Skip to main content
Top
Published in: Journal of Scientific Computing 2/2015

01-08-2015

A Weak Galerkin Finite Element Scheme for the Biharmonic Equations by Using Polynomials of Reduced Order

Authors: Ran Zhang, Qilong Zhai

Published in: Journal of Scientific Computing | Issue 2/2015

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A new weak Galerkin (WG) finite element method for solving the biharmonic equation in two or three dimensional spaces by using polynomials of reduced order is introduced and analyzed. The WG method is on the use of weak functions and their weak derivatives defined as distributions. Weak functions and weak derivatives can be approximated by polynomials with various degrees. Different combination of polynomial spaces leads to different WG finite element methods, which makes WG methods highly flexible and efficient in practical computation. This paper explores the possibility of optimal combination of polynomial spaces that minimize the number of unknowns in the numerical scheme, yet without compromising the accuracy of the numerical approximation. Error estimates of optimal order are established for the corresponding WG approximations in both a discrete \(H^2\) norm and the standard \(L^2\) norm. In addition, the paper also presents some numerical experiments to demonstrate the power of the WG method. The numerical results show a great promise of the robustness, reliability, flexibility and accuracy of the WG method.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Arad, M., Yakhot, A., Ben-Dor, G.: A highly accurate numerical solution of a biharmonic equation. Numer. Methods Partial Differ. Equ. 13, 375C391 (1998) Arad, M., Yakhot, A., Ben-Dor, G.: A highly accurate numerical solution of a biharmonic equation. Numer. Methods Partial Differ. Equ. 13, 375C391 (1998)
2.
go back to reference Argyris, J.H., Fried, I., Scharpf, D.W.: The TUBA family of plate elements for the matrix displacement method. Aeronaut. J. R. Aeronaut. Soc. 72, 514C517 (1968) Argyris, J.H., Fried, I., Scharpf, D.W.: The TUBA family of plate elements for the matrix displacement method. Aeronaut. J. R. Aeronaut. Soc. 72, 514C517 (1968)
3.
go back to reference Argyris, J.H., Dunne, P.C.: The finite element method applied to fluid dynamics. In: Hewitt, B.L., Illingworth, C.R., Lock, R.C., Mangler, K.W., McDonnel, J.H., Richards, C., Walkden, F. (eds.) Computational Methods and Problems in Aeronautical Fluid Dynamics, pp. 158–197. Academic Press, London (1976) Argyris, J.H., Dunne, P.C.: The finite element method applied to fluid dynamics. In: Hewitt, B.L., Illingworth, C.R., Lock, R.C., Mangler, K.W., McDonnel, J.H., Richards, C., Walkden, F. (eds.) Computational Methods and Problems in Aeronautical Fluid Dynamics, pp. 158–197. Academic Press, London (1976)
4.
go back to reference Arnold, D.N., Brezzi, F.: Mixed and nonconforming finite element methods: implementation, postprocessing and error estimates. RAIRO Modl. Math. Anal. Numr. 19(1), 7–32 (1985)MATHMathSciNet Arnold, D.N., Brezzi, F.: Mixed and nonconforming finite element methods: implementation, postprocessing and error estimates. RAIRO Modl. Math. Anal. Numr. 19(1), 7–32 (1985)MATHMathSciNet
5.
go back to reference Behrens, E.M., Guzmán, J.: A mixed method for the biharmonic problem based on a system of first-order equations. SIAM J. Numer. Anal. 49, 789–817 (2011)MATHMathSciNetCrossRef Behrens, E.M., Guzmán, J.: A mixed method for the biharmonic problem based on a system of first-order equations. SIAM J. Numer. Anal. 49, 789–817 (2011)MATHMathSciNetCrossRef
6.
go back to reference Bialecki, B., Karageorghis, A.: A Legendre spectral Galerkin method for the biharmonic Dirichlet problem. SIAM J. Sci. Comput. 22(5), 1549–1569 (2000)MATHMathSciNetCrossRef Bialecki, B., Karageorghis, A.: A Legendre spectral Galerkin method for the biharmonic Dirichlet problem. SIAM J. Sci. Comput. 22(5), 1549–1569 (2000)MATHMathSciNetCrossRef
7.
