Skip to main content
Top
Published in: Mechanics of Composite Materials 6/2015

01-01-2015

A Three-Scale Model of Basic Mechanical Properties of Nafion

Authors: V. Kafka, D. Vokoun

Published in: Mechanics of Composite Materials | Issue 6/2015

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The mechanical properties of Nafion are explained and modeled on the basis of Kafka’s general mesomechanical model and confronted with experimental results. In this approach, Nafion is looked upon as a composite consisting of three constituents: a crystalline Nafion, amorphous Nafion, and water. Taking into account the degree of hydration, its elastic, elastic-plastic, and hysteretic properties are discussed and modeled. It is shown how the interaction between the three constituents manifests itself on the macroscale.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference K. Schmidt-Rohr and Q. Chen, “Parallel cylindrical water nanochannels in Nafion fuel-cell membranes,” Nature Mater., 7, 75-83 (2008).CrossRef K. Schmidt-Rohr and Q. Chen, “Parallel cylindrical water nanochannels in Nafion fuel-cell membranes,” Nature Mater., 7, 75-83 (2008).CrossRef
2.
go back to reference R. Knake, P. Jacquinot, A. W. E. Hodgson, and P. C. Hauser, “Amperometric sensing in the gas phase,” Analytica Chimica Acta, 549, 1-9, (2005).CrossRef R. Knake, P. Jacquinot, A. W. E. Hodgson, and P. C. Hauser, “Amperometric sensing in the gas phase,” Analytica Chimica Acta, 549, 1-9, (2005).CrossRef
3.
go back to reference F. Opekar and K. Stulik, “Electrochemical sensors with polymer electrolytes,” Analytica Chimica Acta, 385, 151-162, (1999).CrossRef F. Opekar and K. Stulik, “Electrochemical sensors with polymer electrolytes,” Analytica Chimica Acta, 385, 151-162, (1999).CrossRef
4.
go back to reference V. Mehta and J. S. Cooper, “Review and analysis of PEM fuel cell design and manufacturing,” J. of Power Sources, 114, 32-53, (2003).CrossRef V. Mehta and J. S. Cooper, “Review and analysis of PEM fuel cell design and manufacturing,” J. of Power Sources, 114, 32-53, (2003).CrossRef
5.
go back to reference V. Antonuccia, A. Di Blasi, V. Baglioa, R. Ornelasb, F. Matteuccib, J. Ledesma-Garciac, L. G. Arriagac, and A. S. Arico, “High-temperature operation of a composite membrane-based solid polymer electrolyte water electrolyser,” Electrochimica Acta, 53, 7350-7356, (2008).CrossRef V. Antonuccia, A. Di Blasi, V. Baglioa, R. Ornelasb, F. Matteuccib, J. Ledesma-Garciac, L. G. Arriagac, and A. S. Arico, “High-temperature operation of a composite membrane-based solid polymer electrolyte water electrolyser,” Electrochimica Acta, 53, 7350-7356, (2008).CrossRef
6.
go back to reference A. A. Gronowski and H. L. Yeager, “Factors which affect the permselectivity of Nafion membranes in chloralkali electrolysis,” J. of the Electrochemical Soc., 138, 2690-2697, (1991).CrossRef A. A. Gronowski and H. L. Yeager, “Factors which affect the permselectivity of Nafion membranes in chloralkali electrolysis,” J. of the Electrochemical Soc., 138, 2690-2697, (1991).CrossRef
7.
go back to reference M. Shahinpoor, Y. Bar-Cohen, J. O. Simpson, and J. Smith, “Ionic polymer-metal composites (IPMCs) as biomimetic sensors, actuators and artificial muscles — a review,” Smart Mater. Struct., 7, R15-R30, (1998).CrossRef M. Shahinpoor, Y. Bar-Cohen, J. O. Simpson, and J. Smith, “Ionic polymer-metal composites (IPMCs) as biomimetic sensors, actuators and artificial muscles — a review,” Smart Mater. Struct., 7, R15-R30, (1998).CrossRef
8.
