Skip to main content
Top
Published in: Archive of Applied Mechanics 4/2024

17-02-2024 | Original

A three-dimensional computational multiscale micromorphic analysis of porous materials in linear elasticity

Authors: Xiaozhe Ju, Kang Gao, Junxiang Huang, Hongshi Ruan, Haihui Chen, Yangjian Xu, Lihua Liang

Published in: Archive of Applied Mechanics | Issue 4/2024

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

We present an extension of a multiscale micromorphic theory to three-dimensional problems for porous materials, where a clear scale separation is not given. Following the multiscale micromorphic framework of Biswas and Poh (J Mech Phys Solids 102:187–208, 2017), macroscopic governing equations of a micromorphic continuum are derived from a classical continuum on the microscale by means of a kinematic field decomposition. The macro–microenergy equivalence is guaranteed via the Hill–Mandel condition. For linear elasticity problems, generalized elasticity tensors are determined via several RVE computations once and for all, avoiding concurrent RVE computations for an online structural analysis. A three-dimensional implementation is revealed in detail. A comparative study with direct numerical simulations and first-order multiscale computations shows that the computational multiscale micromorphic method has sufficient accuracy and computational efficiency, thus providing a powerful tool for design and practical engineering applications of porous materials.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Biswas, R., Poh, L.H.: A micromorphic computational homogenization framework for heterogeneous materials. J. Mech. Phys. Solids 102, 187–208 (2017)MathSciNetCrossRef Biswas, R., Poh, L.H.: A micromorphic computational homogenization framework for heterogeneous materials. J. Mech. Phys. Solids 102, 187–208 (2017)MathSciNetCrossRef
2.
go back to reference Zhang, S.: Research and application progress of foam metal. Powder Metall. Technol. 34(3), 6 (2016) Zhang, S.: Research and application progress of foam metal. Powder Metall. Technol. 34(3), 6 (2016)
3.
go back to reference Wang, Z., Cao, X., Ma, H.: Effect of microstructure on meso-mechanical properties of porous materials. J. Taiyuan Univ. Technol. 37(1), 1–4 (2006) Wang, Z., Cao, X., Ma, H.: Effect of microstructure on meso-mechanical properties of porous materials. J. Taiyuan Univ. Technol. 37(1), 1–4 (2006)
4.
go back to reference Hill, R.: Elastic properties of reinforced solids: some theoretical principles. J. Mech. Phys. Solids 11, 357–372 (1963)CrossRef Hill, R.: Elastic properties of reinforced solids: some theoretical principles. J. Mech. Phys. Solids 11, 357–372 (1963)CrossRef
5.
go back to reference Feyel, F., Chaboche, J.L.: Fe2 multiscale approach for modelling the elastoviscoplastic behaviour of long fibre SiC/Ti composite materials. Comput. Methods Appl. Mech. Eng. 183(3–4), 309–330 (2000)CrossRef Feyel, F., Chaboche, J.L.: Fe2 multiscale approach for modelling the elastoviscoplastic behaviour of long fibre SiC/Ti composite materials. Comput. Methods Appl. Mech. Eng. 183(3–4), 309–330 (2000)CrossRef
6.
go back to reference Moulinec, H., Suquet, P.: A numerical method for computing the overall response of nonlinear composites with complex microstructure. Comput. Methods Appl. Mech. Eng. 157(1–2), 69–94 (1998)MathSciNetCrossRef Moulinec, H., Suquet, P.: A numerical method for computing the overall response of nonlinear composites with complex microstructure. Comput. Methods Appl. Mech. Eng. 157(1–2), 69–94 (1998)MathSciNetCrossRef
7.
go back to reference Matouš K., Geers, M. G. D., Kouznetsova, V. G., Yvonnet, J.: Homogenization methods and multiscale modeling: nonlinear problems. Encyclopedia of computational mechanics second edition, pp. 1–34 (2017) Matouš K., Geers, M. G. D., Kouznetsova, V. G., Yvonnet, J.: Homogenization methods and multiscale modeling: nonlinear problems. Encyclopedia of computational mechanics second edition, pp. 1–34 (2017)
