Skip to main content
Top
Published in: Health and Technology 4/2022

09-06-2022 | Original Paper

A transfer learning based deep learning model to diagnose covid-19 CT scan images

Authors: Sanat Kumar Pandey, Ashish Kumar Bhandari, Himanshu Singh

Published in: Health and Technology | Issue 4/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

To save the life of human beings during the pandemic conditions we need an effective automated method to deal with this situation. In pandemic conditions when the available resources becomes insufficient to handle the patient’s load, then we needed some fast and reliable method which analyse the patient medical data with high efficiency and accuracy within time limitations. In this manuscript, an effective and efficient method is proposed for exact diagnosis of the patient whether it is coronavirus disease-2019 (covid-19) positive or negative with the help of deep learning. To find the correct diagnosis with high accuracy we use pre-processed segmented images for the analysis with deep learning. In the first step the X-ray image or computed tomography (CT) of a covid-19 infected person is analysed with various schemes of image segmentation like simple thresholding at 0.3, simple thresholding at 0.6, multiple thresholding (between 26–230) and Otsu’s algorithm. On comparative analysis of all these methods, it is found that the Otsu’s algorithm is a simple and optimum scheme to improve the segmented outcome of binary image for the diagnosis point of view. Otsu’s segmentation scheme gives more precise values in comparison to other methods on the scale of various image quality parameters like accuracy, sensitivity, f-measure, precision, and specificity. For image classification here we use Resnet-50, MobileNet and VGG-16 models of deep learning which gives accuracy 70.24%, 72.95% and 83.18% respectively with non-segmented CT scan images and 75.08%, 80.12% and 99.28% respectively with Otsu’s segmented CT scan images. On a comparative study we find that the VGG-16 models with CT scan image segmented with Otsu’s segmentation gives very high accuracy of 99.28%. On the basis of the diagnosis of the patient firstly we go for an arterial blood gas (ABG) analysis and then on the behalf of this diagnosis and ABG report, the severity level of the patient can be decided and according to this severity level, proper treatment protocols can be followed immediately to save the patient's life. Compared with the existing works, our deep learning based novel method reduces the complexity, takes much less time and has a greater accuracy for exact diagnosis of coronavirus disease-2019 (covid-19).

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Chan JF, Yuan S, Kok KH, To KK, Chu H, Yang J, Xing F, et al. A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster. The Lancet. 2020;395(10223):514–523. Chan JF, Yuan S, Kok KH, To KK, Chu H, Yang J, Xing F, et al. A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster. The Lancet. 2020;395(10223):514–523.
2.
go back to reference Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, Zhao X, et al. A novel coronavirus from patients with pneumonia in China, 2019. New England J Med. (2020). Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, Zhao X, et al. A novel coronavirus from patients with pneumonia in China, 2019. New England J Med. (2020).
3.
go back to reference Chen N, Zhou M, Dong X, Qu J, Gong F, Han Y, Qiu Y, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. The Lancet. 2020;395(10223):507–513. Chen N, Zhou M, Dong X, Qu J, Gong F, Han Y, Qiu Y, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. The Lancet. 2020;395(10223):507–513.
4.
go back to reference Yang X, Yu Y, Xu J, Shu H, Liu H, Wu Y, Zhang L, et al. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. The Lancet Respir Med. 2020;8(5):475–481. Yang X, Yu Y, Xu J, Shu H, Liu H, Wu Y, Zhang L, et al. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. The Lancet Respir Med. 2020;8(5):475–481.
5.
go back to reference Pan L, Wang J, Wang X, Ji JS, Ye D, Shen J, Li L, et al. “Prevention and control of coronavirus disease, (COVID-19) in public places.” Environ Pollut. 2019;292(2022). Pan L, Wang J, Wang X, Ji JS, Ye D, Shen J, Li L, et al. “Prevention and control of coronavirus disease, (COVID-19) in public places.” Environ Pollut. 2019;292(2022).
