Skip to main content
Top
Published in: Archive of Applied Mechanics 4/2024

01-03-2024 | Original

Sun–Venus CR3BP, part 1: periodic orbit generation, stability, and mission investigation

Authors: Adam P. Wilmer, Robert A. Bettinger, Marcus J. Holzinger, Jacob A. Dahlke

Published in: Archive of Applied Mechanics | Issue 4/2024

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Venus is Earth’s closest neighbor, hosting a similar size, density, and location in the Solar System. Due to these similarities, Venus has been suggested as a premier location for particular mission sets to include: near-Venus communications and positioning, navigation, and timing (PNT); planetary science; heliophysics; space weather monitoring; and planetary defense. This paper, for the first time in literature, presents 37 unique planar periodic orbits discovered in the Sun–Venus system that may be used for such missions. The Circular Restricted Three-Body Problem (CR3BP) is the primary dynamical model utilized to generate all periodic orbits in the Sun–Venus system. The discovered orbits are grouped into four categories based on their shape: Near-Venus periodic orbits, Sun–Venus touring periodic orbits, Sun–Venus touring periodic orbits featuring near-Sun flybys, and Sun–Venus touring periodic orbits featuring near-Mercury flybys. Each orbit is discussed in terms of its respective Jacobi constant and stability within the context of the CR3BP. The stability of the orbits provides a preliminary analysis of station-keeping costs related to propellant expenditure, thereby determining the feasibility of implementing these trajectories. Specifically, this research shows that most of the identified orbits possess stability indices below 2, suggesting that minimal propellant is necessary for station-keeping maneuvers to sustain the preferred trajectory. For all orbits, specific initial position and velocity states conditions are provided, accompanied by recommendations for their potential mission applications. This research aims to advance ongoing astrodynamics research by filling a catalog hole and providing a Sun–Venus CR3BP orbit baseline.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Footnotes
1
There are an infinite number of possible trajectories within the CR3BP. The term “discovered” refers to the generation of a subset of possible orbits within the CR3BP that have not been previously published.
 
Literature
1.
go back to reference Arrhenius, S.: The Destinies of Stars. (1918) Arrhenius, S.: The Destinies of Stars. (1918)
2.
go back to reference O’Rourke, J., Treiman, A., Arney, G., Byrne, P., Carter, L., Dyar, D., Head III, J., Gray, C., Kane, S., Kiefer, W., et al.: Venus Goals, Objectives, and Investigations. Technical report (2019) O’Rourke, J., Treiman, A., Arney, G., Byrne, P., Carter, L., Dyar, D., Head III, J., Gray, C., Kane, S., Kiefer, W., et al.: Venus Goals, Objectives, and Investigations. Technical report (2019)
3.
go back to reference Zasova, L., Gregg, T., Burdanov, A., Economou, T., Eismont, N., Gerasimov, M., Gorinov, D., Hall, J., Ignatiev, N., Ivanov, M., Jessup, L.K., Khatuntsev, I., Korablev, O., Kremic, T., Limaye, S., Lomakin, I., artynov, A., Ocampo, A., Shuvalov, S., Vaisberg, O., Voron, V., Voronstsov, V.: Venera-D: Expanding Our Horizon of Terrestrial Planet Climate and Geology through the Comprehensive Exploration of Venus. EPSC-DPS Joint Meeting (2019) Zasova, L., Gregg, T., Burdanov, A., Economou, T., Eismont, N., Gerasimov, M., Gorinov, D., Hall, J., Ignatiev, N., Ivanov, M., Jessup, L.K., Khatuntsev, I., Korablev, O., Kremic, T., Limaye, S., Lomakin, I., artynov, A., Ocampo, A., Shuvalov, S., Vaisberg, O., Voron, V., Voronstsov, V.: Venera-D: Expanding Our Horizon of Terrestrial Planet Climate and Geology through the Comprehensive Exploration of Venus. EPSC-DPS Joint Meeting (2019)
7.
go back to reference Restrepo, R.L., Russell, R.P.: A database of planar axisymmetric periodic orbits for the solar system. Celest. Mech. Dyn. Astron. 130, 1–24 (2018)MathSciNetCrossRef Restrepo, R.L., Russell, R.P.: A database of planar axisymmetric periodic orbits for the solar system. Celest. Mech. Dyn. Astron. 130, 1–24 (2018)MathSciNetCrossRef
9.
