Skip to main content
Top
Published in: Journal of Materials Science: Materials in Electronics 8/2013

01-08-2013

A transparent and flexible organic bistable memory device using parylene with embedded gold nanoparticles

Authors: K. C. Aw, P. C. Ooi, K. A. Razak, W. Gao

Published in: Journal of Materials Science: Materials in Electronics | Issue 8/2013

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this work, we demonstrate the fabrication of a transparent and flexible memory device in the simple structure of metal/dielectric/metal (MIM). Here, the MIM structure consists of gold electrode/200 nm Parylene-C/20 nm gold nanoparticles/100 nm Parylene-C/indium-tin-oxide (ITO) coated polyethylene terephthalate (PET). The use of parylene as the dielectric layer is important to ensure that there is no thermal stress induced on the flexible ITO/PET substrate compare to other reported works using various organic dielectrics that require high temperature curing. In addition, parylene deposition does not disturb the drop-casted gold nanoparticles. Hence, the use of parylene will be the right step forward in the fabrication of mechanically flexible and optically transparent devices. Current versus voltage (IV) plot shows the presence of hysteresis suggesting the charge storage capability as a memory device. In the IV plot, three distinct regions based on the slope have been identified and the transport mechanisms are discussed and explained. The fabricated device shows similar behavior as write-once-read-many memory device and can be programmed with either positive or negative bias voltage. However, the memory device shows unstable current state when being bent under different curvature diameters.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference S.-J. Kim, J.-M. Song, J.-S. Lee, Transparent organic thin-film transistors and nonvolatile memory devices fabricated on flexible plastic substrates. J. Mater. Chem. 21, 14516–14522 (2011)CrossRef S.-J. Kim, J.-M. Song, J.-S. Lee, Transparent organic thin-film transistors and nonvolatile memory devices fabricated on flexible plastic substrates. J. Mater. Chem. 21, 14516–14522 (2011)CrossRef
2.
go back to reference D.I. Son, T.W. Kim, J.H. Shim, J.H. Jung, D.U. Lee, J.M. Lee, W.I. Park, W.K. Choi, Flexible organic bistable devices based on Graphene embedded in an insulating poly(methyl methacrylate) polymer layer. Nano Lett. 10, 2441–2447 (2010)CrossRef D.I. Son, T.W. Kim, J.H. Shim, J.H. Jung, D.U. Lee, J.M. Lee, W.I. Park, W.K. Choi, Flexible organic bistable devices based on Graphene embedded in an insulating poly(methyl methacrylate) polymer layer. Nano Lett. 10, 2441–2447 (2010)CrossRef
3.
go back to reference J.W. Seo, J.W. Park, K.S. Lim, J.H. Yang, S.J. Kang, Transparent resistive random access memory and its characteristics for nonvolatile resistive switching. Appl. Phys. Lett. 93, 223505 (2008)CrossRef J.W. Seo, J.W. Park, K.S. Lim, J.H. Yang, S.J. Kang, Transparent resistive random access memory and its characteristics for nonvolatile resistive switching. Appl. Phys. Lett. 93, 223505 (2008)CrossRef
4.
go back to reference J. Yao, J. Lin, Y. Dai, G. Ruan, Z. Yan, L. Li, L. Zhong, D. Natelson, J.M. Tour, Highly transparent nonvolatile resistive memory devices from silicon oxide and graphene. Nat. Commun. 3, 1101 (2012)CrossRef J. Yao, J. Lin, Y. Dai, G. Ruan, Z. Yan, L. Li, L. Zhong, D. Natelson, J.M. Tour, Highly transparent nonvolatile resistive memory devices from silicon oxide and graphene. Nat. Commun. 3, 1101 (2012)CrossRef
5.
go back to reference S. Kim, H.Y. Jeong, S.K. Kim, S.-Y. Choi, K.J. Lee, Flexible memristive memory array on plastic substrates. Nano Lett. 11, 5438–5442 (2011)CrossRef S. Kim, H.Y. Jeong, S.K. Kim, S.-Y. Choi, K.J. Lee, Flexible memristive memory array on plastic substrates. Nano Lett. 11, 5438–5442 (2011)CrossRef
6.