6.
go back to reference Girum T, Lentiro K, Geremew M, Migora B, Shewamare S. Global strategies and effectiveness for COVID-19 prevention through contact tracing, screening, quarantine, and isolation: a systematic review. Tropical Medicine and Health. 2020;48(1):1–15.CrossRef Girum T, Lentiro K, Geremew M, Migora B, Shewamare S. Global strategies and effectiveness for COVID-19 prevention through contact tracing, screening, quarantine, and isolation: a systematic review. Tropical Medicine and Health. 2020;48(1):1–15.CrossRef
7.
go back to reference Feng H, Liu Y, Lv M, Zhong J. A case report of COVID-19 with false negative RT-PCR test: necessity of chest CT. Jpn J Radiol. 2020;38(5):409–10.CrossRef Feng H, Liu Y, Lv M, Zhong J. A case report of COVID-19 with false negative RT-PCR test: necessity of chest CT. Jpn J Radiol. 2020;38(5):409–10.CrossRef
8.
go back to reference Bass CM, Sajed DR, Adedipe AA, West TE. Pulmonary ultrasound and pulse oximetry versus chest radiography and arterial blood gas analysis for the diagnosis of acute respiratory distress syndrome: a pilot study. Crit Care. 2015;19(1):1–11. Bass CM, Sajed DR, Adedipe AA, West TE. Pulmonary ultrasound and pulse oximetry versus chest radiography and arterial blood gas analysis for the diagnosis of acute respiratory distress syndrome: a pilot study. Crit Care. 2015;19(1):1–11.
9.
go back to reference Bhargava A, Bansal A. Novel coronavirus (COVID-19) diagnosis using computer vision and artificial intelligence techniques: a review. Multimed Tools Appl. 2021;80(13):19931–46.CrossRef Bhargava A, Bansal A. Novel coronavirus (COVID-19) diagnosis using computer vision and artificial intelligence techniques: a review. Multimed Tools Appl. 2021;80(13):19931–46.CrossRef
10.
go back to reference Nithila EE, Kumar SS. Segmentation of lung from CT using various active contour models. Biomed Signal Proc Control. 2019;47:57–62. Nithila EE, Kumar SS. Segmentation of lung from CT using various active contour models. Biomed Signal Proc Control. 2019;47:57–62.
11.
go back to reference Brunese L, Mercaldo F, Reginelli A, Santone A. Explainable deep learning for pulmonary disease and coronavirus COVID-19 detection from X-rays. Comput Methods Programs Biomed. 2020;196: 105608.CrossRef Brunese L, Mercaldo F, Reginelli A, Santone A. Explainable deep learning for pulmonary disease and coronavirus COVID-19 detection from X-rays. Comput Methods Programs Biomed. 2020;196: 105608.CrossRef
12.
go back to reference Pereira RM, Bertolini D, Teixeira LO, Silla Jr CN, Costa YM. COVID-19 identification in chest X-ray images on flat and hierarchical classification scenarios. Computer Methods and Programs in Biomed. 2020;194:105532. Pereira RM, Bertolini D, Teixeira LO, Silla Jr CN, Costa YM. COVID-19 identification in chest X-ray images on flat and hierarchical classification scenarios. Computer Methods and Programs in Biomed. 2020;194:105532.
13.
go back to reference Zhang J, Yu L, Chen D, Pan W, Shi C, Niu Y, Yao X, Xu X, Cheng Y. Dense GAN and Multi-layer Attention based Lesion Segmentation Method for COVID-19 CT Images. Biomed Signal Proc Control. 2021;102901. Zhang J, Yu L, Chen D, Pan W, Shi C, Niu Y, Yao X, Xu X, Cheng Y. Dense GAN and Multi-layer Attention based Lesion Segmentation Method for COVID-19 CT Images. Biomed Signal Proc Control. 2021;102901.
14.
go back to reference Chakraborty S, Mali K. A morphology-based radiological image segmentation approach for efficient screening of COVID-19. Biomed Signal Process Control. 2021;69: 102800.CrossRef Chakraborty S, Mali K. A morphology-based radiological image segmentation approach for efficient screening of COVID-19. Biomed Signal Process Control. 2021;69: 102800.CrossRef
15.
go back to reference Imani M. Automatic diagnosis of coronavirus (COVID-19) using shape and texture characteristics extracted from X-Ray and CT-Scan images. Biomed Signal Process Control. 2021;68: 102602.CrossRef Imani M. Automatic diagnosis of coronavirus (COVID-19) using shape and texture characteristics extracted from X-Ray and CT-Scan images. Biomed Signal Process Control. 2021;68: 102602.CrossRef
16.
go back to reference Gaudêncio AS, Vaz PG, Hilal M, Mahé G, Lederlin M, Humeau-Heurtier A, Cardoso JM. Evaluation of COVID-19 chest computed tomography: A texture analysis based on three-dimensional entropy. Biomed Signal Process Control. 2021;68: 102582.CrossRef Gaudêncio AS, Vaz PG, Hilal M, Mahé G, Lederlin M, Humeau-Heurtier A, Cardoso JM. Evaluation of COVID-19 chest computed tomography: A texture analysis based on three-dimensional entropy. Biomed Signal Process Control. 2021;68: 102582.CrossRef
17.