go back to reference J. Brufau-Penella, M. Puig-Vidal, P. Giannone, S. Graziani, and S. Strazzeri, “Characterization of the harvesting capabilities of an ionic polymer metal composite device,” Smart Mater. Struc., 17, 015009, (2008).CrossRef J. Brufau-Penella, M. Puig-Vidal, P. Giannone, S. Graziani, and S. Strazzeri, “Characterization of the harvesting capabilities of an ionic polymer metal composite device,” Smart Mater. Struc., 17, 015009, (2008).CrossRef
9.
go back to reference Y. Tang, A. M. Karlsson, M. H. Santare, M. Gilbert, S. Cleghorn, and W. B. Johnson, “An experimental investigation of humidity and temperature effects on the mechanical properties of perfluorosulfonic acid membrane,” Mater. Sci. Eng., A, 425, 297-304, (2006).CrossRef Y. Tang, A. M. Karlsson, M. H. Santare, M. Gilbert, S. Cleghorn, and W. B. Johnson, “An experimental investigation of humidity and temperature effects on the mechanical properties of perfluorosulfonic acid membrane,” Mater. Sci. Eng., A, 425, 297-304, (2006).CrossRef
10.
go back to reference M. B. Satterfield, P. W. Majsztrik, H. Ota, J. B. Benziger, and A. B. Bocarsly, “Mechanical properties of Nafion and titania/Nafion composite membranes for polymer electrolyte membrane fuel cells,” J. Polym. Sci., Part B, Polymer Physics, 44, 2327-2345, (2006).CrossRef M. B. Satterfield, P. W. Majsztrik, H. Ota, J. B. Benziger, and A. B. Bocarsly, “Mechanical properties of Nafion and titania/Nafion composite membranes for polymer electrolyte membrane fuel cells,” J. Polym. Sci., Part B, Polymer Physics, 44, 2327-2345, (2006).CrossRef
11.
go back to reference M. N. Silberstein and M. C. Boyce, “Constitutive modeling of the rate-, temperature-, and hydration-dependent deformation response of Nafion to monotonic and cyclic loading,” J. of Power Sources, 195, 5692-5706, (2010).CrossRef M. N. Silberstein and M. C. Boyce, “Constitutive modeling of the rate-, temperature-, and hydration-dependent deformation response of Nafion to monotonic and cyclic loading,” J. of Power Sources, 195, 5692-5706, (2010).CrossRef
12.
go back to reference G. Gebel, “Structural evolution of water-swollen perfluorosulfonated ionomers from dry membrane to solution,” Polymer, 41, 5829-5838, (2000).CrossRef G. Gebel, “Structural evolution of water-swollen perfluorosulfonated ionomers from dry membrane to solution,” Polymer, 41, 5829-5838, (2000).CrossRef
13.
go back to reference D. Liu, S. Kyriakides, S. W. Case, J. J. Lesko, Y. Li, and J. E. McGrath, “Tensile behavior of Nafion and sulfonated poly(arylene ether sulfone) copolymer membranes and its morphological correlations,” J. Polym. Sci., Part B, Polymer Physics, 44, 1453-1465, (2006).CrossRef D. Liu, S. Kyriakides, S. W. Case, J. J. Lesko, Y. Li, and J. E. McGrath, “Tensile behavior of Nafion and sulfonated poly(arylene ether sulfone) copolymer membranes and its morphological correlations,” J. Polym. Sci., Part B, Polymer Physics, 44, 1453-1465, (2006).CrossRef
14.
go back to reference A. Kusoglu, A. M. Karlsson, and M. H. Santare, “Structure–property relationship in ionomer membranes,” Polymer, 51, 1457-1464, (2010).CrossRef A. Kusoglu, A. M. Karlsson, and M. H. Santare, “Structure–property relationship in ionomer membranes,” Polymer, 51, 1457-1464, (2010).CrossRef
15.
go back to reference Y. Qi and Y. H. Lai, “Mesoscale modeling of the influence of morphology on the mechanical properties of proton exchange membranes,” Polymer, 52, 201-210, (2011).CrossRef Y. Qi and Y. H. Lai, “Mesoscale modeling of the influence of morphology on the mechanical properties of proton exchange membranes,” Polymer, 52, 201-210, (2011).CrossRef
16.
go back to reference V. Freger, “Hydration of ionomers and Schroeder’s paradox in Nafion,” J. Phys Chem. B, 113, 24-36, (2009).CrossRef V. Freger, “Hydration of ionomers and Schroeder’s paradox in Nafion,” J. Phys Chem. B, 113, 24-36, (2009).CrossRef
17.