go back to reference W.J. Yu, S.H. Chae, S.Y. Lee, D.L. Duong, Y.H. Lee, Ultra-transparent, flexible single-walled carbon nanotube non-volatile memory device with an oxygen-decorated graphene electrode. Adv. Mater. 23, 1889–1893 (2011)CrossRef W.J. Yu, S.H. Chae, S.Y. Lee, D.L. Duong, Y.H. Lee, Ultra-transparent, flexible single-walled carbon nanotube non-volatile memory device with an oxygen-decorated graphene electrode. Adv. Mater. 23, 1889–1893 (2011)CrossRef
7.
go back to reference S.E. Burns, K. Reynolds, W. Reeves, M. Banach, T. Brown, K. Chalmers, N. Cousins, M. Etchells, C. Hayton, K. Jacobs, A. Menon, S. Siddique, P. Too, C. Ramsdale, J. Watts, P. Cain, T. Von Werne, J. Mills, C. Curling, H. Sirringhaus, K. Amundson, M.D. McCreary, A scalable manufacturing process for flexible active-matrix e-paper displays. J. Soc. Inf. Display 13, 583–586 (2005)CrossRef S.E. Burns, K. Reynolds, W. Reeves, M. Banach, T. Brown, K. Chalmers, N. Cousins, M. Etchells, C. Hayton, K. Jacobs, A. Menon, S. Siddique, P. Too, C. Ramsdale, J. Watts, P. Cain, T. Von Werne, J. Mills, C. Curling, H. Sirringhaus, K. Amundson, M.D. McCreary, A scalable manufacturing process for flexible active-matrix e-paper displays. J. Soc. Inf. Display 13, 583–586 (2005)CrossRef
8.
go back to reference C.D. Sheraw, L. Zhou, J.R. Huang, D.J. Gundlach, T.N. Jackson, M.G. Kane, I.G. Hill, M.S. Hammond, J. Campi, B.K. Greening, J. Francl, J. West, Organic thin-film transistor-driven polymer-dispersed liquid crystal displays on flexible polymeric substrates. Appl. Phys. Lett. 80, 1088 (2002)CrossRef C.D. Sheraw, L. Zhou, J.R. Huang, D.J. Gundlach, T.N. Jackson, M.G. Kane, I.G. Hill, M.S. Hammond, J. Campi, B.K. Greening, J. Francl, J. West, Organic thin-film transistor-driven polymer-dispersed liquid crystal displays on flexible polymeric substrates. Appl. Phys. Lett. 80, 1088 (2002)CrossRef
9.
go back to reference V. Zardetto, T.M. Brown, A. Reale, A. Di Carlo, Substrates for flexible electronics: A practical investigation on the electrical, film flexibility, optical, temperature, and solvent resistance properties. J. Polym. Sci. Part B Polym. Phys. 49, 638–648 (2011)CrossRef V. Zardetto, T.M. Brown, A. Reale, A. Di Carlo, Substrates for flexible electronics: A practical investigation on the electrical, film flexibility, optical, temperature, and solvent resistance properties. J. Polym. Sci. Part B Polym. Phys. 49, 638–648 (2011)CrossRef
10.
go back to reference T. Riedl, P. Gorrn, W. Kowalsky, Transparent electronics for see-through AMOLED displays. J. Disp. Technol. 5, 501–508 (2009)CrossRef T. Riedl, P. Gorrn, W. Kowalsky, Transparent electronics for see-through AMOLED displays. J. Disp. Technol. 5, 501–508 (2009)CrossRef
11.
go back to reference F.C. Chen, Y.S. Lin, T.H. Chen, L.J. Kung, Efficient hole-injection in highly transparent organic thin-film transistors. Electrochem. Solid State Lett. 10, H186–H188 (2007)CrossRef F.C. Chen, Y.S. Lin, T.H. Chen, L.J. Kung, Efficient hole-injection in highly transparent organic thin-film transistors. Electrochem. Solid State Lett. 10, H186–H188 (2007)CrossRef
12.
go back to reference P. Gorrn, M. Sander, J. Meyer, M. Kroger, E. Becker, H.-H. Johannes, W. Kowalsky, T. Riedl, Towards see-through displays: fully transparent thin-film transistor driving transparent organic light-emitting diodes. Adv. Mater. 18, 738–741 (2006)CrossRef P. Gorrn, M. Sander, J. Meyer, M. Kroger, E. Becker, H.-H. Johannes, W. Kowalsky, T. Riedl, Towards see-through displays: fully transparent thin-film transistor driving transparent organic light-emitting diodes. Adv. Mater. 18, 738–741 (2006)CrossRef
13.