go back to reference Bhandary A, Prabhu GA, Rajinikanth V, Thanaraj KP, Satapathy SC, Robbins DE, Shasky C, Zhang YD, Tavares JM, Raja NS. Deep-learning frame- work to detect lung abnormality–a study with chest X-ray and lung CT scan images. Pattern Recognit Lett. 2020;129:271–278. Bhandary A, Prabhu GA, Rajinikanth V, Thanaraj KP, Satapathy SC, Robbins DE, Shasky C, Zhang YD, Tavares JM, Raja NS. Deep-learning frame- work to detect lung abnormality–a study with chest X-ray and lung CT scan images. Pattern Recognit Lett. 2020;129:271–278.
18.
go back to reference Gu Y, Kumar V, Hall LO, Goldgof DB, Li CY, Korn R, Bendtsen C, Velazquez ER, Dekker A, Aerts H, et al. Automated delineation of lung tumors from CT images using a single click ensemble segmentation approach Pattern Recognit. 2013;46(3):692–702. Gu Y, Kumar V, Hall LO, Goldgof DB, Li CY, Korn R, Bendtsen C, Velazquez ER, Dekker A, Aerts H, et al. Automated delineation of lung tumors from CT images using a single click ensemble segmentation approach Pattern Recognit. 2013;46(3):692–702.
19.
go back to reference Varshaa KS, Karthika R, Aravinth J. Performance Analysis of Different Deep Learning Architectures for COVID-19 X-Ray Classification. In Computational Vision and Bio-Inspired Computing, pp. 273–285. Springer, Singapore, 2021. Varshaa KS, Karthika R, Aravinth J. Performance Analysis of Different Deep Learning Architectures for COVID-19 X-Ray Classification. In Computational Vision and Bio-Inspired Computing, pp. 273–285. Springer, Singapore, 2021.
20.
go back to reference Lee J, Kim N, Lee H, Seo JB, Won HJ, Shin YM, Shin YG, Kim SH. Efficient liver segmentation using a level-set method with optimal detection of the initial liver boundary from level-set speed images. Comput Methods Programs Biomed. 2007;88(1):26–38. Lee J, Kim N, Lee H, Seo JB, Won HJ, Shin YM, Shin YG, Kim SH. Efficient liver segmentation using a level-set method with optimal detection of the initial liver boundary from level-set speed images. Comput Methods Programs Biomed. 2007;88(1):26–38.
21.
go back to reference Saleh MD, Eswaran C. An automated decision-support system for non-proliferative diabetic retinopathy disease based on MAs and HAs detection. Comput Methods Programs Biomed. 2012;108(1):186–96.CrossRef Saleh MD, Eswaran C. An automated decision-support system for non-proliferative diabetic retinopathy disease based on MAs and HAs detection. Comput Methods Programs Biomed. 2012;108(1):186–96.CrossRef
22.
go back to reference Ganesan K, Acharya UR, Chua KC, Min LC, Abraham KT. Pectoral muscle segmentation: a review. Comput Methods Programs Biomed. 2013;110(1):48–57. Ganesan K, Acharya UR, Chua KC, Min LC, Abraham KT. Pectoral muscle segmentation: a review. Comput Methods Programs Biomed. 2013;110(1):48–57.
23.
go back to reference Chen Y, Wang Z, Jinyong Hu, Zhao W, Wu Q. The domain knowledge based graph-cut model for liver CT segmentation. Biomed Signal Process Control. 2012;7(6):591–8.CrossRef Chen Y, Wang Z, Jinyong Hu, Zhao W, Wu Q. The domain knowledge based graph-cut model for liver CT segmentation. Biomed Signal Process Control. 2012;7(6):591–8.CrossRef
24.
go back to reference Kuruvilla J, Gunavathi K. Lung cancer classification using neural networks for CT images. Comput Methods Programs Biomed. 2014;113(1):202–209. Kuruvilla J, Gunavathi K. Lung cancer classification using neural networks for CT images. Comput Methods Programs Biomed. 2014;113(1):202–209.