go back to reference Dobrovolskis, A.R., Alvarellos, J.L.: Synchronous satellites of venus. Adv. Space Res. 69(1), 554–569 (2022)CrossRef Dobrovolskis, A.R., Alvarellos, J.L.: Synchronous satellites of venus. Adv. Space Res. 69(1), 554–569 (2022)CrossRef
10.
go back to reference Rawal, J.: Possible satellites of mercury and venus. Earth Moon Planet. 36(2), 135–138 (1986)CrossRef Rawal, J.: Possible satellites of mercury and venus. Earth Moon Planet. 36(2), 135–138 (1986)CrossRef
11.
go back to reference Anderson, P., Macdonald, M., Yen, C.-W.: Novel orbits of mercury, venus and mars enabled using low-thrust propulsion. Acta Astron. 94(2), 634–645 (2014)CrossRef Anderson, P., Macdonald, M., Yen, C.-W.: Novel orbits of mercury, venus and mars enabled using low-thrust propulsion. Acta Astron. 94(2), 634–645 (2014)CrossRef
12.
go back to reference Shirobokov, M., Trofimov, S., Ovchinnikov, M.: On the design of a space telescope orbit around the Sun–Venus \(L_2\) point. Adv. Space Res. 65(6), 1591–1606 (2020)CrossRef Shirobokov, M., Trofimov, S., Ovchinnikov, M.: On the design of a space telescope orbit around the Sun–Venus \(L_2\) point. Adv. Space Res. 65(6), 1591–1606 (2020)CrossRef
13.
go back to reference Zhou, X., Li, X., Huo, Z., Meng, L., Huang, J.: Near-earth asteroid surveillance constellation in the Sun–Venus three-body system. Space Sci. Technol. 2022 (2022) Zhou, X., Li, X., Huo, Z., Meng, L., Huang, J.: Near-earth asteroid surveillance constellation in the Sun–Venus three-body system. Space Sci. Technol. 2022 (2022)
16.
go back to reference Liou, J.-C., Zook, H.A., Jackson, A.: Radiation pressure, poynting-robertson drag, and solar wind drag in the restricted three-body problem. Icarus 116(1), 186–201 (1995)CrossRef Liou, J.-C., Zook, H.A., Jackson, A.: Radiation pressure, poynting-robertson drag, and solar wind drag in the restricted three-body problem. Icarus 116(1), 186–201 (1995)CrossRef
17.
go back to reference Jain, M., Aggarwal, R., et al.: Restricted three body problem with stokes drag effect. Int. J. Astron. Astrophys. 5(02), 95 (2015)CrossRef Jain, M., Aggarwal, R., et al.: Restricted three body problem with stokes drag effect. Int. J. Astron. Astrophys. 5(02), 95 (2015)CrossRef
18.
go back to reference Vincent, A.E., Perdiou, A.E.: Existence and stability of equilibrium points under the influence of poynting–robertson and stokes drags in the restricted three-body problem. In: Mathematical Analysis in Interdisciplinary Research, pp. 987–1002. (2022) Vincent, A.E., Perdiou, A.E.: Existence and stability of equilibrium points under the influence of poynting–robertson and stokes drags in the restricted three-body problem. In: Mathematical Analysis in Interdisciplinary Research, pp. 987–1002. (2022)
19.
go back to reference Szebehely, V.: Theory of Orbits. Academic Press, Cambridge (1967) Szebehely, V.: Theory of Orbits. Academic Press, Cambridge (1967)
20.
go back to reference Howell, K.C., Pernicka, H.J.: Numerical determination of lissajous trajectories in the restricted three-body problem. Celest. Mech. 41(1–4), 107–124 (1987)CrossRef Howell, K.C., Pernicka, H.J.: Numerical determination of lissajous trajectories in the restricted three-body problem. Celest. Mech. 41(1–4), 107–124 (1987)CrossRef
21.
