks. IEEE Journal of Selected Topics in Signal Processing,10(3), 576–588.CrossRef Biswas, S., Vuppala, S., & Xue, J. (2016). On the performance of relay aided millimeter wave networks. IEEE Journal of Selected Topics in Signal Processing,10(3), 576–588.CrossRef
107.
go back to reference Xu, Y., Shokri-Ghadikolaei, H., & Fischione, C. (2016). Distributed association and relaying with fairness in millimeter wave networks. IEEE Transactions on Wireless Communications,15(12), 7955–7970.CrossRef Xu, Y., Shokri-Ghadikolaei, H., & Fischione, C. (2016). Distributed association and relaying with fairness in millimeter wave networks. IEEE Transactions on Wireless Communications,15(12), 7955–7970.CrossRef
108.
go back to reference Giordani, M., Mezzavilla, M., & Zorzi, M. (2016). Initial access in 5G mmWave cellular networks. IEEE Communications Magazine,54(11), 40–47.CrossRef Giordani, M., Mezzavilla, M., & Zorzi, M. (2016). Initial access in 5G mmWave cellular networks. IEEE Communications Magazine,54(11), 40–47.CrossRef
109.
go back to reference Li, X., Fang, J., Li, H., & Wang, P. (2018). Millimeter wave channel estimation via exploiting joint sparse and low-rank structures. IEEE Transactions on Wireless Communications,17(2), 1123–1133.CrossRef Li, X., Fang, J., Li, H., & Wang, P. (2018). Millimeter wave channel estimation via exploiting joint sparse and low-rank structures. IEEE Transactions on Wireless Communications,17(2), 1123–1133.CrossRef
110.
go back to reference Barati, C. N., Hosseini, S. A., Mezzavilla, M., Korakis, T., Panwar, S. S., Rangan, S., et al. (2016). Initial access in millimeter wave cellular systems. IEEE Transactions on Wireless Communications,15(12), 7926–7940.CrossRef Barati, C. N., Hosseini, S. A., Mezzavilla, M., Korakis, T., Panwar, S. S., Rangan, S., et al. (2016). Initial access in millimeter wave cellular systems. IEEE Transactions on Wireless Communications,15(12), 7926–7940.CrossRef
111.
go back to reference Alkhateeb, A., Alex, S., Varkey, P., Li, Y., Qu, Q., & Tujkovic, D. (2018). Deep learning coordinated beamforming for highly-mobile millimeter wave systems. IEEE Access,6, 37328–37348.CrossRef Alkhateeb, A., Alex, S., Varkey, P., Li, Y., Qu, Q., & Tujkovic, D. (2018). Deep learning coordinated beamforming for highly-mobile millimeter wave systems. IEEE Access,6, 37328–37348.CrossRef
112.
go back to reference Li, Y., Andrews, J. G., Baccelli, F., Novlan, T. D., & Zhang, C. (2016). Design and analysis of initial access in millimeter wave cellular networks. IEEE Transactions on Wireless Communications,16(10), 6409–6425.CrossRef Li, Y., Andrews, J. G., Baccelli, F., Novlan, T. D., & Zhang, C. (2016). Design and analysis of initial access in millimeter wave cellular networks. IEEE Transactions on Wireless Communications,16(10), 6409–6425.CrossRef
113.
go back to reference Liu, C., Li, M., Collings, I. B., Hanly, S. V., & Whiting, P. (2016). Design and analysis of transmit beamforming for millimetre wave base station discovery. IEEE Transactions on Wireless Communications,16(2), 797–811.CrossRef Liu, C., Li, M., Collings, I. B., Hanly, S. V., & Whiting, P. (2016). Design and analysis of transmit beamforming for millimetre wave base station discovery. IEEE Transactions on Wireless Communications,16(2), 797–811.CrossRef
114.
go back to reference Liu, C., Li, M., Hanly, S. V., Collings, I. B., & Whiting, P. (2017). Millimeter wave beam alignment: Large deviations analysis and design insights. IEEE Journal on Selected Areas in Communications,35(7), 1619–1631. Liu, C., Li, M., Hanly, S. V., Collings, I. B., & Whiting, P. (2017). Millimeter wave beam alignment: Large deviations analysis and design insights. IEEE Journal on Selected Areas in Communications,35(7), 1619–1631.