8.
go back to reference Liang, L., Ju, X., Mahnken, R., Xu, Y., Zhou, W.: A nonuniform transformation field analysis for composites with strength difference effects in elastoplasticity. Int. J. Solids Struct. 228, 111103 (2021)CrossRef Liang, L., Ju, X., Mahnken, R., Xu, Y., Zhou, W.: A nonuniform transformation field analysis for composites with strength difference effects in elastoplasticity. Int. J. Solids Struct. 228, 111103 (2021)CrossRef
9.
go back to reference Xu, Y., Ju, X., Mahnken, R., Liang, L.: NTFA-enabled goal-oriented adaptive space-time finite elements for micro-heterogeneous elastoplasticity problems. Comput. Methods Appl. Mech. Eng. 398, 115199 (2022)MathSciNetCrossRef Xu, Y., Ju, X., Mahnken, R., Liang, L.: NTFA-enabled goal-oriented adaptive space-time finite elements for micro-heterogeneous elastoplasticity problems. Comput. Methods Appl. Mech. Eng. 398, 115199 (2022)MathSciNetCrossRef
10.
go back to reference Dvorak, G.J., Benvensite, Y.: On transformation strains and uniform fields in multiphase elastic media. Proc. R. Soc. Lond. 437(A), 291–310 (1992) Dvorak, G.J., Benvensite, Y.: On transformation strains and uniform fields in multiphase elastic media. Proc. R. Soc. Lond. 437(A), 291–310 (1992)
11.
12.
go back to reference Michel, J.C., Suquet, P.: A model-reduction approach in micromechanics of materials preserving the variational structure of constitutive relations. J. Mech. Phys. Solids 90, 254–285 (2016)MathSciNetCrossRef Michel, J.C., Suquet, P.: A model-reduction approach in micromechanics of materials preserving the variational structure of constitutive relations. J. Mech. Phys. Solids 90, 254–285 (2016)MathSciNetCrossRef
13.
go back to reference Bessa, M.A., Liu, Z., Liu, W.K.: Self-consistent clustering analysis: an efficient multi-scale scheme for inelastic heterogeneous materials. Comput. Methods Appl. Mech. Eng. 306, 319–341 (2016)MathSciNetCrossRef Bessa, M.A., Liu, Z., Liu, W.K.: Self-consistent clustering analysis: an efficient multi-scale scheme for inelastic heterogeneous materials. Comput. Methods Appl. Mech. Eng. 306, 319–341 (2016)MathSciNetCrossRef
14.
15.
go back to reference Feng, M., Zhuang, S., Wu, C., Yuan, Z.: Numerical study of micromechanical properties of porous materials based on homogenization method. J. Mater. Sci. Eng. 19(4), 5 (2001) Feng, M., Zhuang, S., Wu, C., Yuan, Z.: Numerical study of micromechanical properties of porous materials based on homogenization method. J. Mater. Sci. Eng. 19(4), 5 (2001)
16.
go back to reference Fu, C., Liu, P., Li, T.: Tensile strength of metal materials with high porosity. Rare Metal Mater. Eng. 29(002), 94–100 (2000) Fu, C., Liu, P., Li, T.: Tensile strength of metal materials with high porosity. Rare Metal Mater. Eng. 29(002), 94–100 (2000)
17.
go back to reference Zhao, S., Wang, X., Xu, Y., Wu, P., Liang, L.: Realization of elastic-plastic multiscale analysis and its application in particle reinforced composites. Compos. Mater. Sci. Technol. 34(9), 10 (2017) Zhao, S., Wang, X., Xu, Y., Wu, P., Liang, L.: Realization of elastic-plastic multiscale analysis and its application in particle reinforced composites. Compos. Mater. Sci. Technol. 34(9), 10 (2017)
18.
go back to reference Onck, P., Andrews, E.W., Gioux, G., Gibson, L.J.: Size effects in ductile cellular solids. Part II: experimental results. Int. J. Mech. Sci. 43(3), 701–713 (2001) Onck, P., Andrews, E.W., Gioux, G., Gibson, L.J.: Size effects in ductile cellular solids. Part II: experimental results. Int. J. Mech. Sci. 43(3), 701–713 (2001)
19.