go back to reference R.L. Hoffman, B.J. Norris, J.F. Wager, ZnO-based transparent thin-film transistors. Appl. Phys. Lett. 82, 733 (2003)CrossRef R.L. Hoffman, B.J. Norris, J.F. Wager, ZnO-based transparent thin-film transistors. Appl. Phys. Lett. 82, 733 (2003)CrossRef
14.
go back to reference N.T. Salim, K.C. Aw, W. Gao, B.E. Wright, ZnO as dielectric for optically transparent non-volatile memory. Thin Solid Films 518, 362–365 (2009)CrossRef N.T. Salim, K.C. Aw, W. Gao, B.E. Wright, ZnO as dielectric for optically transparent non-volatile memory. Thin Solid Films 518, 362–365 (2009)CrossRef
15.
go back to reference H. Yin, S. Kim, C.J. Kim, I. Song, J. Park, S. Kim, Y. Park, Fully transparent nonvolatile memory employing amorphous oxide as charge trap and transistor’s channel layer. Appl. Phys. Lett. 93, 172109 (2008) H. Yin, S. Kim, C.J. Kim, I. Song, J. Park, S. Kim, Y. Park, Fully transparent nonvolatile memory employing amorphous oxide as charge trap and transistor’s channel layer. Appl. Phys. Lett. 93, 172109 (2008)
16.
go back to reference S.-M. Yoon, S. Yang, C. Byun, S.-H.K. Park, D.-H. Cho, S.-W. Jung, O.-S. Kwon, C.-S. Hwang, Fully transparent non-volatile memory thin-film transistors using an organic ferroelectric and oxide semiconductor below 200°C. Adv. Funct. Mater. 20, 921–926 (2010)CrossRef S.-M. Yoon, S. Yang, C. Byun, S.-H.K. Park, D.-H. Cho, S.-W. Jung, O.-S. Kwon, C.-S. Hwang, Fully transparent non-volatile memory thin-film transistors using an organic ferroelectric and oxide semiconductor below 200°C. Adv. Funct. Mater. 20, 921–926 (2010)CrossRef
17.
go back to reference D.I. Son, D.H. Park, J.B. Kim, J.-W. Choi, T.W. Kim, B. Angadi, Y. Yi, W.K. Choi, Bistable organic memory device with gold nanoparticles embedded in a conducting Poly(N-vinylcarbazole) colloids hybrid. J. Phys. Chem. C 115, 2341–2348 (2010)CrossRef D.I. Son, D.H. Park, J.B. Kim, J.-W. Choi, T.W. Kim, B. Angadi, Y. Yi, W.K. Choi, Bistable organic memory device with gold nanoparticles embedded in a conducting Poly(N-vinylcarbazole) colloids hybrid. J. Phys. Chem. C 115, 2341–2348 (2010)CrossRef
18.
go back to reference W.T. Kim, J.H. Jung, T.W. Kim, D.I. Son, Current bistability and carrier transport mechanisms of organic bistable devices based on hybrid Ag nanoparticle–polymethyl methacrylate polymer nanocomposites. Appl. Phys. Lett. 96, 253301 (2010)CrossRef W.T. Kim, J.H. Jung, T.W. Kim, D.I. Son, Current bistability and carrier transport mechanisms of organic bistable devices based on hybrid Ag nanoparticle–polymethyl methacrylate polymer nanocomposites. Appl. Phys. Lett. 96, 253301 (2010)CrossRef
19.
go back to reference B. Park, K.-J. Im, K. Cho, S. Kim, Electrical characteristics of gold nanoparticle-embedded MIS capacitors with parylene gate dielectric Org. Electron 9, 878–882 (2008) B. Park, K.-J. Im, K. Cho, S. Kim, Electrical characteristics of gold nanoparticle-embedded MIS capacitors with parylene gate dielectric Org. Electron 9, 878–882 (2008)
20.