go back to reference Bialecki, B., Karageorghis, A.: Spectral Chebyshev collocation for the Poisson and biharmonic equations. SIAM J. Sci. Comput. 32(5), 2995–3019 (2010)MATHMathSciNetCrossRef Bialecki, B., Karageorghis, A.: Spectral Chebyshev collocation for the Poisson and biharmonic equations. SIAM J. Sci. Comput. 32(5), 2995–3019 (2010)MATHMathSciNetCrossRef
8.
go back to reference Bialecki, B.: A fast solver for the orthogonal spline collocation solution of the biharmonic Dirichlet problem on rectangles. J. Comput. Phys. 191, 601–621 (2003)MATHMathSciNetCrossRef Bialecki, B.: A fast solver for the orthogonal spline collocation solution of the biharmonic Dirichlet problem on rectangles. J. Comput. Phys. 191, 601–621 (2003)MATHMathSciNetCrossRef
9.
go back to reference Bjorstad, P.: Fast numerical solution of the biharmonic dirichlet problem on rectangles. SIAM J. Numer. Anal. 20, 59–71 (1983)MathSciNetCrossRef Bjorstad, P.: Fast numerical solution of the biharmonic dirichlet problem on rectangles. SIAM J. Numer. Anal. 20, 59–71 (1983)MathSciNetCrossRef
10.
go back to reference Brenner, S., Sung, L.: \(C^0\) interior penalty methods for fourth order elliptic boundary value problems on polygonal domains. J. Sci. Comput. 22/23, 83–118 (2005)MathSciNetCrossRef Brenner, S., Sung, L.: \(C^0\) interior penalty methods for fourth order elliptic boundary value problems on polygonal domains. J. Sci. Comput. 22/23, 83–118 (2005)MathSciNetCrossRef
11.
go back to reference Chan, R.H., DeLillo, T.K., Horn, M.A.: The numerical solution of the biharmonic equation by conformal mapping. SIAM J. Sci. Comput. 18, 1571–1582 (1997)MATHMathSciNetCrossRef Chan, R.H., DeLillo, T.K., Horn, M.A.: The numerical solution of the biharmonic equation by conformal mapping. SIAM J. Sci. Comput. 18, 1571–1582 (1997)MATHMathSciNetCrossRef
12.
go back to reference Chen, G., Li, Z., Lin, P.: A fast finite difference method for biharmonic equations on irregular domains and its application to an incompressible Stokes flow. Adv. Comput. Math. 29, 113–133 (2008)MATHMathSciNetCrossRef Chen, G., Li, Z., Lin, P.: A fast finite difference method for biharmonic equations on irregular domains and its application to an incompressible Stokes flow. Adv. Comput. Math. 29, 113–133 (2008)MATHMathSciNetCrossRef
13.
go back to reference Chen, H.R., Chen, S.C., Qiao, Z.H.: \(C^0\)-nonconforming tetrahedral and cuboid elements for the three-dimensional fourth order elliptic problem. Numer. Math. 124(1), 99–119 (2013)MATHMathSciNetCrossRef Chen, H.R., Chen, S.C., Qiao, Z.H.: \(C^0\)-nonconforming tetrahedral and cuboid elements for the three-dimensional fourth order elliptic problem. Numer. Math. 124(1), 99–119 (2013)MATHMathSciNetCrossRef
14.
go back to reference Chen, H.R., Chen, S.C., Qiao, Z.H.: \(C^0\)-nonconforming triangular prism elements for the three-dimensional fourth order elliptic problem. J. Sci. Comput. 55(3), 645–658 (2013)MATHMathSciNetCrossRef Chen, H.R., Chen, S.C., Qiao, Z.H.: \(C^0\)-nonconforming triangular prism elements for the three-dimensional fourth order elliptic problem. J. Sci. Comput. 55(3), 645–658 (2013)MATHMathSciNetCrossRef
15.
go back to reference Ciarlet, P.A., Raviart, P.G.: A mixed finite element method for the biharmonic equation. In: Mathematical Aspects of Finite Elements in Partial Differential Equations. Academic Press, New York, pp. 125–145 (1974) Ciarlet, P.A., Raviart, P.G.: A mixed finite element method for the biharmonic equation. In: Mathematical Aspects of Finite Elements in Partial Differential Equations. Academic Press, New York, pp. 125–145 (1974)
16.
go back to reference Clough, R.W., Tocher, J.L.: Finite element stiffness matrices for analysis of plates in bending. In: Proceedings of the Conference on Matrix Methods in Structural Mechanics. Wright Patterson A.F.B., Ohio (1965) Clough, R.W., Tocher, J.L.: Finite element stiffness matrices for analysis of plates in bending. In: Proceedings of the Conference on Matrix Methods in Structural Mechanics. Wright Patterson A.F.B., Ohio (1965)
