Skip to main content
Top
Published in: Journal of Applied Mathematics and Computing 1-2/2018

17-08-2017 | Original Research

A theoretical study of enhanced heat transfer in nanoliquids with volumetric heat source

Authors: N. Meenakshi, P. G. Siddheshwar

Published in: Journal of Applied Mathematics and Computing | Issue 1-2/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Rayleigh–Bénard convection in nanoliquids is studied in the presence of volumetric heat source. The present analytical work concerns twenty nanoliquids. Carrier liquids considered are water, ethylene glycol, engine oil and glycerine and with them five different nanoparticles considered are copper, copper oxide, silver, alumina and titania. Expression for the thermophysical properties of the nanoliquids is chosen from phenomenological laws or mixture theory. Heat source is characterized by an internal nanoliquid Rayleigh number \(R_{I_{nl}}\). Heat source adds to the energy of the system and hence an advanced onset is observed in this case compared to the problem with no heat source. In the case of heat sink, however, heat is drawn from the system leading to delay in onset. The individual effect of all the nanoparticles is to advance convection. Enhanced heat transport situation is observed in each of the nanoliquids with engine-oil-silver transporting maximum heat and water-titania the least. Additional Fourier modes are found not to have any profound effect on the results predicted by minimal modes. The connection between the Lorenz model and the Ginzburg–Landau model is clearly shown in the paper.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Adomian, G.: A review of the decomposition method and some recent results for nonlinear equations. Comput. Math. Appl. 21, 101–127 (1991)MathSciNetCrossRefMATH Adomian, G.: A review of the decomposition method and some recent results for nonlinear equations. Comput. Math. Appl. 21, 101–127 (1991)MathSciNetCrossRefMATH
2.
go back to reference Adomian, G.: Solving Frontier Problems of Physics: The Decomposition Method, vol. 60. Springer, Berlin (2013)MATH Adomian, G.: Solving Frontier Problems of Physics: The Decomposition Method, vol. 60. Springer, Berlin (2013)MATH
3.
go back to reference Agarwal, S., Bhadauria, B.S.: Convective heat transport by longitudinal rolls in dilute nanoliquids. J. Nanofluids 3, 380–390 (2014)CrossRef Agarwal, S., Bhadauria, B.S.: Convective heat transport by longitudinal rolls in dilute nanoliquids. J. Nanofluids 3, 380–390 (2014)CrossRef
4.
go back to reference Aghighi, S., Ammar, A., Metivier, C., Chinesta, F.: Parametric solution of the Rayleigh–Bénard convection model by using the PGD: Application to nanofluids. Int. J. Numer. Methods Heat Fluid Flow 25, 1252–1281 (2015)CrossRefMATH Aghighi, S., Ammar, A., Metivier, C., Chinesta, F.: Parametric solution of the Rayleigh–Bénard convection model by using the PGD: Application to nanofluids. Int. J. Numer. Methods Heat Fluid Flow 25, 1252–1281 (2015)CrossRefMATH
5.
go back to reference Bergman, T.L., Incropera, F.P., Lavine, A.S.: Fundamentals of Heat and Mass Transfer. John Wiley and Sons, New York (2011) Bergman, T.L., Incropera, F.P., Lavine, A.S.: Fundamentals of Heat and Mass Transfer. John Wiley and Sons, New York (2011)
6.
go back to reference Bhadauria, B., Siddheshwar, P.G., Singh, A.K., Gupta, V.K.: A local nonlinear stability analysis of modulated double diffusive stationary convection in a couple stress liquid. J. Appl. Fluid Mech. 9, 1255–1264 (2016)CrossRef Bhadauria, B., Siddheshwar, P.G., Singh, A.K., Gupta, V.K.: A local nonlinear stability analysis of modulated double diffusive stationary convection in a couple stress liquid. J. Appl. Fluid Mech. 9, 1255–1264 (2016)CrossRef
7.
go back to reference Bhadauria, B.S., Kiran, P.: Chaotic and oscillatory magneto-convection in a binary viscoelastic fluid under g-jitter. Int. J. Heat Mass Transf. 84, 610–624 (2015)CrossRef Bhadauria, B.S., Kiran, P.: Chaotic and oscillatory magneto-convection in a binary viscoelastic fluid under g-jitter. Int. J. Heat Mass Transf. 84, 610–624 (2015)CrossRef
8.
