Skip to main content
Top
Published in: Metallurgical and Materials Transactions A 2/2023

29-11-2022 | Original Research Article

Accumulative Roll Bonding of Alloy 2205 Duplex Steel and the Accompanying Impacts on Microstructure, Texture, and Mechanical Properties

Authors: J. S. Carpenter, D. J. Savage, C. A. Miller, R. J. McCabe, S. J. Zheng, D. R. Coughlin, S. C. Vogel

Published in: Metallurgical and Materials Transactions A | Issue 2/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The mechanical and microstructural evolution of Alloy 2205 during severe plastic deformation is examined in this study. A combination of accumulative roll bonding (ARB) and cold rolling results in the successful formation of a nanograined dual-phase microstructure of austenite and ferrite with some transformed martensite. Severe deformation to cumulative reductions of 80.5, 92.5, 95, and 97 pct were performed. Microscopy indicates that grain dimensions in the sheet normal direction is less than 100 nm for reductions ≥ 92.5 pct. Shear banding is observed at reductions ≥ 95 pct while twinning is only observed at reductions < 92.5 pct. Neutron diffraction measurements indicated the presence of martensite for reductions ≥ 95 pct at ~ 8 pct volume fraction. Taken in conjunction, it appears that during initial ARB processing, both slip and twinning are active plastic mechanisms. As twinning becomes exhausted, martensitic transformation, slip, and intermittent shear banding account for the active plasticity mechanisms. Material hardness saturates at 92.5 pct reduction, with a maximum hardness of 45 HRC. Sub-sized tensile testing confirms this approximate hardness with measurements indicating a UTS of ~ 1440 MPa. Texture analysis of crystal orientation distributions in the plate normal direction suggest an approximate Kurdjumov–Sachs orientation relationship at all reductions above 80 pct indicating stability of the orientation relationship at high strains. The intragranular structure develops a fine scale sub-grain content with increasing deformation, resulting in a continual evolution of texture up to and including 97 pct reduction. The final structure presents strong components of Goss and rotated cube texture in both the austenite and ferrite. This body of work aims to compare ARB of an industrially relevant FCC/BCC system (Alloy 2205) to historical model FCC/BCC systems such as Cu/Nb.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference P.D. Funkenbusch and T.H. Courtney: Acta Metall., 1985, vol. 33, pp. 913–22.CrossRef P.D. Funkenbusch and T.H. Courtney: Acta Metall., 1985, vol. 33, pp. 913–22.CrossRef
2.
go back to reference H.P. Wahl and G. Wassermann: Z. Metallk., 1970, vol. 61, p. 326. H.P. Wahl and G. Wassermann: Z. Metallk., 1970, vol. 61, p. 326.
3.
4.
5.
go back to reference W.A. Spitzig, A.R. Pelton, and F.C. Laabs: Acta Metall., 1987, vol. 35, pp. 2427–42.CrossRef W.A. Spitzig, A.R. Pelton, and F.C. Laabs: Acta Metall., 1987, vol. 35, pp. 2427–42.CrossRef
6.
go back to reference A. Misra, M. Verdier, Y.C. Lu, H. Kung, T.E. Mitchell, N. Nastasi, and J.D. Embury: Scripta Mater., 1998, vol. 39, pp. 555–60.CrossRef A. Misra, M. Verdier, Y.C. Lu, H. Kung, T.E. Mitchell, N. Nastasi, and J.D. Embury: Scripta Mater., 1998, vol. 39, pp. 555–60.CrossRef
7.
go back to reference J.T. Wood, A.J. Griffin Jr., J.D. Embury, R. Zhou, M. Nastasi, and M. Veron: J. Mech. Phys. Solids, 1996, vol. 44, pp. 737–50.CrossRef J.T. Wood, A.J. Griffin Jr., J.D. Embury, R. Zhou, M. Nastasi, and M. Veron: J. Mech. Phys. Solids, 1996, vol. 44, pp. 737–50.CrossRef
8.