17.
go back to reference Cockburn, B., Dong, B., Guzmán, J.: A hybridizable and superconvergent discontinuous Galerkin method for biharmonic problems. J. Sci. Comput. 40, 141C187 (2009) Cockburn, B., Dong, B., Guzmán, J.: A hybridizable and superconvergent discontinuous Galerkin method for biharmonic problems. J. Sci. Comput. 40, 141C187 (2009)
18.
go back to reference Davini, C., Pitacco, I.: An unconstrained mixed method for the biharmonic problem. SIAM J. Numer. Anal. 38, 820C836 (2001)MathSciNet Davini, C., Pitacco, I.: An unconstrained mixed method for the biharmonic problem. SIAM J. Numer. Anal. 38, 820C836 (2001)MathSciNet
19.
go back to reference Dean, E.J., Glowinski, R., Pironneau, O.: Iterative solution of the stream functionvorticity formulation of the Stokes problem, applications to the numerical simulation of incompressible viscous flow. Comput. Methods Appl. Mech. Eng. 87, 117–155 (1991)MATHMathSciNetCrossRef Dean, E.J., Glowinski, R., Pironneau, O.: Iterative solution of the stream functionvorticity formulation of the Stokes problem, applications to the numerical simulation of incompressible viscous flow. Comput. Methods Appl. Mech. Eng. 87, 117–155 (1991)MATHMathSciNetCrossRef
20.
21.
go back to reference Engel, G., Garikipati, K., Hughes, T., Larson, M.G., Mazzei, L., Taylor, R.: Continuous/discontinuous finite element approximations of fourth order elliptic problems in structural and continuum mechanics with applications to thin beams and plates, and strain gradient elasticity. Comput. Meth. Appl. Mech. Eng. 191, 3669–3750 (2002)MATHMathSciNetCrossRef Engel, G., Garikipati, K., Hughes, T., Larson, M.G., Mazzei, L., Taylor, R.: Continuous/discontinuous finite element approximations of fourth order elliptic problems in structural and continuum mechanics with applications to thin beams and plates, and strain gradient elasticity. Comput. Meth. Appl. Mech. Eng. 191, 3669–3750 (2002)MATHMathSciNetCrossRef
22.
go back to reference Fraeijs de Veubeke, B.: A conforming finite element for plate bending. In: Zienkiewicz, O.C., Holister, G.S. (eds.) Stress Analysis, p. 145C197. Wiley, New York (1965) Fraeijs de Veubeke, B.: A conforming finite element for plate bending. In: Zienkiewicz, O.C., Holister, G.S. (eds.) Stress Analysis, p. 145C197. Wiley, New York (1965)
23.
go back to reference Greenbaum, A., Greengard, L., Mayo, A.: On the numerical solution of the biharmonic equation in the plane. Phys. D 60, 216–225 (1992)MATHMathSciNetCrossRef Greenbaum, A., Greengard, L., Mayo, A.: On the numerical solution of the biharmonic equation in the plane. Phys. D 60, 216–225 (1992)MATHMathSciNetCrossRef
24.
go back to reference Gupta, M.M., Manohar, R.P.: Direct solution of biharmonic equation using noncoupled approach. J. Comput. Phys. 33, 236–248 (1979)MATHMathSciNetCrossRef Gupta, M.M., Manohar, R.P.: Direct solution of biharmonic equation using noncoupled approach. J. Comput. Phys. 33, 236–248 (1979)MATHMathSciNetCrossRef
25.
go back to reference Heinrichs, W.: A stabilized treatment of the biharmonic operator with spectral methods. SIAM J. Sci. Stat. Comput. 12, 1162–1172 (1991)MATHMathSciNetCrossRef Heinrichs, W.: A stabilized treatment of the biharmonic operator with spectral methods. SIAM J. Sci. Stat. Comput. 12, 1162–1172 (1991)MATHMathSciNetCrossRef
26.
go back to reference Jaswon, M.A., Symm, G.T.: Integral Equation Methods in Potential Theory and Elastostatics, pp. 99–126. Academic Press, New York (1977)MATH Jaswon, M.A., Symm, G.T.: Integral Equation Methods in Potential Theory and Elastostatics, pp. 99–126. Academic Press, New York (1977)MATH
27.
go back to reference Linden, J.: A Multigrid Method for Solving the Biharmonic Equation on Rectangular Domains, Notes Numer. Fluid Mech. 11, Vieweg, Braunschweig (1985) Linden, J.: A Multigrid Method for Solving the Biharmonic Equation on Rectangular Domains, Notes Numer. Fluid Mech. 11, Vieweg, Braunschweig (1985)
28.