25.
go back to reference Su J, Liu S, Song J. A segmentation method based on HMRF for the aided diagnosis of acute myeloid leukemia. Comput Methods Programs Biomed. 2017;152:115–23.CrossRef Su J, Liu S, Song J. A segmentation method based on HMRF for the aided diagnosis of acute myeloid leukemia. Comput Methods Programs Biomed. 2017;152:115–23.CrossRef
26.
go back to reference Wang Y, Zhang Y, Liu Y, Tian J, Zhong C, Shi Z, Zhang Y, He Z. Does non-COVID-19 lung lesion help? investigating transferability in COVID-19 CT image segmentation. Comput Methods Programs Biomed. 2021;202:106004.CrossRef Wang Y, Zhang Y, Liu Y, Tian J, Zhong C, Shi Z, Zhang Y, He Z. Does non-COVID-19 lung lesion help? investigating transferability in COVID-19 CT image segmentation. Comput Methods Programs Biomed. 2021;202:106004.CrossRef
27.
go back to reference Saeedizadeh N, Minaee S, Kafieh R, Yazdani S, Sonka M. COVID TV-Unet: Segmenting COVID-19 chest CT images using connectivity imposed Unet. Computer Methods and Programs in Biomedicine Update. 2021;1:100007.CrossRef Saeedizadeh N, Minaee S, Kafieh R, Yazdani S, Sonka M. COVID TV-Unet: Segmenting COVID-19 chest CT images using connectivity imposed Unet. Computer Methods and Programs in Biomedicine Update. 2021;1:100007.CrossRef
28.
go back to reference Rahimzadeh M, Attar A, Sakhaei SM. A fully automated deep learning-based network for detecting covid-19 from a new and large lung ct scan dataset. Biomed Signal Proc Control. 2021;68:102588. Rahimzadeh M, Attar A, Sakhaei SM. A fully automated deep learning-based network for detecting covid-19 from a new and large lung ct scan dataset. Biomed Signal Proc Control. 2021;68:102588.
29.
go back to reference Liu X, Wang K, Wang K, Chen T, Zhang K, Wang G. KISEG: A Three-Stage Segmentation Framework for Multi-level Acceleration of Chest CT Scans from COVID-19 Patients. In International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 25–34. Springer, Cham, 2020. Liu X, Wang K, Wang K, Chen T, Zhang K, Wang G. KISEG: A Three-Stage Segmentation Framework for Multi-level Acceleration of Chest CT Scans from COVID-19 Patients. In International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 25–34. Springer, Cham, 2020.
31.
go back to reference Yuan X. Segmentation of blurry object by learning from examples, in: Medi- cal Imaging 2010: Image Processing, 7623. Int Soc Optics and Photonics. 2010;76234G. Yuan X. Segmentation of blurry object by learning from examples, in: Medi- cal Imaging 2010: Image Processing, 7623. Int Soc Optics and Photonics. 2010;76234G.
32.
go back to reference Kumari P, Seeja KR. An optimal feature enriched region of interest (ROI) extraction for periocular biometric system. Multimed Tools Appl. 2021;1–19. Kumari P, Seeja KR. An optimal feature enriched region of interest (ROI) extraction for periocular biometric system. Multimed Tools Appl. 2021;1–19.
33.
go back to reference Kumar R, Nagpal S, Kaushik S, Mendiratta S. COVID-19 diagnostic approaches: different roads to the same destination. Virusdisease. 2020;31(2):97–105.CrossRef Kumar R, Nagpal S, Kaushik S, Mendiratta S. COVID-19 diagnostic approaches: different roads to the same destination. Virusdisease. 2020;31(2):97–105.CrossRef
34.
go back to reference Bhargava A, Bansal A. Novel coronavirus (COVID-19) diagnosis using computer vision and artificial intelligence techniques: a review. Multimed Tools Appl. 2021;1–16. Bhargava A, Bansal A. Novel coronavirus (COVID-19) diagnosis using computer vision and artificial intelligence techniques: a review. Multimed Tools Appl. 2021;1–16.