go back to reference K. Adachi, S. Tsubokawa, T. Takeuchi, and H.G. Suzuki: J. Jpn Inst. Met., 1997, vol. 61, pp. 397–403.CrossRef K. Adachi, S. Tsubokawa, T. Takeuchi, and H.G. Suzuki: J. Jpn Inst. Met., 1997, vol. 61, pp. 397–403.CrossRef
9.
go back to reference T.E. Mitchell, Y.C. Lu, A.J. Griffin, M. Nastasi, and H. Kung: J. Am. Ceram. Soc., 1997, vol. 80, pp. 1673–76.CrossRef T.E. Mitchell, Y.C. Lu, A.J. Griffin, M. Nastasi, and H. Kung: J. Am. Ceram. Soc., 1997, vol. 80, pp. 1673–76.CrossRef
10.
go back to reference S.A. Barnett and M. Shinn: Annu. Rev. Mater. Sci., 1994, vol. 24, pp. 481–511.CrossRef S.A. Barnett and M. Shinn: Annu. Rev. Mater. Sci., 1994, vol. 24, pp. 481–511.CrossRef
11.
12.
go back to reference J.S. Carpenter, S.J. Zheng, R.F. Zhang, S.C. Vogel, I.J. Beyerlein, and N.A. Mara: Philos. Mag., 2013, vol. 93, pp. 718–35.CrossRef J.S. Carpenter, S.J. Zheng, R.F. Zhang, S.C. Vogel, I.J. Beyerlein, and N.A. Mara: Philos. Mag., 2013, vol. 93, pp. 718–35.CrossRef
13.
14.
go back to reference W.F. Yang, I.J. Beyerlein, Q.Q. Jin, H.L. Ge, T. Xiong, L.X. Yang, J.C. Pang, Y.T. Zhou, X.H. Shao, B. Zhang, S.J. Zheng, and X.L. Ma: Scripta Mater., 2019, vol. 166, pp. 73–77.CrossRef W.F. Yang, I.J. Beyerlein, Q.Q. Jin, H.L. Ge, T. Xiong, L.X. Yang, J.C. Pang, Y.T. Zhou, X.H. Shao, B. Zhang, S.J. Zheng, and X.L. Ma: Scripta Mater., 2019, vol. 166, pp. 73–77.CrossRef
15.
go back to reference W.Z. Han, M.J. Demkowicz, N.A. Mara, E.F. Fu, S. Sinha, A.D. Rollett, Y.Q. Wang, J.S. Carpenter, I.J. Beyerlein, and A. Misra: Adv. Mater., 2013, vol. 25, pp. 6975–79.CrossRef W.Z. Han, M.J. Demkowicz, N.A. Mara, E.F. Fu, S. Sinha, A.D. Rollett, Y.Q. Wang, J.S. Carpenter, I.J. Beyerlein, and A. Misra: Adv. Mater., 2013, vol. 25, pp. 6975–79.CrossRef
16.
go back to reference L.F. Zeng, P. Fan, L.F. Zhang, R. Gao, Z.M. Xie, Q.F. Fang, X.P. Wang, D.Q. Yuan, T. Zhang, and C.S. Liu: J. Nucl. Mater., 2018, vol. 508, pp. 354–60.CrossRef L.F. Zeng, P. Fan, L.F. Zhang, R. Gao, Z.M. Xie, Q.F. Fang, X.P. Wang, D.Q. Yuan, T. Zhang, and C.S. Liu: J. Nucl. Mater., 2018, vol. 508, pp. 354–60.CrossRef
17.
go back to reference W.Z. Han, N.A. Mara, Y.Q. Wang, A. Misra, and M.J. Demkowicz: J. Nucl. Mater., 2014, vol. 452, pp. 57–60.CrossRef W.Z. Han, N.A. Mara, Y.Q. Wang, A. Misra, and M.J. Demkowicz: J. Nucl. Mater., 2014, vol. 452, pp. 57–60.CrossRef
18.
go back to reference H.P.A. Ali, I. Radchenko, N. Li, and A. Budiman: Mater. Sci. Eng. A, 2018, vol. 738, pp. 253–63.CrossRef H.P.A. Ali, I. Radchenko, N. Li, and A. Budiman: Mater. Sci. Eng. A, 2018, vol. 738, pp. 253–63.CrossRef
19.