115.
go back to reference Qi, Z., & Liu, W. (2018). Three-dimensional millimetre-wave beam tracking based on smart phone sensor measurements and direction of arrival/time of arrival estimation for 5G networks. IET Microwaves, Antennas and Propagation,12(3), 271–279.CrossRef Qi, Z., & Liu, W. (2018). Three-dimensional millimetre-wave beam tracking based on smart phone sensor measurements and direction of arrival/time of arrival estimation for 5G networks. IET Microwaves, Antennas and Propagation,12(3), 271–279.CrossRef
116.
go back to reference Zhang, J., Huang, Y., Shi, Q., Wang, J., & Yang, L. (2017). Codebook design for beam alignment in millimeter wave communication systems. IEEE Transactions on Communications,65(11), 4980–4995.CrossRef Zhang, J., Huang, Y., Shi, Q., Wang, J., & Yang, L. (2017). Codebook design for beam alignment in millimeter wave communication systems. IEEE Transactions on Communications,65(11), 4980–4995.CrossRef
117.
go back to reference Song, X., Haghighatshoar, S., & Caire, G. (2018). A scalable and statistically robust beam alignment technique for mm-wave systems. IEEE Transactions on Wireless Communications,17(7), 4792–4805.CrossRef Song, X., Haghighatshoar, S., & Caire, G. (2018). A scalable and statistically robust beam alignment technique for mm-wave systems. IEEE Transactions on Wireless Communications,17(7), 4792–4805.CrossRef
118.
go back to reference Zang, S., Bao, W., Yeoh, P. L., Chen, H., Lin, Z., Vucetic, B., & Li, Y. (2017). Mobility handover optimization in millimeter wave heterogeneous networks. In 2017 17th International symposium on communications and information technologies (ISCIT) (pp. 1–6) Zang, S., Bao, W., Yeoh, P. L., Chen, H., Lin, Z., Vucetic, B., & Li, Y. (2017). Mobility handover optimization in millimeter wave heterogeneous networks. In 2017 17th International symposium on communications and information technologies (ISCIT) (pp. 1–6)
119.
go back to reference Omar, M. S., Anjum, M. A., Hassan, S. A., Pervaiz, H., & Niv, Q. (2016). Performance analysis of hybrid 5G cellular networks exploiting mmWave capabilities in suburban areas. In IEEE international conference on communications (ICC) (pp. 1–6). Omar, M. S., Anjum, M. A., Hassan, S. A., Pervaiz, H., & Niv, Q. (2016). Performance analysis of hybrid 5G cellular networks exploiting mmWave capabilities in suburban areas. In IEEE international conference on communications (ICC) (pp. 1–6).
120.
go back to reference Chih-Lin, I., Han, S., Xu, Z., Sun, Q., & Pan, Z. (2016). 5G: Rethink mobile communications for 2020+. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences,374(2062), 1–13.CrossRef Chih-Lin, I., Han, S., Xu, Z., Sun, Q., & Pan, Z. (2016). 5G: Rethink mobile communications for 2020+. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences,374(2062), 1–13.CrossRef
121.
go back to reference Semiari, O., Saad, W., Member, S., Bennis, M., & Member, S. (2018). Caching meets millimeter wave communications for enhanced mobility management in 5G networks. IEEE Transactions on Wireless Communications,17(2), 779–793.CrossRef Semiari, O., Saad, W., Member, S., Bennis, M., & Member, S. (2018). Caching meets millimeter wave communications for enhanced mobility management in 5G networks. IEEE Transactions on Wireless Communications,17(2), 779–793.CrossRef
122.
go back to reference Arshad, R., Elsawy, H., Sorour, S., Al-Naffouri, T. Y., & Alouini, M. S. (2016). Handover management in 5G and beyond: A topology aware skipping approach. IEEE Access,4, 9073–9081.CrossRef Arshad, R., Elsawy, H., Sorour, S., Al-Naffouri, T. Y., & Alouini, M. S. (2016). Handover management in 5G and beyond: A topology aware skipping approach. IEEE Access,4, 9073–9081.CrossRef
123.
go back to reference Fan, P., & Zhao, J. (n.d.). 5G High Mobility Wireless Communications: Challenges and Solutions. China Communications, 13(Suppl 2), 1–13. Fan, P., & Zhao, J. (n.d.). 5G High Mobility Wireless Communications: Challenges and Solutions. China Communications, 13(Suppl 2), 1–13.
124.
go back to reference Ren, X., Chen, W., Member, S., Tao, M., & Member, S. (2015). Position-based compressed channel estimation and pilot design for high-mobility OFDM systems. IEEE Transactions on Vehicular Technology,64(5), 1918–1929.CrossRef Ren, X., Chen, W., Member, S., Tao, M., & Member, S. (2015). Position-based compressed channel estimation and pilot design for high-mobility OFDM systems. IEEE Transactions on Vehicular Technology,64(5), 1918–1929.CrossRef
125.
go back to reference Heath, R. W., Gonzalez-Prelcic, N., Rangan, S., Roh, W., & Sayeed, A. M. (2016). An overview of signal processing techniques for millimeter wave MIMO systems. IEEE Journal on Selected Topics in Signal Processing,10(3), 436–453.CrossRef Heath, R. W., Gonzalez-Prelcic, N., Rangan, S., Roh, W., & Sayeed, A. M. (2016). An overview of signal processing techniques for millimeter wave MIMO systems. IEEE Journal on Selected Topics in Signal Processing,10(3), 436–453.CrossRef
126.