go back to reference Morley, L.S.D.: The triangular equilibrium element in the solution of plate bending problems. Aero. Quart. 19, 149–169 (1968) Morley, L.S.D.: The triangular equilibrium element in the solution of plate bending problems. Aero. Quart. 19, 149–169 (1968)
29.
go back to reference Mayo, A.: The fast solution of Poissons and the biharmonic equations on irregular regions. SIAM J. Numer. Anal. 21, 285–299 (1984)MATHMathSciNetCrossRef Mayo, A.: The fast solution of Poissons and the biharmonic equations on irregular regions. SIAM J. Numer. Anal. 21, 285–299 (1984)MATHMathSciNetCrossRef
30.
go back to reference Mozolevski, I., Sli, E., Bsing, P.R.: hp-Version a priori error analysis of interior penalty discontinuous Galerkin finite element approximations to the biharmonic equation. J. Sci. Comput. 30, 465–491 (2007)MATHMathSciNetCrossRef Mozolevski, I., Sli, E., Bsing, P.R.: hp-Version a priori error analysis of interior penalty discontinuous Galerkin finite element approximations to the biharmonic equation. J. Sci. Comput. 30, 465–491 (2007)MATHMathSciNetCrossRef
32.
go back to reference Mu, L., Wang, J., Ye, X.: Weak Galerkin finite element methods for the biharmonic equation on polytopal meshes, preprint Mu, L., Wang, J., Ye, X.: Weak Galerkin finite element methods for the biharmonic equation on polytopal meshes, preprint
33.
go back to reference Mu, L., Wang, J., Ye, X., Zhang, S.: A \(C^0\)-weak Galerkin finite element method for the biharmonic euqation, preprint Mu, L., Wang, J., Ye, X., Zhang, S.: A \(C^0\)-weak Galerkin finite element method for the biharmonic euqation, preprint
34.
go back to reference Muskhelishvili, N.I.: Some Basic Problems in the Mathematical Theory of Elasticity. Noordhoff Groningen, The Netherlands (1953) Muskhelishvili, N.I.: Some Basic Problems in the Mathematical Theory of Elasticity. Noordhoff Groningen, The Netherlands (1953)
35.
go back to reference Pandit, S.K.: On the use of compact streamfunction-velocity formulation of steady Navier–Stokes equations on geometries beyond rectangular. J. Sci. Comput. 36, 219–242 (2008)MATHMathSciNetCrossRef Pandit, S.K.: On the use of compact streamfunction-velocity formulation of steady Navier–Stokes equations on geometries beyond rectangular. J. Sci. Comput. 36, 219–242 (2008)MATHMathSciNetCrossRef
36.
go back to reference Roache, P.: Computational Fluid Dynamics. Hermosa, Albuquerque (1972)MATH Roache, P.: Computational Fluid Dynamics. Hermosa, Albuquerque (1972)MATH
37.
go back to reference Wang, C., Wang, J.: An efficient numerical scheme for the biharmonic equation by weak Galerkin finite element methods on polygonal or polyhedral meshes. arXiv:1303.0927 Wang, C., Wang, J.: An efficient numerical scheme for the biharmonic equation by weak Galerkin finite element methods on polygonal or polyhedral meshes. arXiv:​1303.​0927
38.
go back to reference Wang, J., Ye, X.: A weak Galerkin finite element method for second-order elliptic problems. J. Comput. Appl. Math. 241, 103–115 (2013)MATHMathSciNetCrossRef Wang, J., Ye, X.: A weak Galerkin finite element method for second-order elliptic problems. J. Comput. Appl. Math. 241, 103–115 (2013)MATHMathSciNetCrossRef
39.
go back to reference Wang, J., Ye, X.: A weak Galerkin mixed finite element method for second-order elliptic problems. Math. Comput. 83(289), 2101–2126 (2014)MATHMathSciNetCrossRef Wang, J., Ye, X.: A weak Galerkin mixed finite element method for second-order elliptic problems. Math. Comput. 83(289), 2101–2126 (2014)MATHMathSciNetCrossRef
Metadata
Title
A Weak Galerkin Finite Element Scheme for the Biharmonic Equations by Using Polynomials of Reduced Order
Authors
Ran Zhang
Qilong Zhai
Publication date
01-08-2015
Publisher
Springer US
Published in
Journal of Scientific Computing / Issue 2/2015
Print ISSN: 0885-7474
Electronic ISSN: 1573-7691
DOI
https://doi.org/10.1007/s10915-014-9945-7

Other articles of this Issue 2/2015

Journal of Scientific Computing 2/2015 Go to the issue

Premium Partner