go back to reference W.F. Beach, Parylene Coatings, Electronic Materials Handbook: Packaging, ASM International, 1989, pp. 789–801 W.F. Beach, Parylene Coatings, Electronic Materials Handbook: Packaging, ASM International, 1989, pp. 789–801
21.
go back to reference J.S. Song, S. Lee, S.H. Jung, G.C. Cha, M.S. Mun, Improved biocompatibility of parylene-C films prepared by chemical vapor deposition and the subsequent plasma treatment. J. Appl. Polym. Sci. 112, 3677–3685 (2009)CrossRef J.S. Song, S. Lee, S.H. Jung, G.C. Cha, M.S. Mun, Improved biocompatibility of parylene-C films prepared by chemical vapor deposition and the subsequent plasma treatment. J. Appl. Polym. Sci. 112, 3677–3685 (2009)CrossRef
22.
go back to reference C.D. Dimitrakopoulos, B.K. Furman, T. Graham, S. Hegde, S. Purushothaman, Field-effect transistors comprising molecular beam deposited α, ω-di-hexyl-hexathienylene and polymeric insulator. Synth. Met. 92, 47–52 (1998)CrossRef C.D. Dimitrakopoulos, B.K. Furman, T. Graham, S. Hegde, S. Purushothaman, Field-effect transistors comprising molecular beam deposited α, ω-di-hexyl-hexathienylene and polymeric insulator. Synth. Met. 92, 47–52 (1998)CrossRef
23.
go back to reference J. Puigdollers, C. Voz, A. Orpella, R. Quidant, I. Martín, M. Vetter, R. Alcubilla, Pentacene thin-film transistors with polymeric gate dielectric. Org. Electron. 5, 67–71 (2004)CrossRef J. Puigdollers, C. Voz, A. Orpella, R. Quidant, I. Martín, M. Vetter, R. Alcubilla, Pentacene thin-film transistors with polymeric gate dielectric. Org. Electron. 5, 67–71 (2004)CrossRef
24.
go back to reference J.H. Park, D.K. Hwang, J. Lee, S. Im, E. Kim, Studies on poly(methyl methacrylate) dielectric layer for field effect transistor: Influence of polymer tacticity. Thin Solid Films 515, 4041–4044 (2007)CrossRef J.H. Park, D.K. Hwang, J. Lee, S. Im, E. Kim, Studies on poly(methyl methacrylate) dielectric layer for field effect transistor: Influence of polymer tacticity. Thin Solid Films 515, 4041–4044 (2007)CrossRef
25.
go back to reference Y. Wu, P. Liu, B.S. Ong, Organic thin-film transitors with poly(methyl silsesquioxane) modified dielectric interfaces Appl. Phys. Lett. 89, 013505 (2006) Y. Wu, P. Liu, B.S. Ong, Organic thin-film transitors with poly(methyl silsesquioxane) modified dielectric interfaces Appl. Phys. Lett. 89, 013505 (2006)
26.
go back to reference P. Liu, Y. Wu, Y. Li, B.S. Ong, S.P. Zhu, Enabling gate dielectric design for all solution-processed, high-perfomance, flexible organic thin-film transistors. J. Am. Chem. Soc. 128, 4554–4555 (2006)CrossRef P. Liu, Y. Wu, Y. Li, B.S. Ong, S.P. Zhu, Enabling gate dielectric design for all solution-processed, high-perfomance, flexible organic thin-film transistors. J. Am. Chem. Soc. 128, 4554–4555 (2006)CrossRef
27.
go back to reference P.C. Ooi, K.C. Aw, K.A. Razak, S.R. Makhsin, W. Gao, Effects of metal electrodes and dielectric thickness on non-volatile memory with embedded gold nanoparticles in polymethylsilsesquioxane. Microelec. Eng. 98, 74–79 (2012)CrossRef P.C. Ooi, K.C. Aw, K.A. Razak, S.R. Makhsin, W. Gao, Effects of metal electrodes and dielectric thickness on non-volatile memory with embedded gold nanoparticles in polymethylsilsesquioxane. Microelec. Eng. 98, 74–79 (2012)CrossRef
28.
go back to reference D. Tsoukalas, Metallic nanoparticles for application in electronic non-volatile memories. Int. J. Nanotechnol. 6, 35–45 (2009)CrossRef D. Tsoukalas, Metallic nanoparticles for application in electronic non-volatile memories. Int. J. Nanotechnol. 6, 35–45 (2009)CrossRef
29.