go back to reference J. Wang, Q. Zhou, S. Shao, and A. Misra: Mater. Res. Lett., 2017, vol. 5, pp. 1–19.CrossRef J. Wang, Q. Zhou, S. Shao, and A. Misra: Mater. Res. Lett., 2017, vol. 5, pp. 1–19.CrossRef
20.
go back to reference M. Ardeljan, M. Knezevic, T. Nizolek, I.J. Beyerlein, N.A. Mara, and T.M. Pollock: Int. J. Plast., 2015, vol. 74, pp. 35–57.CrossRef M. Ardeljan, M. Knezevic, T. Nizolek, I.J. Beyerlein, N.A. Mara, and T.M. Pollock: Int. J. Plast., 2015, vol. 74, pp. 35–57.CrossRef
22.
go back to reference J.S. Carpenter, S.C. Vogel, J.E. LeDonne, D.L. Hammon, I.J. Beyerlein, and N.A. Mara: Acta Mater., 2012, vol. 60, pp. 1576–86.CrossRef J.S. Carpenter, S.C. Vogel, J.E. LeDonne, D.L. Hammon, I.J. Beyerlein, and N.A. Mara: Acta Mater., 2012, vol. 60, pp. 1576–86.CrossRef
23.
go back to reference L.F. Zeng, R. Gao, Z.M. Xie, S. Miao, Q.F. Fang, X.P. Wang, T. Zhang, and C.S. Liu: Sci. Rep., 2017, vol. 7, p. 40742.CrossRef L.F. Zeng, R. Gao, Z.M. Xie, S. Miao, Q.F. Fang, X.P. Wang, T. Zhang, and C.S. Liu: Sci. Rep., 2017, vol. 7, p. 40742.CrossRef
24.
go back to reference L.F. Zeng, R. Gao, Q.F. Fang, X.P. Wang, Z.M. Xie, S. Miao, T. Hao, and T. Zhang: Acta Mater., 2016, vol. 110, pp. 341–51.CrossRef L.F. Zeng, R. Gao, Q.F. Fang, X.P. Wang, Z.M. Xie, S. Miao, T. Hao, and T. Zhang: Acta Mater., 2016, vol. 110, pp. 341–51.CrossRef
25.
go back to reference J.S. Carpenter, T. Nizolek, R.J. McCabe, M. Knezevic, S.J. Zheng, B.P. Eftink, J.E. Scott, S.C. Vogel, T.M. Pollock, N.A. Mara, and I.J. Beyerlein: Acta Mater., 2015, vol. 92, pp. 97–108.CrossRef J.S. Carpenter, T. Nizolek, R.J. McCabe, M. Knezevic, S.J. Zheng, B.P. Eftink, J.E. Scott, S.C. Vogel, T.M. Pollock, N.A. Mara, and I.J. Beyerlein: Acta Mater., 2015, vol. 92, pp. 97–108.CrossRef
26.
go back to reference M.M. Mahdavian, L. Ghalandari, and M. Reihanian: Mater. Sci. Eng. A, 2013, vol. 579, pp. 99–107.CrossRef M.M. Mahdavian, L. Ghalandari, and M. Reihanian: Mater. Sci. Eng. A, 2013, vol. 579, pp. 99–107.CrossRef
27.
go back to reference Y.F. Sun, N. Tsuji, H. Fujii, and F.S. Li: J. Alloys Compd., 2010, vol. 504, pp. S443-47.CrossRef Y.F. Sun, N. Tsuji, H. Fujii, and F.S. Li: J. Alloys Compd., 2010, vol. 504, pp. S443-47.CrossRef
28.
go back to reference Y. Saito, H. Utsunomiya, N. Tsuji, and T. Sakai: Acta Mater., 1999, vol. 47, pp. 579–83.CrossRef Y. Saito, H. Utsunomiya, N. Tsuji, and T. Sakai: Acta Mater., 1999, vol. 47, pp. 579–83.CrossRef
29.
go back to reference International Molybdenum Association: Practical Guidelines for the Fabrication of Duplex Stainless Steels, International Molybdenum Association, London, 2009. International Molybdenum Association: Practical Guidelines for the Fabrication of Duplex Stainless Steels, International Molybdenum Association, London, 2009.