go back to reference Geers, M.G. D., Kouznetsova, V.G., A. M, W.: Multi-scale second-order computational homogenization of multi-phase materials: a nested finite element solution strategy. Comput. Methods Appl. Mech. Eng. 193(48–51), 5525–5550 (2004) Geers, M.G. D., Kouznetsova, V.G., A. M, W.: Multi-scale second-order computational homogenization of multi-phase materials: a nested finite element solution strategy. Comput. Methods Appl. Mech. Eng. 193(48–51), 5525–5550 (2004)
20.
go back to reference Becker, G., Nguyen, V.D., Noels, L.: Multiscale computational homogenization methods with a gradient enhanced scheme based on the discontinuous galerkin formulation. Comput. Methods Appl. Mech. Eng. 260, 63–77 (2013)MathSciNetCrossRef Becker, G., Nguyen, V.D., Noels, L.: Multiscale computational homogenization methods with a gradient enhanced scheme based on the discontinuous galerkin formulation. Comput. Methods Appl. Mech. Eng. 260, 63–77 (2013)MathSciNetCrossRef
21.
go back to reference Nguyen, V.D., Noels, L.: Computational homogenization of cellular materials. Int. J. Solids Struct. 51(11), 2183–2203 (2014)CrossRef Nguyen, V.D., Noels, L.: Computational homogenization of cellular materials. Int. J. Solids Struct. 51(11), 2183–2203 (2014)CrossRef
22.
go back to reference Geers, M.G.D., Kouznetsova, V.G., Brekelmans, W.A.M.: Multi-scale second-order computational homogenization of multi-phase materials: a nested finite element solution strategy. Comput. Methods Appl. Mech. Eng. 193(48), 5525–5550 (2004). (Advances in Computational Plasticity) Geers, M.G.D., Kouznetsova, V.G., Brekelmans, W.A.M.: Multi-scale second-order computational homogenization of multi-phase materials: a nested finite element solution strategy. Comput. Methods Appl. Mech. Eng. 193(48), 5525–5550 (2004). (Advances in Computational Plasticity)
23.
go back to reference Geers, M.G.D., Kouznetsova, V.V., Brekelmans, W.A.M.: Multi-scale constitutive modelling of heterogeneous materials with a gradient-enhanced computational homogenization scheme. Int. J. Numer. Methods Eng. 54, 1235–1260 (2002)CrossRef Geers, M.G.D., Kouznetsova, V.V., Brekelmans, W.A.M.: Multi-scale constitutive modelling of heterogeneous materials with a gradient-enhanced computational homogenization scheme. Int. J. Numer. Methods Eng. 54, 1235–1260 (2002)CrossRef
24.
go back to reference Eringen, A. C.: . Mechanics of micromorphic materials. In: Applied Mechanics, pp. 131–138. Springer (1966) Eringen, A. C.: . Mechanics of micromorphic materials. In: Applied Mechanics, pp. 131–138. Springer (1966)
26.
go back to reference Liu, Q., Li, X., Zhang, J.: A micro-macro homogenization approach for discrete particle assembly: Cosserat continuum modeling of granular materials. Int. J. Solids Struct. 47(2), 291–303 (2010)CrossRef Liu, Q., Li, X., Zhang, J.: A micro-macro homogenization approach for discrete particle assembly: Cosserat continuum modeling of granular materials. Int. J. Solids Struct. 47(2), 291–303 (2010)CrossRef
27.
go back to reference Adomeit, G.: Determination of elastic constants of a structured material. In: Kröner, E. (ed.) Mechanics of Generalized Continua, pp. 80–82. Springer, Berlin (1968)CrossRef Adomeit, G.: Determination of elastic constants of a structured material. In: Kröner, E. (ed.) Mechanics of Generalized Continua, pp. 80–82. Springer, Berlin (1968)CrossRef
28.
go back to reference Forest, S.: Mechanics of generalized continua: construction by homogenizaton. Le Journal de Physique IV 8(PR4), Pr4-39 (1998) Forest, S.: Mechanics of generalized continua: construction by homogenizaton. Le Journal de Physique IV 8(PR4), Pr4-39 (1998)
29.
go back to reference Bigoni, D., Drugan, W.J.: Analytical derivation of Cosserat Moduli via homogenization of heterogeneous elastic materials. J. Appl. Mech. 74(4), 741–753 (2006). (04) Bigoni, D., Drugan, W.J.: Analytical derivation of Cosserat Moduli via homogenization of heterogeneous elastic materials. J. Appl. Mech. 74(4), 741–753 (2006). (04)