go back to reference M. N. Silberstein, P. V. Pillai, and M. C. Boyce, “Biaxial elastic-viscoplastic behavior of Nafion membranes,” Polymer 52, 529-539, (2010).CrossRef M. N. Silberstein, P. V. Pillai, and M. C. Boyce, “Biaxial elastic-viscoplastic behavior of Nafion membranes,” Polymer 52, 529-539, (2010).CrossRef
18.
go back to reference M. N. Silberstein and M. C. Boyce, “Hygro-thermal mechanical behavior of Nafion during constrained swelling,” J. of Power Sources, 196, 3452-3460, (2011).CrossRef M. N. Silberstein and M. C. Boyce, “Hygro-thermal mechanical behavior of Nafion during constrained swelling,” J. of Power Sources, 196, 3452-3460, (2011).CrossRef
19.
go back to reference K. J. Kim and M. Shahinpoor, “Ionic polymer-metal composites: II. Manufacturing techniques,” Smart Mater. Struct., 12, 65-79, (2003).CrossRef K. J. Kim and M. Shahinpoor, “Ionic polymer-metal composites: II. Manufacturing techniques,” Smart Mater. Struct., 12, 65-79, (2003).CrossRef
20.
go back to reference R. Tiwari and K. J. Kim, “Disc-shaped ionic polymer metal composites for use in mechano-electrical applications,” Smart Mater. Struct., 19, 065016, (2010).CrossRef R. Tiwari and K. J. Kim, “Disc-shaped ionic polymer metal composites for use in mechano-electrical applications,” Smart Mater. Struct., 19, 065016, (2010).CrossRef
21.
go back to reference D. Pugal, K. J. Kim, A. Punning, H. Kasemagi, M. Kruusmaa, and A. Aabloo, “A self-oscillating ionic polymer-metal composite bending actuator,” J. of Appl. Phys., 103, 084908, (2008).CrossRef D. Pugal, K. J. Kim, A. Punning, H. Kasemagi, M. Kruusmaa, and A. Aabloo, “A self-oscillating ionic polymer-metal composite bending actuator,” J. of Appl. Phys., 103, 084908, (2008).CrossRef
22.
go back to reference S. Nemat-Nasser, “Micromechanics of actuation of ionic polymer-metal composites”, J. of Applied Physics, 92, 2899-2915, (2002).CrossRef S. Nemat-Nasser, “Micromechanics of actuation of ionic polymer-metal composites”, J. of Applied Physics, 92, 2899-2915, (2002).CrossRef
23.
go back to reference S. Nemat–Nasser and S. Zamani, “Modeling of electrochemomechanical response of ionic polymer-metal composites with various solvents,” J. of Appl. Phys., 100, 064310, (2006).CrossRef S. Nemat–Nasser and S. Zamani, “Modeling of electrochemomechanical response of ionic polymer-metal composites with various solvents,” J. of Appl. Phys., 100, 064310, (2006).CrossRef
24.
go back to reference G. Alberti, R. Narducci, and M. Sganappa, “Effects of hydrothermal/thermal treatments on the water-uptake of Nafion membranes and relations with changes of conformation, counter-elastic force and tensile modulus of the matrix,” J. of Power Sources, 178, 575-583, (2008).CrossRef G. Alberti, R. Narducci, and M. Sganappa, “Effects of hydrothermal/thermal treatments on the water-uptake of Nafion membranes and relations with changes of conformation, counter-elastic force and tensile modulus of the matrix,” J. of Power Sources, 178, 575-583, (2008).CrossRef
25.
go back to reference V. Kafka, Mesomechanical Constitutive Modeling, World Scientific, Singapore (2001). V. Kafka, Mesomechanical Constitutive Modeling, World Scientific, Singapore (2001).
26.
go back to reference A. Eisenberg and J. S. Kim, Introduction to Ionomers, Wiley, New York (1998). A. Eisenberg and J. S. Kim, Introduction to Ionomers, Wiley, New York (1998).
Metadata
Title
A Three-Scale Model of Basic Mechanical Properties of Nafion
Authors
V. Kafka
D. Vokoun
Publication date
01-01-2015
Publisher
Springer US
Published in
Mechanics of Composite Materials / Issue 6/2015
Print ISSN: 0191-5665
Electronic ISSN: 1573-8922
DOI
https://doi.org/10.1007/s11029-015-9466-y

Other articles of this Issue 6/2015

Mechanics of Composite Materials 6/2015 Go to the issue

Premium Partners