go back to reference Bhatia, P.K., Steiner, J.M.: Thermal instability in a viscoelastic fluid layer in hydromagnetics. J. Math. Anal. Appl. 41(2), 271–283 (1973)MathSciNetCrossRefMATH Bhatia, P.K., Steiner, J.M.: Thermal instability in a viscoelastic fluid layer in hydromagnetics. J. Math. Anal. Appl. 41(2), 271–283 (1973)MathSciNetCrossRefMATH
9.
go back to reference Bianco, V., Manca, O., Nardini, S., Kambiz, V.: Heat Tansfer Enhancement with Nanofluids. CRC Press, Canada (2015)CrossRef Bianco, V., Manca, O., Nardini, S., Kambiz, V.: Heat Tansfer Enhancement with Nanofluids. CRC Press, Canada (2015)CrossRef
10.
go back to reference Brinkman, H.C.: The viscosity of concentrated suspensions and solutions. J. Chem. Phys. 20, 571–571 (1952)CrossRef Brinkman, H.C.: The viscosity of concentrated suspensions and solutions. J. Chem. Phys. 20, 571–571 (1952)CrossRef
11.
go back to reference Buongiorno, J.: Convective transport in nanofluids. J. Heat Transf. 128, 240–250 (2005)CrossRef Buongiorno, J.: Convective transport in nanofluids. J. Heat Transf. 128, 240–250 (2005)CrossRef
12.
go back to reference Chandrasekhar, S.: Hydrodynamic and Hydromagnetic Stability. Clarendon Press, Oxford (1961)MATH Chandrasekhar, S.: Hydrodynamic and Hydromagnetic Stability. Clarendon Press, Oxford (1961)MATH
13.
go back to reference Choi, S.U.S.: Enhancing thermal conductivity of fluids with nanoparticles. ASME Publ. Fed 231, 99–106 (1995) Choi, S.U.S.: Enhancing thermal conductivity of fluids with nanoparticles. ASME Publ. Fed 231, 99–106 (1995)
14.
go back to reference Clever, R.M.: Heat transfer and stability properties of convection rolls in an internally heated fluid layer. Z. Angew. Math. Phys. 28, 585–597 (1977)CrossRefMATH Clever, R.M.: Heat transfer and stability properties of convection rolls in an internally heated fluid layer. Z. Angew. Math. Phys. 28, 585–597 (1977)CrossRefMATH
15.
go back to reference Corcione, M.: Rayleigh–Bénard convection heat transfer in nanoparticle suspensions. Int. J. Heat Fluid Flow 32, 65–77 (2011)CrossRef Corcione, M.: Rayleigh–Bénard convection heat transfer in nanoparticle suspensions. Int. J. Heat Fluid Flow 32, 65–77 (2011)CrossRef
16.
go back to reference Das, S.K., Putra, N., Thiesen, P., Roetzel, W.: Temperature dependence of thermal conductivity enhancement for nanofluids. J. Heat Transf. 125, 567–574 (2003)CrossRef Das, S.K., Putra, N., Thiesen, P., Roetzel, W.: Temperature dependence of thermal conductivity enhancement for nanofluids. J. Heat Transf. 125, 567–574 (2003)CrossRef
17.
go back to reference Devi, R., Mahajan, A., et al.: Global stability for thermal convection in a couple-stress fluid. Int. Commun. Heat Mass Transf. 38, 938–942 (2011)CrossRef Devi, R., Mahajan, A., et al.: Global stability for thermal convection in a couple-stress fluid. Int. Commun. Heat Mass Transf. 38, 938–942 (2011)CrossRef
18.
go back to reference Drazin, P.G., Reid, W.H.: Hydrodynamic Stability. Cambridge University Press, Cambridge (2004)CrossRefMATH Drazin, P.G., Reid, W.H.: Hydrodynamic Stability. Cambridge University Press, Cambridge (2004)CrossRefMATH
19.
go back to reference Elhajjar, B., Bachir, G., Mojtabi, A., Fakih, C., Charrier-Mojtabi, M.C.: Modeling of Rayleigh–Bénard natural convection heat transfer in nanofluids. Comptes Rendus Mcanique 338, 350–354 (2010)CrossRefMATH Elhajjar, B., Bachir, G., Mojtabi, A., Fakih, C., Charrier-Mojtabi, M.C.: Modeling of Rayleigh–Bénard natural convection heat transfer in nanofluids. Comptes Rendus Mcanique 338, 350–354 (2010)CrossRefMATH
20.