go back to reference Barrabés, E., Mikkola, S.: Families of periodic horseshoe orbits in the restricted three-body problem. Astron. Astrophys. 432(3), 1115–1129 (2005)CrossRef Barrabés, E., Mikkola, S.: Families of periodic horseshoe orbits in the restricted three-body problem. Astron. Astrophys. 432(3), 1115–1129 (2005)CrossRef
22.
go back to reference Singh, J., Mrumun Begha, J.: Periodic orbits in the generalized perturbed restricted three-body problem. Astrophys. Space Sci. 332, 319–324 (2011)CrossRef Singh, J., Mrumun Begha, J.: Periodic orbits in the generalized perturbed restricted three-body problem. Astrophys. Space Sci. 332, 319–324 (2011)CrossRef
23.
go back to reference Vaquero, M., Howell, K.C.: Leveraging resonant-orbit manifolds to design transfers between libration-point orbits. J. Guid. Control. Dyn. 37(4), 1143–1157 (2014)CrossRef Vaquero, M., Howell, K.C.: Leveraging resonant-orbit manifolds to design transfers between libration-point orbits. J. Guid. Control. Dyn. 37(4), 1143–1157 (2014)CrossRef
24.
go back to reference Smith, T.R., Bosanac, N.: Constructing motion primitive sets to summarize periodic orbit families and hyperbolic invariant manifolds in a multi-body system. Celest. Mech. Dyn. Astron. 134(1), 7 (2022)MathSciNetCrossRef Smith, T.R., Bosanac, N.: Constructing motion primitive sets to summarize periodic orbit families and hyperbolic invariant manifolds in a multi-body system. Celest. Mech. Dyn. Astron. 134(1), 7 (2022)MathSciNetCrossRef
25.
go back to reference Grebow, D.J., Ozimek, M.T., Howell, K.C., Folta, D.C.: Multibody orbit architectures for lunar south pole coverage. J. Spacecr. Rocket. 45(2), 344–358 (2008)CrossRef Grebow, D.J., Ozimek, M.T., Howell, K.C., Folta, D.C.: Multibody orbit architectures for lunar south pole coverage. J. Spacecr. Rocket. 45(2), 344–358 (2008)CrossRef
26.
go back to reference Parker, J.S., Anderson, R.L.: Low-Energy Lunar Trajectory Design, The Deep-Space Communications and Navigation Systems Center of Excellence. Wiley, Hoboken (2014)CrossRef Parker, J.S., Anderson, R.L.: Low-Energy Lunar Trajectory Design, The Deep-Space Communications and Navigation Systems Center of Excellence. Wiley, Hoboken (2014)CrossRef
27.
go back to reference Hoelker, R.F.: Nomology of Earth-Moon Orbits, C=4.00 and C=C(L1). NASA Technical Note (1970) Hoelker, R.F.: Nomology of Earth-Moon Orbits, C=4.00 and C=C(L1). NASA Technical Note (1970)
28.
go back to reference Baltagiannis, A., Papadakis, K.: Periodic solutions in the Sun–Jupiter–trojan asteroid-spacecraft system. Planet. Space Sci. 75, 148–157 (2013)CrossRef Baltagiannis, A., Papadakis, K.: Periodic solutions in the Sun–Jupiter–trojan asteroid-spacecraft system. Planet. Space Sci. 75, 148–157 (2013)CrossRef
29.
go back to reference Wiesel, W.E.: Spaceflight Dynamics, 3rd edn. Aphelion Press, Beavercreek (2010) Wiesel, W.E.: Spaceflight Dynamics, 3rd edn. Aphelion Press, Beavercreek (2010)
30.
go back to reference Doedel, E.J., Romanov, V.A., Paffenroth, R.C., Keller, H.B., Dichmann, D.J., Galán-Vioque, J., Vanderbauwhede, A.: Elemental periodic orbits associated with the libration points in the circular restricted 3-body problem. Int. J. Bifurcat. Chaos 17(08), 2625–2677 (2007)MathSciNetCrossRef Doedel, E.J., Romanov, V.A., Paffenroth, R.C., Keller, H.B., Dichmann, D.J., Galán-Vioque, J., Vanderbauwhede, A.: Elemental periodic orbits associated with the libration points in the circular restricted 3-body problem. Int. J. Bifurcat. Chaos 17(08), 2625–2677 (2007)MathSciNetCrossRef
31.