30.
go back to reference Feyel, F.: A multilevel finite element method (fe2) to describe the response of highly non-linear structures using generalized continua. Comput. Methods Appl. Mech. Eng. 192(28/30), 3233–3244 (2003)CrossRef Feyel, F.: A multilevel finite element method (fe2) to describe the response of highly non-linear structures using generalized continua. Comput. Methods Appl. Mech. Eng. 192(28/30), 3233–3244 (2003)CrossRef
31.
go back to reference Hütter, G.: On the micro-macro relation for the microdeformation in the homogenization towards micromorphic and micropolar continua. J. Mech. Phys. Solids 127, 62–79 (2019)MathSciNetCrossRef Hütter, G.: On the micro-macro relation for the microdeformation in the homogenization towards micromorphic and micropolar continua. J. Mech. Phys. Solids 127, 62–79 (2019)MathSciNetCrossRef
32.
go back to reference Jänicke, R., Steeb, H.: Wave propagation in periodic microstructures by homogenisation of extended continua. Comput. Mater. Sci. 52(1), 209–211 (2012)CrossRef Jänicke, R., Steeb, H.: Wave propagation in periodic microstructures by homogenisation of extended continua. Comput. Mater. Sci. 52(1), 209–211 (2012)CrossRef
33.
go back to reference Ju, X., Mahnken, R.: Goal-oriented adaptivity for linear elastic micromorphic continua based on primal and adjoint consistency analysis. Int. J. Numer. Meth. Eng. 112(8), 1017–1039 (2017)MathSciNetCrossRef Ju, X., Mahnken, R.: Goal-oriented adaptivity for linear elastic micromorphic continua based on primal and adjoint consistency analysis. Int. J. Numer. Meth. Eng. 112(8), 1017–1039 (2017)MathSciNetCrossRef
34.
go back to reference Liang, L., Ju, X., Mahnken, R., Xu, Y.: Goal-oriented mesh adaptivity for inverse problems in linear micromorphic elasticity. Comput. Struct. 257, 106671 (2021)CrossRef Liang, L., Ju, X., Mahnken, R., Xu, Y.: Goal-oriented mesh adaptivity for inverse problems in linear micromorphic elasticity. Comput. Struct. 257, 106671 (2021)CrossRef
35.
go back to reference Xu, Y., Ju, X., Mahnken, R., Liang, L.: Goal-oriented error estimation and h-adaptive finite elements for hyperelastic micromorphic continua. Comput. Mech. 69, 847–863 (2022)MathSciNetCrossRef Xu, Y., Ju, X., Mahnken, R., Liang, L.: Goal-oriented error estimation and h-adaptive finite elements for hyperelastic micromorphic continua. Comput. Mech. 69, 847–863 (2022)MathSciNetCrossRef
36.
go back to reference Ju, X., Mahnken, R.: Goal-oriented h-type adaptive finite elements for micromorphic elastoplasticity. Comput. Methods Appl. Mech. Eng. 351, 297–329 (2019)MathSciNetCrossRef Ju, X., Mahnken, R.: Goal-oriented h-type adaptive finite elements for micromorphic elastoplasticity. Comput. Methods Appl. Mech. Eng. 351, 297–329 (2019)MathSciNetCrossRef
37.
go back to reference Hütter, G.: Homogenization of a Cauchy continuum towards a micromorphic continuum. J. Mech. Phys. Solids 99, 394–408 (2017)MathSciNetCrossRef Hütter, G.: Homogenization of a Cauchy continuum towards a micromorphic continuum. J. Mech. Phys. Solids 99, 394–408 (2017)MathSciNetCrossRef
38.
go back to reference Rokoš, O., Ameen, M.M., Peerlings, R.H.J., Geers, M.G.D.: Micromorphic computational homogenization for mechanical metamaterials with patterning fluctuation fields. J. Mech. Phys. Solids 123, 119–137 (2019)MathSciNetCrossRef Rokoš, O., Ameen, M.M., Peerlings, R.H.J., Geers, M.G.D.: Micromorphic computational homogenization for mechanical metamaterials with patterning fluctuation fields. J. Mech. Phys. Solids 123, 119–137 (2019)MathSciNetCrossRef
39.