31.
go back to reference J. Ryś and A. Zielińska-Lipiec: Int. J. Mater. Res., 2015, vol. 106, pp. 771–81.CrossRef J. Ryś and A. Zielińska-Lipiec: Int. J. Mater. Res., 2015, vol. 106, pp. 771–81.CrossRef
32.
33.
34.
go back to reference J. Keichel, J. Foct, and G. Gottstein: ISIJ Int., 2003, vol. 43, pp. 1781–87.CrossRef J. Keichel, J. Foct, and G. Gottstein: ISIJ Int., 2003, vol. 43, pp. 1781–87.CrossRef
35.
go back to reference J. Ryś and M. Witkowska: Arch. Metall. Mater., 2010, vol. 55, pp. 733–47. J. Ryś and M. Witkowska: Arch. Metall. Mater., 2010, vol. 55, pp. 733–47.
36.
go back to reference J. Ryś and A. Zielińska-Lipiec: Arch. Metall. Mater., 2012, vol. 57, pp. 1041–53.CrossRef J. Ryś and A. Zielińska-Lipiec: Arch. Metall. Mater., 2012, vol. 57, pp. 1041–53.CrossRef
37.
38.
go back to reference M. Breda, K. Brunelli, F. Grazzi, A. Scherillo, and I. Calliari: Metall. Mater. Trans. A, 2015, vol. 46A, pp. 577–86.CrossRef M. Breda, K. Brunelli, F. Grazzi, A. Scherillo, and I. Calliari: Metall. Mater. Trans. A, 2015, vol. 46A, pp. 577–86.CrossRef
40.
go back to reference J.L. Lv, T.X. Liang, C. Wang, and L.M. Dong: Mater. Sci. Eng. C, 2016, vol. 62, pp. 558–63.CrossRef J.L. Lv, T.X. Liang, C. Wang, and L.M. Dong: Mater. Sci. Eng. C, 2016, vol. 62, pp. 558–63.CrossRef
41.
go back to reference H.R. Wenk, L. Lutterotti, and S.C. Vogel: Nucl. Instrum. Methods Phys. Res. A, 2003, vol. 515, pp. 575–88.CrossRef H.R. Wenk, L. Lutterotti, and S.C. Vogel: Nucl. Instrum. Methods Phys. Res. A, 2003, vol. 515, pp. 575–88.CrossRef
42.
go back to reference S.C. Vogel, C. Hartig, L. Lutterotti, R.B. Von Dreele, H.R. Wenk, and D.J. Williams: Powder Diffr., 2004, vol. 19, pp. 65–68.CrossRef S.C. Vogel, C. Hartig, L. Lutterotti, R.B. Von Dreele, H.R. Wenk, and D.J. Williams: Powder Diffr., 2004, vol. 19, pp. 65–68.CrossRef
43.
go back to reference L. Lutterotti, S. Matthies, H.R. Wenk, A.S. Schultz, and J.W. Richardson: J. Appl. Phys., 1997, vol. 81, pp. 594–600.CrossRef L. Lutterotti, S. Matthies, H.R. Wenk, A.S. Schultz, and J.W. Richardson: J. Appl. Phys., 1997, vol. 81, pp. 594–600.CrossRef
44.
go back to reference R. Hielscher and H. Schaeben: J. Appl. Crystallogr., 2008, vol. 41, pp. 1024–37.CrossRef R. Hielscher and H. Schaeben: J. Appl. Crystallogr., 2008, vol. 41, pp. 1024–37.CrossRef
46.
go back to reference ASTM: Standard Test Methods and Definitions for Mechanical Testing of Steel Products, ASTM Standard A370–21, American Society for Testing and Materials, West Conshohocken, 2021. ASTM: Standard Test Methods and Definitions for Mechanical Testing of Steel Products, ASTM Standard A370–21, American Society for Testing and Materials, West Conshohocken, 2021.