go back to reference Eslamian, M., Ahmed, M., El-Dosoky, M.F., Saghir, M.Z.: Effect of thermophoresis on natural convection in a Rayleigh–Bénard cell filled with a nanofluid. Int. J. Heat Mass Transf. 81, 142–156 (2015)CrossRef Eslamian, M., Ahmed, M., El-Dosoky, M.F., Saghir, M.Z.: Effect of thermophoresis on natural convection in a Rayleigh–Bénard cell filled with a nanofluid. Int. J. Heat Mass Transf. 81, 142–156 (2015)CrossRef
21.
go back to reference Fatoorehchi, H., Abolghasemi, H.: Investigation of nonlinear problems of heat conduction in tapered cooling fins via symbolic programming. Appl. Appl. Math. 7, 717–734 (2012)MathSciNetMATH Fatoorehchi, H., Abolghasemi, H.: Investigation of nonlinear problems of heat conduction in tapered cooling fins via symbolic programming. Appl. Appl. Math. 7, 717–734 (2012)MathSciNetMATH
22.
go back to reference Fatoorehchi, H., Abolghasemi, H.: Approximating the minimum reflux ratio of multicomponent distillation columns based on the Adomian decomposition method. J. Taiwan Inst. Chem. Eng. 45, 880–886 (2014)CrossRef Fatoorehchi, H., Abolghasemi, H.: Approximating the minimum reflux ratio of multicomponent distillation columns based on the Adomian decomposition method. J. Taiwan Inst. Chem. Eng. 45, 880–886 (2014)CrossRef
23.
go back to reference Fatoorehchi, H., Abolghasemi, H., Zarghami, R.: Analytical approximate solutions for a general nonlinear resistor-nonlinear capacitor circuit model. Appl. Math. Model. 39, 6021–6031 (2015)MathSciNetCrossRef Fatoorehchi, H., Abolghasemi, H., Zarghami, R.: Analytical approximate solutions for a general nonlinear resistor-nonlinear capacitor circuit model. Appl. Math. Model. 39, 6021–6031 (2015)MathSciNetCrossRef
24.
go back to reference Gaikwad, S.N., Malashetty, M.S., Prasad, K.R.: An analytical study of linear and non-linear double diffusive convection with soret and dufour effects in couple stress fluid. Int. J. Nonlinear Mech. 42, 903–913 (2007)CrossRef Gaikwad, S.N., Malashetty, M.S., Prasad, K.R.: An analytical study of linear and non-linear double diffusive convection with soret and dufour effects in couple stress fluid. Int. J. Nonlinear Mech. 42, 903–913 (2007)CrossRef
25.
go back to reference Garoosi, F., Bagheri, G., Talebi, F.: Numerical simulation of natural convection of nanofluids in a square cavity with several pairs of heaters and coolers (HACs) inside. Int. J. Heat Mass Transf. 67, 362–376 (2013)CrossRef Garoosi, F., Bagheri, G., Talebi, F.: Numerical simulation of natural convection of nanofluids in a square cavity with several pairs of heaters and coolers (HACs) inside. Int. J. Heat Mass Transf. 67, 362–376 (2013)CrossRef
26.
go back to reference Garoosi, F., Garoosi, S., Hooman, K.: Numerical simulation of natural convection and mixed convection of the nanofluid in a square cavity using Buongiorno model. Powder Tech. 268, 279–292 (2014)CrossRef Garoosi, F., Garoosi, S., Hooman, K.: Numerical simulation of natural convection and mixed convection of the nanofluid in a square cavity using Buongiorno model. Powder Tech. 268, 279–292 (2014)CrossRef
27.
go back to reference Getling, A.V.: Rayleigh–Bénard Convection: Structures and Dynamics. World Scientific, Singapore (1998)CrossRefMATH Getling, A.V.: Rayleigh–Bénard Convection: Structures and Dynamics. World Scientific, Singapore (1998)CrossRefMATH
28.
go back to reference Gupta, U., Sharma, G.: On Rivlin–Erickson elastico-viscous fluid heated and soluted from below in the presence of compressibility, rotation and hall currents. J. Appl. Math. Comput. 25, 51–66 (2007)MathSciNetCrossRefMATH Gupta, U., Sharma, G.: On Rivlin–Erickson elastico-viscous fluid heated and soluted from below in the presence of compressibility, rotation and hall currents. J. Appl. Math. Comput. 25, 51–66 (2007)MathSciNetCrossRefMATH
29.
go back to reference Hamilton, R.L., Crosser, O.K.: Thermal conductivity of heterogeneous two-component systems. Ind. Eng. Chem. Fund. 1, 187–191 (1962)CrossRef Hamilton, R.L., Crosser, O.K.: Thermal conductivity of heterogeneous two-component systems. Ind. Eng. Chem. Fund. 1, 187–191 (1962)CrossRef
30.