go back to reference Boudad, K.K.: Disposal Dynamics from the Vicinity of Near Rectilinear Halo Orbits in the Earth-Moon-Sun System. Master’s thesis, Purdue University (2018) Boudad, K.K.: Disposal Dynamics from the Vicinity of Near Rectilinear Halo Orbits in the Earth-Moon-Sun System. Master’s thesis, Purdue University (2018)
33.
go back to reference Meirovitch, L.: Methods of Analytical Dynamics. 1st edn. (2003) Meirovitch, L.: Methods of Analytical Dynamics. 1st edn. (2003)
34.
go back to reference Koon, W.S., Lo, M.W., Marsden, J.E., Ross, S.D.: 2. Dynamical Systems, the Three-Body Problem, and Space Mission Design, 3rd edn. (2011) Koon, W.S., Lo, M.W., Marsden, J.E., Ross, S.D.: 2. Dynamical Systems, the Three-Body Problem, and Space Mission Design, 3rd edn. (2011)
36.
go back to reference Li, X., Qian, Y.-J., Yang, X.-D., Zhang, W.: Stability and bifurcation analyses for exterior resonant families in Earth–Moon system. Results Phys. 31, 104961 (2021)CrossRef Li, X., Qian, Y.-J., Yang, X.-D., Zhang, W.: Stability and bifurcation analyses for exterior resonant families in Earth–Moon system. Results Phys. 31, 104961 (2021)CrossRef
37.
go back to reference Yousuf, S., Kishor, R.: Families of periodic orbits about Lagrangian Points L1, L2 and L3 with continuation method. Planet. Space Sci. 217, 105491 (2022)CrossRef Yousuf, S., Kishor, R.: Families of periodic orbits about Lagrangian Points L1, L2 and L3 with continuation method. Planet. Space Sci. 217, 105491 (2022)CrossRef
39.
go back to reference Tancredi, G.: Chaotic dynamics of planet-encountering bodies. Celest. Mech. Dyn. Astron. 70, 181–200 (1998)CrossRef Tancredi, G.: Chaotic dynamics of planet-encountering bodies. Celest. Mech. Dyn. Astron. 70, 181–200 (1998)CrossRef
40.
go back to reference Newton, R.R.: Periodic orbits of a planetoid passing close to two gravitating masses. Smithsonian Contrib. Astrophys. 3(7) (1959) Newton, R.R.: Periodic orbits of a planetoid passing close to two gravitating masses. Smithsonian Contrib. Astrophys. 3(7) (1959)
41.
go back to reference Wilmer, A.P., Bettinger, R.A., Little, B.D.: Cislunar periodic orbits for earth–moon L1 and L2 lagrange point surveillance. J. Spacecr. Rocket. 59(6), 1809–1820 (2022)CrossRef Wilmer, A.P., Bettinger, R.A., Little, B.D.: Cislunar periodic orbits for earth–moon L1 and L2 lagrange point surveillance. J. Spacecr. Rocket. 59(6), 1809–1820 (2022)CrossRef
42.
go back to reference Wilmer, A.P.: Space Domain Awareness Assessment of Cislunar Periodic Orbits for Lagrange Point Surveillance. Master’s thesis, Air Force Institute of Technology (2021) Wilmer, A.P.: Space Domain Awareness Assessment of Cislunar Periodic Orbits for Lagrange Point Surveillance. Master’s thesis, Air Force Institute of Technology (2021)
43.
go back to reference Wishnek, S., Wysack, J., Correa, J.: Eclipse-Free Three-Body Periodic Orbits in Cislunar Space (2022) Wishnek, S., Wysack, J., Correa, J.: Eclipse-Free Three-Body Periodic Orbits in Cislunar Space (2022)
44.
go back to reference Elshaboury, S., Abouelmagd, E.I., Kalantonis, V., Perdios, E.: The planar restricted three-body problem when both primaries are triaxial rigid bodies: equilibrium points and periodic Rrbits. Astrophys. Space Sci. 361, 1–18 (2016)CrossRef Elshaboury, S., Abouelmagd, E.I., Kalantonis, V., Perdios, E.: The planar restricted three-body problem when both primaries are triaxial rigid bodies: equilibrium points and periodic Rrbits. Astrophys. Space Sci. 361, 1–18 (2016)CrossRef
45.