35.
go back to reference Khajji B, Kada D, Balatif O, Rachik M. A multi-region discrete time mathematical modeling of the dynamics of Covid-19 virus propagation using optimal control. J Appl Math Comput. 2020;64(1):255–81.MathSciNetCrossRef Khajji B, Kada D, Balatif O, Rachik M. A multi-region discrete time mathematical modeling of the dynamics of Covid-19 virus propagation using optimal control. J Appl Math Comput. 2020;64(1):255–81.MathSciNetCrossRef
36.
go back to reference Li K, Fang Y, Li W, Pan C, Qin P, Zhong Y, Liu X, Huang M, Liao Y, Li S. Ct image visual quantitative evaluation and clinical classification of coronavirus disease (COVID-19). Eur Radiol. 2020;30:4407–16.CrossRef Li K, Fang Y, Li W, Pan C, Qin P, Zhong Y, Liu X, Huang M, Liao Y, Li S. Ct image visual quantitative evaluation and clinical classification of coronavirus disease (COVID-19). Eur Radiol. 2020;30:4407–16.CrossRef
37.
go back to reference Satapathy SC, Raja NSM, Rajinikanth V, Ashour AS, Dey N. Multi-level image thresholding using Otsu and chaotic bat algorithm. Neural Comput Appl. 2016;29:1285–307.CrossRef Satapathy SC, Raja NSM, Rajinikanth V, Ashour AS, Dey N. Multi-level image thresholding using Otsu and chaotic bat algorithm. Neural Comput Appl. 2016;29:1285–307.CrossRef
38.
go back to reference Mala C, Sridevi M. Multilevel threshold selection for image segmentation using soft computing techniques. Soft Comput. 2015;20(5):1793–810.CrossRef Mala C, Sridevi M. Multilevel threshold selection for image segmentation using soft computing techniques. Soft Comput. 2015;20(5):1793–810.CrossRef
39.
go back to reference Pare S, Bhandari AK, Kumar A, Singh GK. An optimal color image multilevel thresholding technique using grey-level co-occurrence matrix. Expert Syst Appl. 2017;87:335–62.CrossRef Pare S, Bhandari AK, Kumar A, Singh GK. An optimal color image multilevel thresholding technique using grey-level co-occurrence matrix. Expert Syst Appl. 2017;87:335–62.CrossRef
40.
go back to reference Pare S, Bhandari AK, Kumar A, Singh GK. Re´nyi’s entropy and Bat algorithm based color image multilevel. 2019. Pare S, Bhandari AK, Kumar A, Singh GK. Re´nyi’s entropy and Bat algorithm based color image multilevel. 2019.
41.
go back to reference Banerjee S, Mitra S, Shankar BU Single seed delineation of brain tumor using multi-thresholding. Information Sci. 2016;330:88–103. Banerjee S, Mitra S, Shankar BU Single seed delineation of brain tumor using multi-thresholding. Information Sci. 2016;330:88–103.
42.
go back to reference Dominguez AR, Nandi AK. Detection of masses in mammograms via statistically based enhancement, multilevel-thresholding segmentation, and region selection. Computerized Med Imaging and Graphics. 2008;32(4):304–315. Dominguez AR, Nandi AK. Detection of masses in mammograms via statistically based enhancement, multilevel-thresholding segmentation, and region selection. Computerized Med Imaging and Graphics. 2008;32(4):304–315.
43.
go back to reference Manikandan S, Ramar K, Iruthayarajan MW, Srinivasagan KG. Multilevel thresholding for segmentation of medical brain images using real coded genetic algorithm. Measurement. 2014;47:558–568. Manikandan S, Ramar K, Iruthayarajan MW, Srinivasagan KG. Multilevel thresholding for segmentation of medical brain images using real coded genetic algorithm. Measurement. 2014;47:558–568.
44.
go back to reference Sezgin M, Sankur B. Survey over image thresholding techniques and quantitative performance evaluation. J Electron Imaging. 2004;13(1):146–65.CrossRef Sezgin M, Sankur B. Survey over image thresholding techniques and quantitative performance evaluation. J Electron Imaging. 2004;13(1):146–65.CrossRef
45.
go back to reference Akay B. A study on particle swarm optimization and artificial bee colony algorithms for multilevel thresholding. Appl Soft Comput. 2013;13(6):3066–91.CrossRef Akay B. A study on particle swarm optimization and artificial bee colony algorithms for multilevel thresholding. Appl Soft Comput. 2013;13(6):3066–91.CrossRef
46.
go back to reference Bhandari AK, Kumar IV, Srinivas K. Cuttlefish algorithm based multilevel 3D Otsu function for color image segmentation. IEEE Trans Instrumentation and Measurement. 2019;1–10. Bhandari AK, Kumar IV, Srinivas K. Cuttlefish algorithm based multilevel 3D Otsu function for color image segmentation. IEEE Trans Instrumentation and Measurement. 2019;1–10.