go back to reference Ali, E., Ismail, M., Nordin, R., & Abdulah, N. F. (2017). Beamforming techniques for massive MIMO systems in 5G: Overview, classification, and trends for future research. Frontiers of Information Technology & Electronic Engineering,18(6), 753–772.CrossRef Ali, E., Ismail, M., Nordin, R., & Abdulah, N. F. (2017). Beamforming techniques for massive MIMO systems in 5G: Overview, classification, and trends for future research. Frontiers of Information Technology & Electronic Engineering,18(6), 753–772.CrossRef
127.
go back to reference Gupta, A., Member, S., Jha, R. K., & Member, S. (2015). A survey of 5G network: Architecture and emerging technologies. IEEE access,3, 1206–1232.CrossRef Gupta, A., Member, S., Jha, R. K., & Member, S. (2015). A survey of 5G network: Architecture and emerging technologies. IEEE access,3, 1206–1232.CrossRef
128.
go back to reference Ren, H., Liu, N., Pan, C., Elkashlan, M., Nallanathan, A., You, X., et al. (2018). Low-latency C-RAN: An next-generation wireless approach. IEEE Vehicular Technology Magazine,13(2), 48–56.CrossRef Ren, H., Liu, N., Pan, C., Elkashlan, M., Nallanathan, A., You, X., et al. (2018). Low-latency C-RAN: An next-generation wireless approach. IEEE Vehicular Technology Magazine,13(2), 48–56.CrossRef
129.
go back to reference Hsieh, P. J., Lin, W. S., Lin, K. H., & Wei, H. Y. (2018). Dual-connectivity prevenient handover scheme in control/user-plane split networks. IEEE Transactions on Vehicular Technology,67(4), 3545–3560.CrossRef Hsieh, P. J., Lin, W. S., Lin, K. H., & Wei, H. Y. (2018). Dual-connectivity prevenient handover scheme in control/user-plane split networks. IEEE Transactions on Vehicular Technology,67(4), 3545–3560.CrossRef
130.
go back to reference Pan, M. S., Lin, T. M., & Chen, W. T. (2015). An enhanced handover scheme for mobile relays in LTE-A high-speed rail networks. IEEE Transactions on Vehicular Technology,64(2), 743–756.CrossRef Pan, M. S., Lin, T. M., & Chen, W. T. (2015). An enhanced handover scheme for mobile relays in LTE-A high-speed rail networks. IEEE Transactions on Vehicular Technology,64(2), 743–756.CrossRef
131.
go back to reference Semiari, O., Saad, W., Bennis, M., & Maham, B. (2017). Mobility management for heterogeneous networks: Caching meets millimeter wave to provide seamless handover. In GLOBECOM 2017–2017 IEEE global communications conference (pp. 1–6). Semiari, O., Saad, W., Bennis, M., & Maham, B. (2017). Mobility management for heterogeneous networks: Caching meets millimeter wave to provide seamless handover. In GLOBECOM 20172017 IEEE global communications conference (pp. 1–6).
132.
go back to reference Chen, M., Hao, Y., Hu, L., Huang, K., & Lau, V. K. N. (2017). Green and mobility-aware caching in 5G networks. IEEE Transactions on Wireless Communications,16(12), 8347–8361.CrossRef Chen, M., Hao, Y., Hu, L., Huang, K., & Lau, V. K. N. (2017). Green and mobility-aware caching in 5G networks. IEEE Transactions on Wireless Communications,16(12), 8347–8361.CrossRef
133.
go back to reference Kela, P., Turkka, J., & Costa, M. (2015). Borderless mobility in 5G outdoor ultra-dense networks. IEEE Access,3, 1462–1476.CrossRef Kela, P., Turkka, J., & Costa, M. (2015). Borderless mobility in 5G outdoor ultra-dense networks. IEEE Access,3, 1462–1476.CrossRef
134.
go back to reference Vasudeva, K., Dikmese, S., Guvenc, I., Mehbodniya, A., Saad, W., & Adachi, F. (2017). Fuzzy based game theoretic mobility management for energy efficient operation in HetNets. IEEE Access,3536, 7542–7552.CrossRef Vasudeva, K., Dikmese, S., Guvenc, I., Mehbodniya, A., Saad, W., & Adachi, F. (2017). Fuzzy based game theoretic mobility management for energy efficient operation in HetNets. IEEE Access,3536, 7542–7552.CrossRef
135.
go back to reference Lu, Y., Xiong, K., Fan, P., Zhong, Z., & Ai, B. (2017). The Effect of power adjustment on handover in high-speed railway communication networks. IEEE Access,5, 26237–26250.CrossRef Lu, Y., Xiong, K., Fan, P., Zhong, Z., & Ai, B. (2017). The Effect of power adjustment on handover in high-speed railway communication networks. IEEE Access,5, 26237–26250.CrossRef
136.