go back to reference Shedbale, A.S., Biswas, R., Poh, L.H.: Nonlinear analyses with a micromorphic computational homogenization framework for composite materials. Comput. Methods Appl. Mech. Eng. 350, 362–395 (2019)MathSciNetCrossRef Shedbale, A.S., Biswas, R., Poh, L.H.: Nonlinear analyses with a micromorphic computational homogenization framework for composite materials. Comput. Methods Appl. Mech. Eng. 350, 362–395 (2019)MathSciNetCrossRef
40.
go back to reference Poh, L.H., Biswas, R., Shedbale, A.S.: A micromorphic computational homogenization framework for auxetic tetra-chiral structures. J. Mech. Phys. Solids 135, 103801 (2020)MathSciNetCrossRef Poh, L.H., Biswas, R., Shedbale, A.S.: A micromorphic computational homogenization framework for auxetic tetra-chiral structures. J. Mech. Phys. Solids 135, 103801 (2020)MathSciNetCrossRef
41.
go back to reference Ganghoffer, J.-F., Wazne, A., Reda, H.: Frontiers in homogenization methods towards generalized continua for architected materials. Mech. Res. Commun. 130, 104114 (2023)CrossRef Ganghoffer, J.-F., Wazne, A., Reda, H.: Frontiers in homogenization methods towards generalized continua for architected materials. Mech. Res. Commun. 130, 104114 (2023)CrossRef
42.
go back to reference Biswas, R., Yuan, Z., Poh, L.H.: Accelerated offline setup of homogenized microscopic model for multi-scale analyses using neural network with knowledge transfer. Int. J. Numer. Meth. Eng. 124(13), 3063–3086 (2023)MathSciNetCrossRef Biswas, R., Yuan, Z., Poh, L.H.: Accelerated offline setup of homogenized microscopic model for multi-scale analyses using neural network with knowledge transfer. Int. J. Numer. Meth. Eng. 124(13), 3063–3086 (2023)MathSciNetCrossRef
43.
go back to reference Hütter, G.: Interpretation of micromorphic constitutive relations for porous materials at the microscale via harmonic decomposition. J. Mech. Phys. Solids 171, 105135 (2023)MathSciNetCrossRef Hütter, G.: Interpretation of micromorphic constitutive relations for porous materials at the microscale via harmonic decomposition. J. Mech. Phys. Solids 171, 105135 (2023)MathSciNetCrossRef
44.
go back to reference Hill, R.: Elastic properties of reinforced solids: some theoretical principles. J. Mech. Phys. Solids 11(5), 357–372 (1963)MathSciNetCrossRef Hill, R.: Elastic properties of reinforced solids: some theoretical principles. J. Mech. Phys. Solids 11(5), 357–372 (1963)MathSciNetCrossRef
45.
go back to reference Miehe, C.: Computational micro-to-macro transitions for discretized micro-structures of heterogeneous materials at finite strains based on the minimization of averaged incremental energy. Comput. Methods Appl. Mech. Eng. 192(5–6), 559–591 (2003)MathSciNetCrossRef Miehe, C.: Computational micro-to-macro transitions for discretized micro-structures of heterogeneous materials at finite strains based on the minimization of averaged incremental energy. Comput. Methods Appl. Mech. Eng. 192(5–6), 559–591 (2003)MathSciNetCrossRef
46.
go back to reference Mahnken, R., Ju, X.: Goal-oriented adaptivity based on a model hierarchy of mean-field and full-field homogenization methods in linear elasticity. Int. J. Numer. Meth. Eng. 121, 277–307 (2020)MathSciNetCrossRef Mahnken, R., Ju, X.: Goal-oriented adaptivity based on a model hierarchy of mean-field and full-field homogenization methods in linear elasticity. Int. J. Numer. Meth. Eng. 121, 277–307 (2020)MathSciNetCrossRef
Metadata
Title
A three-dimensional computational multiscale micromorphic analysis of porous materials in linear elasticity
Authors
Xiaozhe Ju
Kang Gao
Junxiang Huang
Hongshi Ruan
Haihui Chen
Yangjian Xu
Lihua Liang
Publication date
17-02-2024
Publisher
Springer Berlin Heidelberg
Published in
Archive of Applied Mechanics / Issue 4/2024
Print ISSN: 0939-1533
Electronic ISSN: 1432-0681
DOI
https://doi.org/10.1007/s00419-024-02549-x

Other articles of this Issue 4/2024

Archive of Applied Mechanics 4/2024 Go to the issue

Premium Partners