47.
go back to reference Bhandari AK, Singh A, Kumar IV. Spatial context energy curve-based multilevel 3-D Otsu algorithm for image segmentation. IEEE Trans Systems, Man, and Cybernetics: Systems. 2019;1–14. Bhandari AK, Singh A, Kumar IV. Spatial context energy curve-based multilevel 3-D Otsu algorithm for image segmentation. IEEE Trans Systems, Man, and Cybernetics: Systems. 2019;1–14.
48.
go back to reference Kandhway P, Bhandari AK. Spatial context cross entropy function based multilevel image segmentation using multi-verse optimizer. Multimed Tools Appl. 2019;78(16):22613–41.CrossRef Kandhway P, Bhandari AK. Spatial context cross entropy function based multilevel image segmentation using multi-verse optimizer. Multimed Tools Appl. 2019;78(16):22613–41.CrossRef
49.
go back to reference Bhandari AK. A novel beta differential evolution algorithm-based fast multilevel thresholding for color image segmentation. Neural Comput Applic. 2018;1–31. Bhandari AK. A novel beta differential evolution algorithm-based fast multilevel thresholding for color image segmentation. Neural Comput Applic. 2018;1–31.
50.
go back to reference Sathya PD, Kayalvizhi R. Optimal multilevel thresholding using bacterial foraging algorithm. Expert Syst Appl. 2011;38(12):15549–64.CrossRef Sathya PD, Kayalvizhi R. Optimal multilevel thresholding using bacterial foraging algorithm. Expert Syst Appl. 2011;38(12):15549–64.CrossRef
51.
go back to reference Bhandari AK, Rahul K. A context sensitive Masi entropy for multilevel image segmentation using moth swarm algorithm. Infrared Phys Technol. 2019;98:132–54.CrossRef Bhandari AK, Rahul K. A context sensitive Masi entropy for multilevel image segmentation using moth swarm algorithm. Infrared Phys Technol. 2019;98:132–54.CrossRef
52.
go back to reference Kittler J, Illingworth J. Minimum error thresholding. Pattern Recogn. 1986;19(1):41–7.CrossRef Kittler J, Illingworth J. Minimum error thresholding. Pattern Recogn. 1986;19(1):41–7.CrossRef
53.
go back to reference Bhandari AK, Kumar IV. A context sensitive energy thresholding based 3D Otsu function for image segmentation using human learning optimization. Appl Soft Comp. 2019;1–35. Bhandari AK, Kumar IV. A context sensitive energy thresholding based 3D Otsu function for image segmentation using human learning optimization. Appl Soft Comp. 2019;1–35.
54.
go back to reference Kandhway P, Bhandari AK. Spatial context-based optimal multilevel energy curve thresholding for image segmentation using soft computing techniques. Neural Comp Applic. 2019;1–37. Kandhway P, Bhandari AK. Spatial context-based optimal multilevel energy curve thresholding for image segmentation using soft computing techniques. Neural Comp Applic. 2019;1–37.
55.
go back to reference Bhandari AK, Maurya S, Meena AK. Social spider optimization based optimally weighted Otsu thresholding for image enhancement. IEEE J Selected Topics in Appl Earth Observations and Remote Sens. 2018;1–13. Bhandari AK, Maurya S, Meena AK. Social spider optimization based optimally weighted Otsu thresholding for image enhancement. IEEE J Selected Topics in Appl Earth Observations and Remote Sens. 2018;1–13.
56.
go back to reference Sezgin M, Sankur B. Survey over image thresholding techniques and quantitative performance evaluation. J Electron Imaging. 2004;13:146–65.CrossRef Sezgin M, Sankur B. Survey over image thresholding techniques and quantitative performance evaluation. J Electron Imaging. 2004;13:146–65.CrossRef
57.
go back to reference Otsu N. “A threshold selection method from gray-level histograms”, IEEE Trans. Systems, Man, and Cybernetics. 1979;9(1):62–6.CrossRef Otsu N. “A threshold selection method from gray-level histograms”, IEEE Trans. Systems, Man, and Cybernetics. 1979;9(1):62–6.CrossRef
58.
go back to reference Fisher RA. The use of multiple measurements in taxonomic problems. Ann Hum Genet. 1936;7(2):179–88. Fisher RA. The use of multiple measurements in taxonomic problems. Ann Hum Genet. 1936;7(2):179–88.