go back to reference Mohamed, A., Imran, M. A., Xiao, P., & Tafazolli, R. (2018). Memory-full context-aware predictive mobility management in dual connectivity 5G networks. IEEE Access,6, 9655–9666.CrossRef Mohamed, A., Imran, M. A., Xiao, P., & Tafazolli, R. (2018). Memory-full context-aware predictive mobility management in dual connectivity 5G networks. IEEE Access,6, 9655–9666.CrossRef
137.
go back to reference Zhao, J., Liu, Y., Gong, Y., Wang, C., & Fan, L. (2018). A dual-link soft handover scheme for C/U plane split network in high-speed railway. IEEE Access,6, 12473–12482.CrossRef Zhao, J., Liu, Y., Gong, Y., Wang, C., & Fan, L. (2018). A dual-link soft handover scheme for C/U plane split network in high-speed railway. IEEE Access,6, 12473–12482.CrossRef
138.
go back to reference Arshad, R., ElSawy, H., Sorour, S., Al-Naffouri, T. Y., & Alouini, M. S. (2017). Velocity-aware handover management in two-tier cellular networks. IEEE Transactions on Wireless Communications,16(3), 1851–1867.CrossRef Arshad, R., ElSawy, H., Sorour, S., Al-Naffouri, T. Y., & Alouini, M. S. (2017). Velocity-aware handover management in two-tier cellular networks. IEEE Transactions on Wireless Communications,16(3), 1851–1867.CrossRef
139.
go back to reference Bilen, T., Canberk, B., & Chowdhury, K. R. (2017). Handover management in software-defined ultra-dense 5G networks. IEEE Network,31(4), 49–55.CrossRef Bilen, T., Canberk, B., & Chowdhury, K. R. (2017). Handover management in software-defined ultra-dense 5G networks. IEEE Network,31(4), 49–55.CrossRef
140.
go back to reference Zhang, H., Qiu, Y., Chu, X., Long, K., & Leung, V. C. M. (2017). Fog radio access networks: Mobility a, interference mitigation and resource optimization. IEEE Wireless Communications,24(6), 120–127.CrossRef Zhang, H., Qiu, Y., Chu, X., Long, K., & Leung, V. C. M. (2017). Fog radio access networks: Mobility a, interference mitigation and resource optimization. IEEE Wireless Communications,24(6), 120–127.CrossRef
141.
go back to reference Chochlidakis, G., & Friderikos, V. (2017). Mobility aware virtual network embedding. IEEE Transactions on Mobile Computing,16(5), 1343–1356.CrossRef Chochlidakis, G., & Friderikos, V. (2017). Mobility aware virtual network embedding. IEEE Transactions on Mobile Computing,16(5), 1343–1356.CrossRef
142.
go back to reference Zhang, H., Liu, N., Chu, X., Long, K., Aghvami, A. H., & Leung, V. C. M. (2017). Network slicing based 5G and future mobile networks: Mobility, resource management, and challenges. IEEE Communications Magazine,55(8), 138–145.CrossRef Zhang, H., Liu, N., Chu, X., Long, K., Aghvami, A. H., & Leung, V. C. M. (2017). Network slicing based 5G and future mobile networks: Mobility, resource management, and challenges. IEEE Communications Magazine,55(8), 138–145.CrossRef
143.
go back to reference Niknam, S., Member, S., Natarajan, B., & Member, S. (2018). Interference analysis for finite-area 5G mmWave networks considering blockage effect. IEEE Access,6, 23470–23479.CrossRef Niknam, S., Member, S., Natarajan, B., & Member, S. (2018). Interference analysis for finite-area 5G mmWave networks considering blockage effect. IEEE Access,6, 23470–23479.CrossRef
144.
go back to reference Han, K., Cui, Y., Wu, Y., & Huang, K. (2018). The connectivity of millimeter-wave networks in urban environments modeled using random lattices. IEEE Transactions on Wireless Communications,17(5), 3357–3372.CrossRef Han, K., Cui, Y., Wu, Y., & Huang, K. (2018). The connectivity of millimeter-wave networks in urban environments modeled using random lattices. IEEE Transactions on Wireless Communications,17(5), 3357–3372.CrossRef
145.
go back to reference Moltchanov, D., Ometov, A., Andreev, S., & Koucheryavy, Y. (2018). Upper bound on capacity of 5G mmWave cellular with multi-connectivity capabilities. Electronics Letters,54(11), 11–12.CrossRef Moltchanov, D., Ometov, A., Andreev, S., & Koucheryavy, Y. (2018). Upper bound on capacity of 5G mmWave cellular with multi-connectivity capabilities. Electronics Letters,54(11), 11–12.CrossRef
146.
go back to reference Choi, J. (2014). On the macro diversity with multiple BSs to mitigate blockage in millimeter-wave communications. IEEE Communications Letters,18(9), 1623–1656.CrossRef Choi, J. (2014). On the macro diversity with multiple BSs to mitigate blockage in millimeter-wave communications. IEEE Communications Letters,18(9), 1623–1656.CrossRef
147.