go back to reference C. Lee, A. Gorur-Seetharam, E.C. Kan, Operational and reliability comparison of discrete-storage nonvolatile memories: advantages of single- and double-layer metal nanocrystals. IEDM Tech. Dig. 557–560 (2003) C. Lee, A. Gorur-Seetharam, E.C. Kan, Operational and reliability comparison of discrete-storage nonvolatile memories: advantages of single- and double-layer metal nanocrystals. IEDM Tech. Dig. 557–560 (2003)
30.
go back to reference B.I. Ipe, K.G. Thomas, S. Barazzouk, S. Hotchandani, P.V. Kamat, Photoinduced charge separation in a fluorophore-gold nanoassembly. J. Phys. Chem. B 106, 18–21 (2002)CrossRef B.I. Ipe, K.G. Thomas, S. Barazzouk, S. Hotchandani, P.V. Kamat, Photoinduced charge separation in a fluorophore-gold nanoassembly. J. Phys. Chem. B 106, 18–21 (2002)CrossRef
31.
go back to reference C.P. Tan, H.G. Craighead, Surface engineering and patterning using parylene for biological applications. Materials 3, 1803–1832 (2010)CrossRef C.P. Tan, H.G. Craighead, Surface engineering and patterning using parylene for biological applications. Materials 3, 1803–1832 (2010)CrossRef
32.
go back to reference S.S. Park, M.K. Ryu, D.H. Cho, M.S. Jang, A study of the SrBi2Nb2O9 capacitor on flexible polymer substrate. J. Korean Phys. Soc. 46, 277–280 (2005) S.S. Park, M.K. Ryu, D.H. Cho, M.S. Jang, A study of the SrBi2Nb2O9 capacitor on flexible polymer substrate. J. Korean Phys. Soc. 46, 277–280 (2005)
33.
go back to reference V. Santucci, F. Maury, F. Senocq, Vapor phase surface functionalization under ultra violet activation of parylene thin films grown by chemical vapor deposition. Thin Solid Films 518, 1675–1681 (2010)CrossRef V. Santucci, F. Maury, F. Senocq, Vapor phase surface functionalization under ultra violet activation of parylene thin films grown by chemical vapor deposition. Thin Solid Films 518, 1675–1681 (2010)CrossRef
34.
go back to reference T. Ishida, H. Kobayashi, Y. Nakato, Structures and properties of electron-beam-evaporated indium tin oxide films as studied by x-ray photoelectron spectroscopy and work-function measurements. J. Appl. Phys. 73, 4344 (1993)CrossRef T. Ishida, H. Kobayashi, Y. Nakato, Structures and properties of electron-beam-evaporated indium tin oxide films as studied by x-ray photoelectron spectroscopy and work-function measurements. J. Appl. Phys. 73, 4344 (1993)CrossRef
35.
go back to reference J. Shewchun, J. Dubow, C.W. Wilmsen, R. Singh, D. Burk, J.F. Wager, The operation of the semiconductor-insulator-semiconductor solar cell: experiment. J. Appl. Phys. 50, 2832 (1979)CrossRef J. Shewchun, J. Dubow, C.W. Wilmsen, R. Singh, D. Burk, J.F. Wager, The operation of the semiconductor-insulator-semiconductor solar cell: experiment. J. Appl. Phys. 50, 2832 (1979)CrossRef
36.
go back to reference J.G. Simmons, R.R. Verderber, Phenomena in thin insulating films new conduction and reversible memory. Proc. Roy. Soc. A 301, 77–102 (1967)CrossRef J.G. Simmons, R.R. Verderber, Phenomena in thin insulating films new conduction and reversible memory. Proc. Roy. Soc. A 301, 77–102 (1967)CrossRef
37.
go back to reference D.-I. Son, D.-H. Park, W.K. Choi, S.-H. Cho, W.-T. Kim, T.W. Kim, Carrier transport in flexible organic bistable devices of ZnO nanoparticles embedded in an insulating poly(methylmethacrylate) polymer layer. Nanotechnology 20, 195203 (2009)CrossRef D.-I. Son, D.-H. Park, W.K. Choi, S.-H. Cho, W.-T. Kim, T.W. Kim, Carrier transport in flexible organic bistable devices of ZnO nanoparticles embedded in an insulating poly(methylmethacrylate) polymer layer. Nanotechnology 20, 195203 (2009)CrossRef
38.