59.
go back to reference AlSaeed DH, Bouridane A, ElZaart A, Sammouda R. Two modified Otsu image segmentation methods based on Lognormal and Gamma distribution models. In Proc IEEE Int Conf Inf Technol e-Services (ICITeS). 2012;1–5. AlSaeed DH, Bouridane A, ElZaart A, Sammouda R. Two modified Otsu image segmentation methods based on Lognormal and Gamma distribution models. In Proc IEEE Int Conf Inf Technol e-Services (ICITeS). 2012;1–5.
60.
go back to reference Cheriet M, Said JN, Suen CY. A recursive thresholding technique for image segmentation. IEEE Trans Image Processing. 1998;7(6):918–21.CrossRef Cheriet M, Said JN, Suen CY. A recursive thresholding technique for image segmentation. IEEE Trans Image Processing. 1998;7(6):918–21.CrossRef
61.
go back to reference Cai H, Yang Z, Cao X, Xia W, Xu X. A new iterative triclass thresholding technique in image segmentation. IEEE Trans Image Processing. 2014;23(3):1038–46.MathSciNetCrossRef Cai H, Yang Z, Cao X, Xia W, Xu X. A new iterative triclass thresholding technique in image segmentation. IEEE Trans Image Processing. 2014;23(3):1038–46.MathSciNetCrossRef
62.
go back to reference Liu JZ, Li WQ, Tian YP. “Automatic thresholding of gray- level pictures using two-dimension Otsu method, ” In Proc. China: IEEE Int. Conf. Circuits and Systems; 1991. p. 325–7. Liu JZ, Li WQ, Tian YP. “Automatic thresholding of gray- level pictures using two-dimension Otsu method, ” In Proc. China: IEEE Int. Conf. Circuits and Systems; 1991. p. 325–7.
63.
go back to reference Jing XJ, Li JF, Liu YL. Image segmentation based on 3-D maximum between-cluster variance. Acta Electron Sin. 2003;31(9):1281–5. Jing XJ, Li JF, Liu YL. Image segmentation based on 3-D maximum between-cluster variance. Acta Electron Sin. 2003;31(9):1281–5.
64.
go back to reference Liao PS, Chen TS, Chung PC. A fast algorithm for multilevel thresholding. J Inf Sci Eng. 2003;17:713–27. Liao PS, Chen TS, Chung PC. A fast algorithm for multilevel thresholding. J Inf Sci Eng. 2003;17:713–27.
65.
go back to reference Otsu N. A threshold selection method from gray-level histogram. IEEE Trans On System Man Cybernetics. 1979;9(1):62–6.CrossRef Otsu N. A threshold selection method from gray-level histogram. IEEE Trans On System Man Cybernetics. 1979;9(1):62–6.CrossRef
66.
go back to reference Oulefki A, Agaian S, Trongtirakul T, Laouar AK. Automatic COVID-19 lung infected region segmentation and measurement using CT-scans images. Pattern Recogn. 2021;114:107747. Oulefki A, Agaian S, Trongtirakul T, Laouar AK. Automatic COVID-19 lung infected region segmentation and measurement using CT-scans images. Pattern Recogn. 2021;114:107747.
67.
go back to reference Satapathy SC, Sri Madhava Raja N, Rajinikanth V, Ashour AS, Dey N. Multi-level image thresholding using Otsu and chaotic bat algorithm. Neural Comput & Applic. 2018;29(12):1285–1307. Satapathy SC, Sri Madhava Raja N, Rajinikanth V, Ashour AS, Dey N. Multi-level image thresholding using Otsu and chaotic bat algorithm. Neural Comput & Applic. 2018;29(12):1285–1307.
68.
go back to reference Vaid S, Kalantar R, Bhandari M. Deep learning COVID-19 detection bias: accuracy through artificial intelligence. Int Orthop. 2020;44(8):1539–42.CrossRef Vaid S, Kalantar R, Bhandari M. Deep learning COVID-19 detection bias: accuracy through artificial intelligence. Int Orthop. 2020;44(8):1539–42.CrossRef
69.
go back to reference Rajpal S, Lakhyani N, Singh AK, Kohli R, Kumar N. Using handpicked features in conjunction with ResNet-50 for improved detection of COVID-19 from chest X-ray images. Chaos, Solitons & Fractals. 2021;145:110749. Rajpal S, Lakhyani N, Singh AK, Kohli R, Kumar N. Using handpicked features in conjunction with ResNet-50 for improved detection of COVID-19 from chest X-ray images. Chaos, Solitons & Fractals. 2021;145:110749.