go back to reference Gupta, A. K., Andrews, J. G., & Heath, R. W. (2017). Macrodiversity in cellular networks with random blockages. IEEE Transactions on Wireless Communications,17(2), 996–1010.CrossRef Gupta, A. K., Andrews, J. G., & Heath, R. W. (2017). Macrodiversity in cellular networks with random blockages. IEEE Transactions on Wireless Communications,17(2), 996–1010.CrossRef
148.
go back to reference Niu, Y., Gao, C., Li, Y., Su, L., & Jin, D. (2016). Exploiting multi-hop relaying to overcome blockage in directional mmwave small cells. Journal of Communications and Networks,18(3), 364–374.CrossRef Niu, Y., Gao, C., Li, Y., Su, L., & Jin, D. (2016). Exploiting multi-hop relaying to overcome blockage in directional mmwave small cells. Journal of Communications and Networks,18(3), 364–374.CrossRef
149.
go back to reference Chelli, A. L. I., & Kansanen, K. (2018). On bit error probability and power optimization in multihop millimeter wave relay systems. IEEE Access,6, 3794–3808.CrossRef Chelli, A. L. I., & Kansanen, K. (2018). On bit error probability and power optimization in multihop millimeter wave relay systems. IEEE Access,6, 3794–3808.CrossRef
150.
go back to reference Belbase, K., Tellambura, C., & Jiang, H. (2018). Two-way relay selection for millimeter wave networks. IEEE Communications Letters,22(1), 201–204.CrossRef Belbase, K., Tellambura, C., & Jiang, H. (2018). Two-way relay selection for millimeter wave networks. IEEE Communications Letters,22(1), 201–204.CrossRef
151.
go back to reference Filippini, I., Member, S., & Sciancalepore, V. (2018). Fast cell discovery in mm-Wave 5G networks with context information. IEEE Transactions on Mobile Computing,17(7), 1538–1552.CrossRef Filippini, I., Member, S., & Sciancalepore, V. (2018). Fast cell discovery in mm-Wave 5G networks with context information. IEEE Transactions on Mobile Computing,17(7), 1538–1552.CrossRef
152.
go back to reference Park, J., Kim, S. L., & Zander, J. (2016). Tractable resource management with uplink decoupled millimeter-wave overlay in ultra-dense cellular networks. IEEE Transactions on Wireless Communications,15(6), 4362–4379.CrossRef Park, J., Kim, S. L., & Zander, J. (2016). Tractable resource management with uplink decoupled millimeter-wave overlay in ultra-dense cellular networks. IEEE Transactions on Wireless Communications,15(6), 4362–4379.CrossRef
153.
go back to reference Mastrosimone, A., & Panno, D. (2017). Moving network based on mmWave technology: A promising solution for 5G vehicular users. Wireless Networks,24(7), 2409–2426.CrossRef Mastrosimone, A., & Panno, D. (2017). Moving network based on mmWave technology: A promising solution for 5G vehicular users. Wireless Networks,24(7), 2409–2426.CrossRef
154.
go back to reference Hetnets, C. C. T., Guo, L., & Cong, S. (2017). Coverage and rate analysis for location-aware cross-tier cooperation in two-tier HetNets. Symmetry,9(8), 1–21.MathSciNetMATH Hetnets, C. C. T., Guo, L., & Cong, S. (2017). Coverage and rate analysis for location-aware cross-tier cooperation in two-tier HetNets. Symmetry,9(8), 1–21.MathSciNetMATH
155.
go back to reference Pervez, F., Jaber, M., & Member, S. (2018). Memory-based user-centric backhaul-aware user cell association scheme. IEEE Access,6, 39595–39605.CrossRef Pervez, F., Jaber, M., & Member, S. (2018). Memory-based user-centric backhaul-aware user cell association scheme. IEEE Access,6, 39595–39605.CrossRef
156.
go back to reference Luo, Z., LiWang, M., Lin, Z., Huang, L., Du, X., & Guizani, M. (2017). Energy-efficient caching for mobile edge computing in 5G networks. Applied Sciences,7(6), 557.CrossRef Luo, Z., LiWang, M., Lin, Z., Huang, L., Du, X., & Guizani, M. (2017). Energy-efficient caching for mobile edge computing in 5G networks. Applied Sciences,7(6), 557.CrossRef
157.
go back to reference Clarke, R. N. (2014). Expanding mobile wireless capacity: The challenges presented by technology and economics. Telecommunications Policy,38(8–9), 693–708.CrossRef Clarke, R. N. (2014). Expanding mobile wireless capacity: The challenges presented by technology and economics. Telecommunications Policy,38(8–9), 693–708.CrossRef
158.
go back to reference Cave, M., Doyle, C., & Webb, W. (2007). Essentials of modern spectrum management. Cambridge: Cambridge University Press.CrossRef Cave, M., Doyle, C., & Webb, W. (2007). Essentials of modern spectrum management. Cambridge: Cambridge University Press.CrossRef
159.