go back to reference P.-T. Liu, T.C. Chang, K.C. Hsu, T.Y. Tseng, L.M. Chen, C.J. Wang, S.M. Sze, Characterization of porous silicate for ultra-low k dielectric application. Thin Solid Films 414, 1–6 (2002) P.-T. Liu, T.C. Chang, K.C. Hsu, T.Y. Tseng, L.M. Chen, C.J. Wang, S.M. Sze, Characterization of porous silicate for ultra-low k dielectric application. Thin Solid Films 414, 1–6 (2002)
39.
go back to reference M.A. Lampert, P. Mark, Current Injection in Solids (Academic, New York, 1970) M.A. Lampert, P. Mark, Current Injection in Solids (Academic, New York, 1970)
40.
go back to reference J.-H. Tan, W.A. Anderson, Current transport in copper indium gallium diselenide solar cells comparing mesa diodes to the full cell. Sol. Energ. Mat. Sol. Cells 77, 283–292 (2003)CrossRef J.-H. Tan, W.A. Anderson, Current transport in copper indium gallium diselenide solar cells comparing mesa diodes to the full cell. Sol. Energ. Mat. Sol. Cells 77, 283–292 (2003)CrossRef
41.
go back to reference N.B. Abdallah, P. Degond, A. Yamnahakki, The child-langmuir law as a model for electron transport in semiconductors. Solid-State Electron 39, 737–744 (1996)CrossRef N.B. Abdallah, P. Degond, A. Yamnahakki, The child-langmuir law as a model for electron transport in semiconductors. Solid-State Electron 39, 737–744 (1996)CrossRef
42.
go back to reference T.P. Juan, S. Chen, J.Y. Lee, Temperature dependence of the current conduction mechanisms in ferroelectric Pb(Zr0.53, Ti0.47)O3 thin films. J. Appl. Phys. 95, 3120–3125 (2004)CrossRef T.P. Juan, S. Chen, J.Y. Lee, Temperature dependence of the current conduction mechanisms in ferroelectric Pb(Zr0.53, Ti0.47)O3 thin films. J. Appl. Phys. 95, 3120–3125 (2004)CrossRef
43.
go back to reference E. Hernández, Space-charge-limited current effects in p-type CuIn0.8Ga0.2Se2/In Schottky diodes. Cryst. Res. Tech. 33, 285–289 (1998) E. Hernández, Space-charge-limited current effects in p-type CuIn0.8Ga0.2Se2/In Schottky diodes. Cryst. Res. Tech. 33, 285–289 (1998)
44.
go back to reference H. Yamamoto, H. Kasajima, W. Yokoyama, H. Sasabe, C. Adachi, Extremely-high-density carrier injection and transport over 12000 A/cm2 into organic thin films. Appl. Phys. Lett. 86, 083502 (2005)CrossRef H. Yamamoto, H. Kasajima, W. Yokoyama, H. Sasabe, C. Adachi, Extremely-high-density carrier injection and transport over 12000 A/cm2 into organic thin films. Appl. Phys. Lett. 86, 083502 (2005)CrossRef
45.
go back to reference A. Wang, I. Kymissis, V. Bulovic, A.I. Akinwande, Engineering density of semiconductor-dielectric interface states to modulate threshold voltage in OFETs. IEEE Trans. Electron Devices 53, 9–13 (2006)CrossRef A. Wang, I. Kymissis, V. Bulovic, A.I. Akinwande, Engineering density of semiconductor-dielectric interface states to modulate threshold voltage in OFETs. IEEE Trans. Electron Devices 53, 9–13 (2006)CrossRef
Metadata
Title
A transparent and flexible organic bistable memory device using parylene with embedded gold nanoparticles
Authors
K. C. Aw
P. C. Ooi
K. A. Razak
W. Gao
Publication date
01-08-2013
Publisher
Springer US
Published in
Journal of Materials Science: Materials in Electronics / Issue 8/2013
Print ISSN: 0957-4522
Electronic ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-013-1219-x

Other articles of this Issue 8/2013

Journal of Materials Science: Materials in Electronics 8/2013 Go to the issue