go back to reference Jawdat, J.M., Hashim, I., Bhadauria, B.S., Momani, S.: On onset of chaotic convection in couple-stress fluids. Math. Model. Anal. 19(3), 359–370 (2014)MathSciNetCrossRef Jawdat, J.M., Hashim, I., Bhadauria, B.S., Momani, S.: On onset of chaotic convection in couple-stress fluids. Math. Model. Anal. 19(3), 359–370 (2014)MathSciNetCrossRef
31.
go back to reference Jawdat, J.M., Hashim, I., Momani, S.: Dynamical system analysis of thermal convection in a horizontal layer of nanofluids heated from below. Math. Probl. Eng. 2012, 1–13 (2012)MathSciNetCrossRefMATH Jawdat, J.M., Hashim, I., Momani, S.: Dynamical system analysis of thermal convection in a horizontal layer of nanofluids heated from below. Math. Probl. Eng. 2012, 1–13 (2012)MathSciNetCrossRefMATH
32.
go back to reference Kakac, S., Pramuanjaroenkij, A.: Review of convective heat transfer enhancement with nanofluids. Int. J. Heat Mass Transf. 52, 3187–3196 (2009)CrossRefMATH Kakac, S., Pramuanjaroenkij, A.: Review of convective heat transfer enhancement with nanofluids. Int. J. Heat Mass Transf. 52, 3187–3196 (2009)CrossRefMATH
33.
go back to reference Khanafer, K., Vafai, K., Lightstone, M.: Buoyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids. Int. J. Heat Mass Transf. 46, 3639–3653 (2003)CrossRefMATH Khanafer, K., Vafai, K., Lightstone, M.: Buoyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids. Int. J. Heat Mass Transf. 46, 3639–3653 (2003)CrossRefMATH
34.
go back to reference Kim, J., Choi, C.K., Kang, Y.T., Kim, M.G.: Effects of thermodiffusion and nanoparticles on convective instabilities in binary nanofluids. Nanoscale Microscale Thermophys. Eng. 10, 29–39 (2006)CrossRef Kim, J., Choi, C.K., Kang, Y.T., Kim, M.G.: Effects of thermodiffusion and nanoparticles on convective instabilities in binary nanofluids. Nanoscale Microscale Thermophys. Eng. 10, 29–39 (2006)CrossRef
35.
go back to reference Kim, J., Kang, Y.T., Choi, C.K.: Analysis of convective instability and heat transfer characteristics of nanofluids. Phys. Fluids 16, 2395–2401 (2004)CrossRefMATH Kim, J., Kang, Y.T., Choi, C.K.: Analysis of convective instability and heat transfer characteristics of nanofluids. Phys. Fluids 16, 2395–2401 (2004)CrossRefMATH
36.
go back to reference Kim, J., Kang, Y.T., Choi, C.K.: Soret and dufour effects on convective instabilities in binary nanofluids for absorption application. Int. J. Refrig. 30, 323–328 (2007)CrossRef Kim, J., Kang, Y.T., Choi, C.K.: Soret and dufour effects on convective instabilities in binary nanofluids for absorption application. Int. J. Refrig. 30, 323–328 (2007)CrossRef
37.
go back to reference Krishnamurti, R.: Convection induced by selective absorption of radiation: A laboratory model of conditional instability. Dyn. Atmos. Oceans 27, 367–382 (1998)CrossRef Krishnamurti, R.: Convection induced by selective absorption of radiation: A laboratory model of conditional instability. Dyn. Atmos. Oceans 27, 367–382 (1998)CrossRef
38.
39.
go back to reference Magyari, E.: Comment on the homogeneous nanofluid models applied to convective heat transfer problems. Acta Mech. 222, 381–385 (2011)CrossRefMATH Magyari, E.: Comment on the homogeneous nanofluid models applied to convective heat transfer problems. Acta Mech. 222, 381–385 (2011)CrossRefMATH
40.
go back to reference Malashetty, M.S., Gaikwad, S.N., Swamy, M.: An analytical study of linear and non-linear double diffusive convection with soret effect in couple stress liquids. Int. J. Therm. Sci. 45, 897–907 (2006)CrossRef Malashetty, M.S., Gaikwad, S.N., Swamy, M.: An analytical study of linear and non-linear double diffusive convection with soret effect in couple stress liquids. Int. J. Therm. Sci. 45, 897–907 (2006)CrossRef
41.