go back to reference Ye, D. (2016). Heterogeneous cognitive networks: Spectrum sharing with adaptive opportunistic DSMA for collaborative PCP-OFDM system. Wireless Networks,22(1), 351–366.CrossRef Ye, D. (2016). Heterogeneous cognitive networks: Spectrum sharing with adaptive opportunistic DSMA for collaborative PCP-OFDM system. Wireless Networks,22(1), 351–366.CrossRef
160.
go back to reference Ghatak, G., Domenico, A. De, & Coupechoux, M. (2018). Coverage analysis and load balancing in HetNets with mmWave multi-RAT small cells. IEEE Transactions on Wireless Communications,17(5), 3154–3169.CrossRef Ghatak, G., Domenico, A. De, & Coupechoux, M. (2018). Coverage analysis and load balancing in HetNets with mmWave multi-RAT small cells. IEEE Transactions on Wireless Communications,17(5), 3154–3169.CrossRef
161.
go back to reference Park, J., Andrews, J. G., & Heath, R. W. (2017). Inter-operator base station coordination in spectrum-shared millimeter wave cellular networks. IEEE Transactions on Cognitive Communications and Networking,4(3), 513–528.CrossRef Park, J., Andrews, J. G., & Heath, R. W. (2017). Inter-operator base station coordination in spectrum-shared millimeter wave cellular networks. IEEE Transactions on Cognitive Communications and Networking,4(3), 513–528.CrossRef
162.
go back to reference Wang, H., Chen, X., Zaidi, A. A., Luo, J., & Dieudonne, M. (2018). Waveform evaluations subject to hardware impairments for mm-wave mobile communications. Wireless Networks,6, 1–15. Wang, H., Chen, X., Zaidi, A. A., Luo, J., & Dieudonne, M. (2018). Waveform evaluations subject to hardware impairments for mm-wave mobile communications. Wireless Networks,6, 1–15.
163.
go back to reference Attiah, M. L., Ismail, M., Nordin, R., & Abdullah, N. F. (2016). Dynamic multi-state ultra-wideband mm-wave frequency selection for 5G communication. In 2015 IEEE 12th Malaysia international conference on communications (MICC 2015) (pp. 219–224). Attiah, M. L., Ismail, M., Nordin, R., & Abdullah, N. F. (2016). Dynamic multi-state ultra-wideband mm-wave frequency selection for 5G communication. In 2015 IEEE 12th Malaysia international conference on communications (MICC 2015) (pp. 219–224).
164.
go back to reference Kim, T., Park, J., Seol, J. Y., Jeong, S., Cho, J., & Roh, W. (2013). Tens of Gbps support with mmWave beamforming systems for next generation communications. IEEE Global Communications Conference (GLOBECOM),2013, 3685–3690. Kim, T., Park, J., Seol, J. Y., Jeong, S., Cho, J., & Roh, W. (2013). Tens of Gbps support with mmWave beamforming systems for next generation communications. IEEE Global Communications Conference (GLOBECOM),2013, 3685–3690.
165.
go back to reference Rebato, M., Boccardi, F., Mezzavilla, M., Rangan, S., & Zorzi, M. (2017). Hybrid spectrum sharing in mmwave cellular networks. IEEE Transactions on Cognitive Communications and Networking,3(2), 155–168.CrossRef Rebato, M., Boccardi, F., Mezzavilla, M., Rangan, S., & Zorzi, M. (2017). Hybrid spectrum sharing in mmwave cellular networks. IEEE Transactions on Cognitive Communications and Networking,3(2), 155–168.CrossRef
166.
go back to reference Bala, I., Bhamrah, M. S., & Singh, G. (2015). Capacity in fading environment based on soft sensing information under spectrum sharing constraints. Wireless Networks,23(2), 519–531.CrossRef Bala, I., Bhamrah, M. S., & Singh, G. (2015). Capacity in fading environment based on soft sensing information under spectrum sharing constraints. Wireless Networks,23(2), 519–531.CrossRef
167.
go back to reference Boccardi, F., Shokri-Ghadikolaei, H., Fodor, G., Erkip, E., Fischione, C., Kountouris, M., et al. (2016). Spectrum pooling in MmWave networks: opportunities, challenges, and enablers. IEEE Communications Magazine,54(11), 33–39.CrossRef Boccardi, F., Shokri-Ghadikolaei, H., Fodor, G., Erkip, E., Fischione, C., Kountouris, M., et al. (2016). Spectrum pooling in MmWave networks: opportunities, challenges, and enablers. IEEE Communications Magazine,54(11), 33–39.CrossRef
168.
go back to reference Li, G., Irnich, T., & Shi, C. (2014). Coordination context - based spectrum sharing for 5G millimeter—wave networks. In 2014 9th international conference on cognitive radio orient-ed wireless networks and communications (CROWNCOM) (pp. 32–38). Li, G., Irnich, T., & Shi, C. (2014). Coordination context - based spectrum sharing for 5G millimeter—wave networks. In 2014 9th international conference on cognitive radio orient-ed wireless networks and communications (CROWNCOM) (pp. 32–38).