go back to reference Elshaboury, S.M., Abouelmagd, E.I., Kalantonis, V.S., Perdios, E.A.: The planar restricted three-body problem when both primaries are triaxial rigid bodies: equilibrium points and periodic orbits. Astrophys. Space Sci. 361, 1–18 (2016)MathSciNetCrossRef Elshaboury, S.M., Abouelmagd, E.I., Kalantonis, V.S., Perdios, E.A.: The planar restricted three-body problem when both primaries are triaxial rigid bodies: equilibrium points and periodic orbits. Astrophys. Space Sci. 361, 1–18 (2016)MathSciNetCrossRef
46.
go back to reference Bonasera, S., Bosanac, N.: Applying Data mining techniques to higher-dimensional poincaré maps in the circular restricted three-body problem. Celest. Mech. Dyn. Astron. 133, 51 (2021)CrossRef Bonasera, S., Bosanac, N.: Applying Data mining techniques to higher-dimensional poincaré maps in the circular restricted three-body problem. Celest. Mech. Dyn. Astron. 133, 51 (2021)CrossRef
47.
go back to reference Tricoche, X., Schlei, W., Howell, K.C.: Extraction and visualization of Poincaré map topology for spacecraft trajectory design. IEEE Trans. Vis. Comput. Gr. 27, 765–774 (2021)CrossRef Tricoche, X., Schlei, W., Howell, K.C.: Extraction and visualization of Poincaré map topology for spacecraft trajectory design. IEEE Trans. Vis. Comput. Gr. 27, 765–774 (2021)CrossRef
48.
go back to reference Russell, R.P.: Global search for planar and three-dimensional periodic orbits near Europa. J. Astronaut. Sci. 54(2), 199–226 (2006)MathSciNetCrossRef Russell, R.P.: Global search for planar and three-dimensional periodic orbits near Europa. J. Astronaut. Sci. 54(2), 199–226 (2006)MathSciNetCrossRef
49.
go back to reference Franz, C.J., Russell, R.P.: Database of planar and three-dimensional periodic orbits and families near the moon. J. Astronaut. Sci. 69(6), 1573–1612 (2022)CrossRef Franz, C.J., Russell, R.P.: Database of planar and three-dimensional periodic orbits and families near the moon. J. Astronaut. Sci. 69(6), 1573–1612 (2022)CrossRef
50.
go back to reference Schlei, W.R.: An Application of Visual Analytics to Spacecraft Trajectory Design. Master’s thesis, Purdue University (2011) Schlei, W.R.: An Application of Visual Analytics to Spacecraft Trajectory Design. Master’s thesis, Purdue University (2011)
51.
go back to reference Schlei, W.R.: Interactive Spacecraft Trajectory Design Strategies Featuring Poincaré Map Topology. PhD thesis, Purdue University (2017) Schlei, W.R.: Interactive Spacecraft Trajectory Design Strategies Featuring Poincaré Map Topology. PhD thesis, Purdue University (2017)
52.
go back to reference Maruskin, J.M.: Dynamical Systems and Geometric Mechanics, 2nd edn. Walter de Gruyter GmbH, Berlin/Boston (2018)CrossRef Maruskin, J.M.: Dynamical Systems and Geometric Mechanics, 2nd edn. Walter de Gruyter GmbH, Berlin/Boston (2018)CrossRef
53.
go back to reference Roleda, R.C.: Synodic periods of moons and planets. Manila J. Sci. 1(2), 1–1 (1998) Roleda, R.C.: Synodic periods of moons and planets. Manila J. Sci. 1(2), 1–1 (1998)
54.
go back to reference Yin, Y., Wang, M., Shi, Y., Zhang, H.: Midcourse correction of earth–moon distant retrograde orbit transfer trajectories based on high-order state transition tensors. Astrodynamics (2023) Yin, Y., Wang, M., Shi, Y., Zhang, H.: Midcourse correction of earth–moon distant retrograde orbit transfer trajectories based on high-order state transition tensors. Astrodynamics (2023)
55.