go back to reference McKenzie, D.P., Roberts, J.M., Weiss, N.O.: Convection in the Earth’s mantle: Towards a numerical simulation. J. Fluid Mech. 62, 465–538 (1974)CrossRefMATH McKenzie, D.P., Roberts, J.M., Weiss, N.O.: Convection in the Earth’s mantle: Towards a numerical simulation. J. Fluid Mech. 62, 465–538 (1974)CrossRefMATH
42.
go back to reference Narayana, M., Sibanda, P., Siddheshwar, P.G., Jayalatha, G.: Linear and nonlinear stability analysis of binary viscoelastic fluid convection. Appl. Math. Model. 37, 8162–8178 (2013)MathSciNetCrossRef Narayana, M., Sibanda, P., Siddheshwar, P.G., Jayalatha, G.: Linear and nonlinear stability analysis of binary viscoelastic fluid convection. Appl. Math. Model. 37, 8162–8178 (2013)MathSciNetCrossRef
43.
go back to reference Nield, D.A., Kuznetsov, A.V.: The onset of convection in a horizontal nanofluid layer of finite depth. Eur. J. Mech. B/Fluids 29, 217–223 (2010)MathSciNetCrossRefMATH Nield, D.A., Kuznetsov, A.V.: The onset of convection in a horizontal nanofluid layer of finite depth. Eur. J. Mech. B/Fluids 29, 217–223 (2010)MathSciNetCrossRefMATH
44.
go back to reference Nield, D.A., Kuznetsov, A.V.: The onset of convection in an internally heated nanofluid layer. J. Heat Transf. 136(1), 014501 (2014)CrossRef Nield, D.A., Kuznetsov, A.V.: The onset of convection in an internally heated nanofluid layer. J. Heat Transf. 136(1), 014501 (2014)CrossRef
45.
go back to reference Park, H.M.: Rayleigh–Bénard convection of nanofluids based on the pseudo-single-phase continuum model. Int. J. Therm. Sci. 90, 267–278 (2015)CrossRef Park, H.M.: Rayleigh–Bénard convection of nanofluids based on the pseudo-single-phase continuum model. Int. J. Therm. Sci. 90, 267–278 (2015)CrossRef
46.
go back to reference Payne, L.E., Straughan, B.: Critical Rayleigh numbers for oscillatory and nonlinear convection in an isotropic thermomicropolar fluid. Int. J. Eng. Sci. 27, 827–836 (1989)CrossRefMATH Payne, L.E., Straughan, B.: Critical Rayleigh numbers for oscillatory and nonlinear convection in an isotropic thermomicropolar fluid. Int. J. Eng. Sci. 27, 827–836 (1989)CrossRefMATH
47.
go back to reference Platten, J.K., Legros, J.C.: Convection in Liquids. Springer, Berlin (2012)MATH Platten, J.K., Legros, J.C.: Convection in Liquids. Springer, Berlin (2012)MATH
48.
go back to reference Putra, N., Roetzel, W., Das, S.K.: Natural convection of nano-fluids. Heat Mass Transf. 39, 775–784 (2003)CrossRefMATH Putra, N., Roetzel, W., Das, S.K.: Natural convection of nano-fluids. Heat Mass Transf. 39, 775–784 (2003)CrossRefMATH
49.
go back to reference Riahi, N., Hsui, A.T.: Nonlinear double-diffusive convection with local heat and solute sources. Int. J. Eng. Sci. 24, 529–544 (1986)MathSciNetCrossRefMATH Riahi, N., Hsui, A.T.: Nonlinear double-diffusive convection with local heat and solute sources. Int. J. Eng. Sci. 24, 529–544 (1986)MathSciNetCrossRefMATH
50.
go back to reference Roberts, P.H.: Convection in horizontal layers with internal heat generation. J. Fluid Mech. 30, 33–49 (1967)CrossRef Roberts, P.H.: Convection in horizontal layers with internal heat generation. J. Fluid Mech. 30, 33–49 (1967)CrossRef
51.
go back to reference Rudraiah, N., Siddheshwar, P.G.: Effect of non-uniform basic temperature gradient on the onset of Marangoni convection in a fluid with suspended particles. Aerosp. Sci. Tech. 4, 517–523 (2000)CrossRefMATH Rudraiah, N., Siddheshwar, P.G.: Effect of non-uniform basic temperature gradient on the onset of Marangoni convection in a fluid with suspended particles. Aerosp. Sci. Tech. 4, 517–523 (2000)CrossRefMATH
52.