169.
go back to reference Rebato, M., Mezzavilla, M., Rangan, S., & Zorzi, M. (2016). Resource sharing in 5G mmWave cellular networks. In 2016 IEEE conference on computer communications work-shops (INFOCOM WKSHPS) (pp. 271–276). Rebato, M., Mezzavilla, M., Rangan, S., & Zorzi, M. (2016). Resource sharing in 5G mmWave cellular networks. In 2016 IEEE conference on computer communications work-shops (INFOCOM WKSHPS) (pp. 271–276).
170.
go back to reference Rebato, M., Boccardi, F., Mezzavilla, M., Rangan, S., & Zorzi, M. (2016). Hybrid spectrum access for mmWave networks. In 2016 mediterranean ad hoc networking workshop (Med-Hoc-Net) (pp. 1–7). Rebato, M., Boccardi, F., Mezzavilla, M., Rangan, S., & Zorzi, M. (2016). Hybrid spectrum access for mmWave networks. In 2016 mediterranean ad hoc networking workshop (Med-Hoc-Net) (pp. 1–7).
171.
go back to reference Jurdi, R., Gupta, A. K., Andrews, J. G., & Heath, R. W. (2018). Modeling infrastructure sharing in mmwave networks with shared spectrum licenses. IEEE Transactions on Cognitive Communications and Networking,4(2), 328–343.CrossRef Jurdi, R., Gupta, A. K., Andrews, J. G., & Heath, R. W. (2018). Modeling infrastructure sharing in mmwave networks with shared spectrum licenses. IEEE Transactions on Cognitive Communications and Networking,4(2), 328–343.CrossRef
172.
go back to reference Fund, F., Shahsavari, S., Panwar, S. S., Erkip, E., & Rangan, S. (2017). Resource sharing among mmWave cellular service providers in a vertically differentiated duopoly. In 2017 IEEE international conference on communications (ICC) (pp. 1–7). Fund, F., Shahsavari, S., Panwar, S. S., Erkip, E., & Rangan, S. (2017). Resource sharing among mmWave cellular service providers in a vertically differentiated duopoly. In 2017 IEEE international conference on communications (ICC) (pp. 1–7).
173.
go back to reference Di Renzo, M. (2015). Stochastic geometry modeling and analysis of multi-tier millimeter wave cellular networks. IEEE Transactions on Wireless Communications,14(9), 5038–5057.CrossRef Di Renzo, M. (2015). Stochastic geometry modeling and analysis of multi-tier millimeter wave cellular networks. IEEE Transactions on Wireless Communications,14(9), 5038–5057.CrossRef
174.
go back to reference Rebato, M., Mezzavilla, M., Rangan, S., Boccardi, F., & Zorzi, M. (2016). Understanding noise and interference regimes in 5G millimeter-wave cellular networks (pp. 84–88). Rebato, M., Mezzavilla, M., Rangan, S., Boccardi, F., & Zorzi, M. (2016). Understanding noise and interference regimes in 5G millimeter-wave cellular networks (pp. 84–88).
175.
go back to reference Attiah, M. L., Isa, A. A. M., Zakaria, Z., Ismail, M., Nordin, R., & Abdullah, N. F. (2018). Coverage probability optimisation by utilizing flexible hybrid mmWave spectrum slicing—sharing access strategy for 5G cellular systems. Journal of Telecommunication, Electronic and Computer Engineering,10(2), 91–98. Attiah, M. L., Isa, A. A. M., Zakaria, Z., Ismail, M., Nordin, R., & Abdullah, N. F. (2018). Coverage probability optimisation by utilizing flexible hybrid mmWave spectrum slicing—sharing access strategy for 5G cellular systems. Journal of Telecommunication, Electronic and Computer Engineering,10(2), 91–98.
176.
go back to reference Ullah, U., Dilshad, N., Husain, M., & Umer, T. (2016). Fairness in cognitive radio networks: Models, measurement methods, applications, and future research directions. Journal of Network and Computer Applications,73, 12–26.CrossRef Ullah, U., Dilshad, N., Husain, M., & Umer, T. (2016). Fairness in cognitive radio networks: Models, measurement methods, applications, and future research directions. Journal of Network and Computer Applications,73, 12–26.CrossRef
177.
go back to reference Tang, J., Misra, S., & Xue, G. (2008). Joint spectrum allocation and scheduling for fair spectrum sharing in cognitive radio wireless networks. Computer Networks,52(11), 2148–2158.CrossRefMATH Tang, J., Misra, S., & Xue, G. (2008). Joint spectrum allocation and scheduling for fair spectrum sharing in cognitive radio wireless networks. Computer Networks,52(11), 2148–2158.CrossRefMATH
178.