go back to reference Gupta, M., Howell, K.C., Frueh, C.: Earth–moon multi-body orbits to facilitate cislunar surveillance activities. In: AIAA/AAS Astrodynamics Specialist Conference, pp. 17–18. (2021) Gupta, M., Howell, K.C., Frueh, C.: Earth–moon multi-body orbits to facilitate cislunar surveillance activities. In: AIAA/AAS Astrodynamics Specialist Conference, pp. 17–18. (2021)
57.
go back to reference Huihui, W., Xingqun, Z., Yanhua, Z.: Geometric dilution of precision for GPS single-point positioning based on four satellites. J. Syst. Eng. Electron. 19(5), 1058–1063 (2008)CrossRef Huihui, W., Xingqun, Z., Yanhua, Z.: Geometric dilution of precision for GPS single-point positioning based on four satellites. J. Syst. Eng. Electron. 19(5), 1058–1063 (2008)CrossRef
59.
go back to reference Kovalenko, I.D., Eismont, N.A., Limaye, S.S., Zasova, L.V., Gorinov, D.A., Simonov, A.V.: Micro-spacecraft in Sun–Venus lagrange point orbit for the venera-D mission. Adv. Space Res. 66(1), 21–28 (2020)CrossRef Kovalenko, I.D., Eismont, N.A., Limaye, S.S., Zasova, L.V., Gorinov, D.A., Simonov, A.V.: Micro-spacecraft in Sun–Venus lagrange point orbit for the venera-D mission. Adv. Space Res. 66(1), 21–28 (2020)CrossRef
60.
go back to reference Limaye, S.S., Kovalenko, I.D.: Monitoring venus and communications relay from lagrange points. Planet. Space Sci. 179, 104710 (2019)CrossRef Limaye, S.S., Kovalenko, I.D.: Monitoring venus and communications relay from lagrange points. Planet. Space Sci. 179, 104710 (2019)CrossRef
61.
go back to reference McGouldrick, K., Arney, G., Brecht, A., Colaprete, A., Curry, S., Deighan, J., Fukuhara, T., Gray, C., Lillis, R., Navarro, T.: Venus Orbital Mission Concept:Kythiran Eolian dYnamics from the Surface to the Thermosphere from an Orbital NEtwork (KEYSTONE). Technical Report 4 (2021) McGouldrick, K., Arney, G., Brecht, A., Colaprete, A., Curry, S., Deighan, J., Fukuhara, T., Gray, C., Lillis, R., Navarro, T.: Venus Orbital Mission Concept:Kythiran Eolian dYnamics from the Surface to the Thermosphere from an Orbital NEtwork (KEYSTONE). Technical Report 4 (2021)
62.
go back to reference Arney, D.C., Jones, C.A.: high altitude venus operational concept (HAVOC): an exploration strategy for venus. In: AIAA Space 2015 Conference and Exposition, p. 4612. (2015) Arney, D.C., Jones, C.A.: high altitude venus operational concept (HAVOC): an exploration strategy for venus. In: AIAA Space 2015 Conference and Exposition, p. 4612. (2015)
75.
go back to reference Koplow, D.A.: Exoatmospheric plowshares. UCLA J. Int. Law For. Aff. 23(1), 76–158 (2019) Koplow, D.A.: Exoatmospheric plowshares. UCLA J. Int. Law For. Aff. 23(1), 76–158 (2019)
77.
go back to reference Dunham, D.W., Genova, A.: Using venus for locating space observatories to discover potentially hazardous asteroids. Cosm. Res. 48, 424–429 (2010)CrossRef Dunham, D.W., Genova, A.: Using venus for locating space observatories to discover potentially hazardous asteroids. Cosm. Res. 48, 424–429 (2010)CrossRef
Metadata
Title
Sun–Venus CR3BP, part 1: periodic orbit generation, stability, and mission investigation
Authors
Adam P. Wilmer
Robert A. Bettinger
Marcus J. Holzinger
Jacob A. Dahlke
Publication date
01-03-2024
Publisher
Springer Berlin Heidelberg
Published in
Archive of Applied Mechanics / Issue 4/2024
Print ISSN: 0939-1533
Electronic ISSN: 1432-0681
DOI
https://doi.org/10.1007/s00419-024-02556-y

Other articles of this Issue 4/2024

Archive of Applied Mechanics 4/2024 Go to the issue

Premium Partners