go back to reference Sharma, A., Shandil, R.G.: Effect of magnetic field dependent viscosity on ferroconvection in the presence of dust particles. J. Appl. Math. Comput. 27, 7–22 (2008)MathSciNetCrossRefMATH Sharma, A., Shandil, R.G.: Effect of magnetic field dependent viscosity on ferroconvection in the presence of dust particles. J. Appl. Math. Comput. 27, 7–22 (2008)MathSciNetCrossRefMATH
53.
go back to reference Shivakumara, I.S., Kumar, S.B.N.: Linear and weakly nonlinear triple diffusive convection in a couple stress fluid layer. Int. J. Heat Mass Transf. 68, 542–553 (2014)CrossRef Shivakumara, I.S., Kumar, S.B.N.: Linear and weakly nonlinear triple diffusive convection in a couple stress fluid layer. Int. J. Heat Mass Transf. 68, 542–553 (2014)CrossRef
54.
go back to reference Siddheshwar, P.G., Kanchana, C.: Unicellular, unsteady Rayleigh–Bénard convection in Newtonian liqenclosure Newtonain nanloquids occupying enclosures. Int. J. Mech. Sci. (2017) (In press) Siddheshwar, P.G., Kanchana, C.: Unicellular, unsteady Rayleigh–Bénard convection in Newtonian liqenclosure Newtonain nanloquids occupying enclosures. Int. J. Mech. Sci. (2017) (In press)
55.
go back to reference Siddheshwar, P.G., Kanchana, C., Kakimoto, Y., Nakayama, A.: Steady finite-amplitude Rayleigh–Bénard convection in nanoliquids using a two-phase model: Theoretical answer to the phenomenon of enhanced heat transfer. ASME J. Heat Transf. 139, 012402 (2017)CrossRef Siddheshwar, P.G., Kanchana, C., Kakimoto, Y., Nakayama, A.: Steady finite-amplitude Rayleigh–Bénard convection in nanoliquids using a two-phase model: Theoretical answer to the phenomenon of enhanced heat transfer. ASME J. Heat Transf. 139, 012402 (2017)CrossRef
56.
go back to reference Siddheshwar, P.G., Meenakshi, N.: Amplitude equation and heat transport of Rayleigh–Bénard convection in Newtonian liquids with nanoparticles. Int. J. Appl. Comput. Math. 2, 1–22 (2015)CrossRef Siddheshwar, P.G., Meenakshi, N.: Amplitude equation and heat transport of Rayleigh–Bénard convection in Newtonian liquids with nanoparticles. Int. J. Appl. Comput. Math. 2, 1–22 (2015)CrossRef
57.
go back to reference Siddheshwar, P.G., Pranesh, S.: Effect of a non-uniform basic temperature gradient on Rayleigh–Bénard convection in a micropolar fluid. Int. J. Eng. Sci. 36, 1183–1196 (1998)CrossRef Siddheshwar, P.G., Pranesh, S.: Effect of a non-uniform basic temperature gradient on Rayleigh–Bénard convection in a micropolar fluid. Int. J. Eng. Sci. 36, 1183–1196 (1998)CrossRef
58.
go back to reference Siddheshwar, P.G., Pranesh, S.: Magnetoconvection in a micropolar fluid. Int. J. Eng. Sci. 36, 1173–1181 (1998)CrossRef Siddheshwar, P.G., Pranesh, S.: Magnetoconvection in a micropolar fluid. Int. J. Eng. Sci. 36, 1173–1181 (1998)CrossRef
59.
go back to reference Siddheshwar, P.G., Pranesh, S.: Suction-injection effects on the onset of Rayleigh–Bénard–Marangoni convection in a fluid with suspended particles. Acta Mech. 152, 241–252 (2001)CrossRefMATH Siddheshwar, P.G., Pranesh, S.: Suction-injection effects on the onset of Rayleigh–Bénard–Marangoni convection in a fluid with suspended particles. Acta Mech. 152, 241–252 (2001)CrossRefMATH
60.
go back to reference Siddheshwar, P.G., Pranesh, S.: Magnetoconvection in fluids with suspended particles under 1g and \(\mu \)g. Aerosp. Sci. Tech. 6, 105–114 (2002)CrossRefMATH Siddheshwar, P.G., Pranesh, S.: Magnetoconvection in fluids with suspended particles under 1g and \(\mu \)g. Aerosp. Sci. Tech. 6, 105–114 (2002)CrossRefMATH
61.