go back to reference Cano, L., Capone, A., Carello, G., Cesana, M., & Passacantando, M. (2016). Cooperative infrastructure and spectrum sharing in heterogeneous mobile networks. IEEE Journal on Selected Areas in Communications,34(10), 2617–2629.CrossRef Cano, L., Capone, A., Carello, G., Cesana, M., & Passacantando, M. (2016). Cooperative infrastructure and spectrum sharing in heterogeneous mobile networks. IEEE Journal on Selected Areas in Communications,34(10), 2617–2629.CrossRef
179.
go back to reference Merwaday, A., Yuksel, M., Quint, T., Güvenç, I., Saad, W., & Kapucu, N. (2018). Incentivizing spectrum sharing via subsidy regulations for future wireless networks. Computer Networks,135, 132–146.CrossRef Merwaday, A., Yuksel, M., Quint, T., Güvenç, I., Saad, W., & Kapucu, N. (2018). Incentivizing spectrum sharing via subsidy regulations for future wireless networks. Computer Networks,135, 132–146.CrossRef
180.
go back to reference Copeland, R., Crespi, N., Copeland, R., & Crespi, N. (2011). Modelling multi-MNO business for MVNOs in their evolution to LTE, VoLTE advanced policy To cite this version: HAL Id: hal-00766676 Evolution to LTE, VoLTE & Advanced Policy. In 2011 15th international conference on intelligence in next generation networks (pp. 295–300). Copeland, R., Crespi, N., Copeland, R., & Crespi, N. (2011). Modelling multi-MNO business for MVNOs in their evolution to LTE, VoLTE advanced policy To cite this version: HAL Id: hal-00766676 Evolution to LTE, VoLTE & Advanced Policy. In 2011 15th international conference on intelligence in next generation networks (pp. 295–300).
181.
go back to reference Kapucu, N., Haupt, B., & Yuksel, M. (2018). Spectrum sharing policy: Interoperable communication and information sharing for public safety. Risk, Hazards & Crisis in Public Policy,9(1), 39–59.CrossRef Kapucu, N., Haupt, B., & Yuksel, M. (2018). Spectrum sharing policy: Interoperable communication and information sharing for public safety. Risk, Hazards & Crisis in Public Policy,9(1), 39–59.CrossRef
182.
go back to reference Kang, D. H., Sung, K. W., & Zander, J. (2013). High capacity indoor and hotspot wireless systems in shared spectrum: A techno-economic analysis. IEEE Communications Magazine,51(12), 102–109.CrossRef Kang, D. H., Sung, K. W., & Zander, J. (2013). High capacity indoor and hotspot wireless systems in shared spectrum: A techno-economic analysis. IEEE Communications Magazine,51(12), 102–109.CrossRef
183.
go back to reference Mustonen, M., Matinmikkoi, M., Roberson, D., & Yrja, S. (2014). Evaluation of recent spectrum sharing models from the regulatory point of view. In 1st international conference on 5G for ubiquitous connectivity (pp. 11–16). Mustonen, M., Matinmikkoi, M., Roberson, D., & Yrja, S. (2014). Evaluation of recent spectrum sharing models from the regulatory point of view. In 1st international conference on 5G for ubiquitous connectivity (pp. 11–16).
184.
go back to reference Wang, R. U. I., Hu, H., Member, S., & Yang, X. (2014). Potentials and challenges of C-RAN supporting multi-RATs toward 5G mobile networks. IEEE Access,2, 1187–1195.CrossRef Wang, R. U. I., Hu, H., Member, S., & Yang, X. (2014). Potentials and challenges of C-RAN supporting multi-RATs toward 5G mobile networks. IEEE Access,2, 1187–1195.CrossRef
185.
go back to reference Narmanlioglu, O., & Zeydan, E. (2017). New Era in shared cellular networks: Moving into open and virtualized platform. International Journal of Network Management,27(6), 1–19.CrossRef Narmanlioglu, O., & Zeydan, E. (2017). New Era in shared cellular networks: Moving into open and virtualized platform. International Journal of Network Management,27(6), 1–19.CrossRef
186.
go back to reference Feng, W., Li, Y., Jin, D., Su, L., & Chen, S. (2016). Millimetre-wave backhaul for 5G networks: Challenges and solutions. Sensors (Switzerland),16(6), 1–17.CrossRef Feng, W., Li, Y., Jin, D., Su, L., & Chen, S. (2016). Millimetre-wave backhaul for 5G networks: Challenges and solutions. Sensors (Switzerland),16(6), 1–17.CrossRef
Metadata
Title
A survey of mmWave user association mechanisms and spectrum sharing approaches: an overview, open issues and challenges, future research trends
Authors
Mothana L. Attiah
A. A. M. Isa
Zahriladha Zakaria
M. K. Abdulhameed
Mowafak K. Mohsen
Ihab Ali
Publication date
18-03-2019
Publisher
Springer US
Published in
Wireless Networks / Issue 4/2020
Print ISSN: 1022-0038
Electronic ISSN: 1572-8196
DOI
https://doi.org/10.1007/s11276-019-01976-x

Other articles of this Issue 4/2020

Wireless Networks 4/2020 Go to the issue