70.
go back to reference Apostolopoulos ID, Aznaouridis SI, Tzani MA. Extracting possibly representative COVID-19 biomarkers from X-ray images with deep learning approach and image data related to pulmonary diseases. Journal of Medical and Biological Engineering. 2020;40(3):462–9.CrossRef Apostolopoulos ID, Aznaouridis SI, Tzani MA. Extracting possibly representative COVID-19 biomarkers from X-ray images with deep learning approach and image data related to pulmonary diseases. Journal of Medical and Biological Engineering. 2020;40(3):462–9.CrossRef
71.
go back to reference Sitaula C, Hossain MB. Attention-based VGG-16 model for COVID-19 chest X-ray image classification. Appl Intelligence. 2021;51(5):2850–2863. Sitaula C, Hossain MB. Attention-based VGG-16 model for COVID-19 chest X-ray image classification. Appl Intelligence. 2021;51(5):2850–2863.
72.
go back to reference Pass G, Zabih R. Comparing images using joint histograms. Multimedia Syst. 1999;7(3):234–40.CrossRef Pass G, Zabih R. Comparing images using joint histograms. Multimedia Syst. 1999;7(3):234–40.CrossRef
73.
go back to reference Zheng C, Deng X, Fu Q, Zhou Q, Feng J, Ma H, Liu W, Wang X. Deep learning-based detection for COVID-19 from chest CT using weak label. medRxiv. 2020. Zheng C, Deng X, Fu Q, Zhou Q, Feng J, Ma H, Liu W, Wang X. Deep learning-based detection for COVID-19 from chest CT using weak label. medRxiv. 2020.
74.
go back to reference Cao Y, Xu Z, Feng J, Jin C, Han X, Wu H, Shi H. Longitudinal assessment of COVID-19 using a deep learning–based quantitative CT pipeline: illustration of two cases. Radiology. 2020;2(2): e200082. Cao Y, Xu Z, Feng J, Jin C, Han X, Wu H, Shi H. Longitudinal assessment of COVID-19 using a deep learning–based quantitative CT pipeline: illustration of two cases. Radiology. 2020;2(2): e200082.
75.
go back to reference Gozes O, Frid-Adar M, Greenspan H, Browning PD, Zhang H, Ji W, Bernheim A, Siegel E. Rapid ai development cycle for the coronavirus (COVID-19) pandemic: initial results for automated detection & patient monitoring using deep learning CT image analysis, arXiv preprint arXiv:2003.05037. 2020. Gozes O, Frid-Adar M, Greenspan H, Browning PD, Zhang H, Ji W, Bernheim A, Siegel E. Rapid ai development cycle for the coronavirus (COVID-19) pandemic: initial results for automated detection & patient monitoring using deep learning CT image analysis, arXiv preprint arXiv:​2003.​05037. 2020.
76.
go back to reference Jin S, Wang B, Xu H, Luo C, Wei L, Zhao W, Hou X, Ma W, Xu Z, Zheng Z, et al. Ai-assisted CT imaging analysis for COVID-19screening: building and de- ploying a medical ai system in four weeks. medRxiv. 2020. Jin S, Wang B, Xu H, Luo C, Wei L, Zhao W, Hou X, Ma W, Xu Z, Zheng Z, et al. Ai-assisted CT imaging analysis for COVID-19screening: building and de- ploying a medical ai system in four weeks. medRxiv. 2020.
77.
go back to reference Shen C, Yu N, Cai S, Zhou J, Sheng J, Liu K, Zhou H, Guo Y, Niu G. Quantitative computed tomography analysis for stratifying the severity of coronavirus disease 2019. J Pharm Anal. 2020;10. Shen C, Yu N, Cai S, Zhou J, Sheng J, Liu K, Zhou H, Guo Y, Niu G. Quantitative computed tomography analysis for stratifying the severity of coronavirus disease 2019. J Pharm Anal. 2020;10.
Metadata
Title
A transfer learning based deep learning model to diagnose covid-19 CT scan images
Authors
Sanat Kumar Pandey
Ashish Kumar Bhandari
Himanshu Singh
Publication date
09-06-2022
Publisher
Springer Berlin Heidelberg
Published in
Health and Technology / Issue 4/2022
Print ISSN: 2190-7188
Electronic ISSN: 2190-7196
DOI
https://doi.org/10.1007/s12553-022-00677-4

Other articles of this Issue 4/2022

Health and Technology 4/2022 Go to the issue

Premium Partner