go back to reference Siddheshwar, P.G., Pranesh, S.: An analytical study of linear and non-linear convection in Boussinesq–Stokes suspensions. Int. J. Nonlin. Mech. 39, 165–172 (2004)CrossRefMATH Siddheshwar, P.G., Pranesh, S.: An analytical study of linear and non-linear convection in Boussinesq–Stokes suspensions. Int. J. Nonlin. Mech. 39, 165–172 (2004)CrossRefMATH
62.
go back to reference Siddheshwar, P.G., Sakshath, T.N.: Rayleigh–Bénard–Taylor convection of Newtonian nanoliquid. World Acad. Sci. Eng. Technol. Int. J. Mech. Aerosp. Ind. Mech. Manuf. Eng. 11, 1131–1135 (2017) Siddheshwar, P.G., Sakshath, T.N.: Rayleigh–Bénard–Taylor convection of Newtonian nanoliquid. World Acad. Sci. Eng. Technol. Int. J. Mech. Aerosp. Ind. Mech. Manuf. Eng. 11, 1131–1135 (2017)
63.
go back to reference Siddheshwar, P.G., Sekhar, G.N., Jayalatha, G.: Effect of time-periodic vertical oscillations of the Rayleigh–Bénard system on nonlinear convection in viscoelastic liquids. J. Non Newtonian Fluid Mech. 165, 1412–1418 (2010)CrossRefMATH Siddheshwar, P.G., Sekhar, G.N., Jayalatha, G.: Effect of time-periodic vertical oscillations of the Rayleigh–Bénard system on nonlinear convection in viscoelastic liquids. J. Non Newtonian Fluid Mech. 165, 1412–1418 (2010)CrossRefMATH
64.
go back to reference Siddheshwar, P.G., Sekhar, G.N., Jayalatha, G.: Surface tension driven convection in viscoelastic liquids with thermorheological effect. Int. Commun. Heat Mass Transf. 38, 468–473 (2011)CrossRef Siddheshwar, P.G., Sekhar, G.N., Jayalatha, G.: Surface tension driven convection in viscoelastic liquids with thermorheological effect. Int. Commun. Heat Mass Transf. 38, 468–473 (2011)CrossRef
65.
go back to reference Siddheshwar, P.G., Titus, S.P.: Nonlinear Rayleigh–Bénard convection with variable heat source. J. Heat Transf. 135, 1–12 (2013)CrossRef Siddheshwar, P.G., Titus, S.P.: Nonlinear Rayleigh–Bénard convection with variable heat source. J. Heat Transf. 135, 1–12 (2013)CrossRef
66.
go back to reference Siddheshwar, P.G., Veena, B.N.: Unsteady Rayleigh–Bénard convection of nanoliquids in enclosures. World Acad. Sci. Eng. Technol. Int. J. Mech. Aerosp. Ind. Mech. Manuf. Eng. 11(6), 1051–1060 (2017) Siddheshwar, P.G., Veena, B.N.: Unsteady Rayleigh–Bénard convection of nanoliquids in enclosures. World Acad. Sci. Eng. Technol. Int. J. Mech. Aerosp. Ind. Mech. Manuf. Eng. 11(6), 1051–1060 (2017)
67.
go back to reference Simo, C., Puigjaner, D., Herrero, J., Giralt, F.: Dynamics of particle trajectories in a Rayleigh–Bénard problem. Commun. Nonlin. Sci. Numer. Simul. 15, 24–39 (2010)CrossRefMATH Simo, C., Puigjaner, D., Herrero, J., Giralt, F.: Dynamics of particle trajectories in a Rayleigh–Bénard problem. Commun. Nonlin. Sci. Numer. Simul. 15, 24–39 (2010)CrossRefMATH
68.
go back to reference Sofos, F., Karakasidis, T., Liakopoulos, A.: Transport properties of liquid argon in krypton nanochannels: anisotropy and non-homogeneity introduced by the solid walls. Int. J. Heat Mass Transf. 52(3), 735–743 (2009)CrossRefMATH Sofos, F., Karakasidis, T., Liakopoulos, A.: Transport properties of liquid argon in krypton nanochannels: anisotropy and non-homogeneity introduced by the solid walls. Int. J. Heat Mass Transf. 52(3), 735–743 (2009)CrossRefMATH
69.
go back to reference Straughan, B.: The Energy Method, Stability, and Nonlinear Convection. Springer, Berlin (2013)MATH Straughan, B.: The Energy Method, Stability, and Nonlinear Convection. Springer, Berlin (2013)MATH
70.
71.
go back to reference Tiwari, R.K., Das, M.K.: Heat transfer augmentation in a two-sided lid-driven differentially heated square cavity utilizing nanofluids. Int. J. Heat Mass Transf. 50, 2002–2018 (2007)CrossRefMATH Tiwari, R.K., Das, M.K.: Heat transfer augmentation in a two-sided lid-driven differentially heated square cavity utilizing nanofluids. Int. J. Heat Mass Transf. 50, 2002–2018 (2007)CrossRefMATH
72.
go back to reference Tritton, D.J., Zarraga, M.N.: Convection in horizontal layers with internal heat generation. Exp. J. Fluid Mech. 30, 21–31 (1967)CrossRef Tritton, D.J., Zarraga, M.N.: Convection in horizontal layers with internal heat generation. Exp. J. Fluid Mech. 30, 21–31 (1967)CrossRef
73.
go back to reference Tveitereid, M., Palm, E.: Convection due to internal heat sources. J. Fluid Mech. 76, 481–499 (1976)CrossRefMATH Tveitereid, M., Palm, E.: Convection due to internal heat sources. J. Fluid Mech. 76, 481–499 (1976)CrossRefMATH
74.
go back to reference Tzou, D.Y.: Instability of nanofluids in natural convection. J. Heat Transf. 130, 1–9 (2008)CrossRefMATH Tzou, D.Y.: Instability of nanofluids in natural convection. J. Heat Transf. 130, 1–9 (2008)CrossRefMATH
75.
go back to reference Tzou, D.Y.: Thermal instability of nanofluids in natural convection. Int. J. Heat Mass Transf. 51, 2967–2979 (2008)CrossRefMATH Tzou, D.Y.: Thermal instability of nanofluids in natural convection. Int. J. Heat Mass Transf. 51, 2967–2979 (2008)CrossRefMATH
76.
go back to reference Wang, X.Q., Mujumdar, A.S.: Heat transfer characteristics of nanofluids: A review. Int. J. Therm. Sci. 46, 1–19 (2007)CrossRef Wang, X.Q., Mujumdar, A.S.: Heat transfer characteristics of nanofluids: A review. Int. J. Therm. Sci. 46, 1–19 (2007)CrossRef
77.
go back to reference Wen, D., Lin, G., Vafaei, S., Zhang, K.: Review of nanofluids for heat transfer applications. Particuology 7, 141–150 (2009)CrossRef Wen, D., Lin, G., Vafaei, S., Zhang, K.: Review of nanofluids for heat transfer applications. Particuology 7, 141–150 (2009)CrossRef
78.
go back to reference Xuan, Y., Roetzel, W.: Conceptions for heat transfer correlation of nanofluids. Int. J. Heat Mass Transf. 43, 3701–3707 (2000)CrossRefMATH Xuan, Y., Roetzel, W.: Conceptions for heat transfer correlation of nanofluids. Int. J. Heat Mass Transf. 43, 3701–3707 (2000)CrossRefMATH
79.
go back to reference Yadav, D., Agrawal, G.S., Bhargava, R.: Rayleigh–Bénard convection in nanofluid. Int. J. Appl. Math. Mech. 7, 61–76 (2011)MATH Yadav, D., Agrawal, G.S., Bhargava, R.: Rayleigh–Bénard convection in nanofluid. Int. J. Appl. Math. Mech. 7, 61–76 (2011)MATH
80.
go back to reference Yadav, D., Agrawal, G.S., Bhargava, R.: Thermal instability of rotating nanofluid layer. Int. J. Eng. Sci. 49, 1171–1184 (2011)MathSciNetCrossRef Yadav, D., Agrawal, G.S., Bhargava, R.: Thermal instability of rotating nanofluid layer. Int. J. Eng. Sci. 49, 1171–1184 (2011)MathSciNetCrossRef
Metadata
Title
A theoretical study of enhanced heat transfer in nanoliquids with volumetric heat source
Authors
N. Meenakshi
P. G. Siddheshwar
Publication date
17-08-2017
Publisher
Springer Berlin Heidelberg
Published in
Journal of Applied Mathematics and Computing / Issue 1-2/2018
Print ISSN: 1598-5865
Electronic ISSN: 1865-2085
DOI
https://doi.org/10.1007/s12190-017-1129-9

Other articles of this Issue 1-2/2018

Journal of Applied Mathematics and Computing 1-2/2018 Go to the issue

Premium Partner