47.
go back to reference F. Bachmann, R. Hielscher, and H. Schaeben: Solid State Phenom., 2010, vol. 160, p. 63.CrossRef F. Bachmann, R. Hielscher, and H. Schaeben: Solid State Phenom., 2010, vol. 160, p. 63.CrossRef
48.
49.
go back to reference K. Zhang IV., A.R.K. Alexandrov, R.Z. Valiev, and K. Lu: J. Phys. D, 1997, vol. 30, p. 3008.CrossRef K. Zhang IV., A.R.K. Alexandrov, R.Z. Valiev, and K. Lu: J. Phys. D, 1997, vol. 30, p. 3008.CrossRef
50.
go back to reference S.S.M. Tavares, M.R. da Silva, J.M. Pardal, H.F.G. Abreu, and A.M. Gomes: J. Mater. Process. Technol., 2006, vol. 180, pp. 318–22.CrossRef S.S.M. Tavares, M.R. da Silva, J.M. Pardal, H.F.G. Abreu, and A.M. Gomes: J. Mater. Process. Technol., 2006, vol. 180, pp. 318–22.CrossRef
51.
go back to reference J. Capek, M. Cernik, N. Ganev, K. Trojan, J. Nemecek, and K. Kolarik: IOP Conf. Ser. Mater. Sci. Eng., 2018, vol. 375, p. 012025.CrossRef J. Capek, M. Cernik, N. Ganev, K. Trojan, J. Nemecek, and K. Kolarik: IOP Conf. Ser. Mater. Sci. Eng., 2018, vol. 375, p. 012025.CrossRef
52.
go back to reference J.S. Carpenter, R.J. McCabe, J.R. Mayeur, N.A. Mara, and I.J. Beyerlein: Adv. Eng. Mater., 2015, vol. 17, pp. 109–14.CrossRef J.S. Carpenter, R.J. McCabe, J.R. Mayeur, N.A. Mara, and I.J. Beyerlein: Adv. Eng. Mater., 2015, vol. 17, pp. 109–14.CrossRef
53.
go back to reference S.J. Zheng, J.S. Carpenter, R.J. McCabe, I.J. Beyerlein, and N.A. Mara: Sci. Rep., 2014, vol. 4, p. 4226.CrossRef S.J. Zheng, J.S. Carpenter, R.J. McCabe, I.J. Beyerlein, and N.A. Mara: Sci. Rep., 2014, vol. 4, p. 4226.CrossRef
55.
go back to reference G. Krauss: Steels: Processing, Structure, and Performance, 4th ed. ASM International, Materials Park, 2005. G. Krauss: Steels: Processing, Structure, and Performance, 4th ed. ASM International, Materials Park, 2005.
56.
go back to reference R.J. McCabe, I.J. Beyerlein, J.S. Carpenter, and N.A. Mara: Nat. Commun., 2014, vol. 5, p. 3806.CrossRef R.J. McCabe, I.J. Beyerlein, J.S. Carpenter, and N.A. Mara: Nat. Commun., 2014, vol. 5, p. 3806.CrossRef
57.
58.
go back to reference C.B. Finfrock, D. Bhattacharya, B.N.L. McBride, T.J. Ballard, A.J. Clarke, and K.D. Clarke: JOM, 2022, vol. 74, pp. 506–12.CrossRef C.B. Finfrock, D. Bhattacharya, B.N.L. McBride, T.J. Ballard, A.J. Clarke, and K.D. Clarke: JOM, 2022, vol. 74, pp. 506–12.CrossRef
59.
go back to reference L.E. Murr, K.P. Staudhammer, and S.S. Hecker: Metall. Trans. A, 1983, vol. 13, pp. 627–35.CrossRef L.E. Murr, K.P. Staudhammer, and S.S. Hecker: Metall. Trans. A, 1983, vol. 13, pp. 627–35.CrossRef
60.
go back to reference J. Talonen, H. Hanninen, P. Nenonen, and G. Pape: Metall. Mater. Trans. A, 2005, vol. 36A, pp. 421–32.CrossRef J. Talonen, H. Hanninen, P. Nenonen, and G. Pape: Metall. Mater. Trans. A, 2005, vol. 36A, pp. 421–32.CrossRef
61.
go back to reference S.S. Hecker, M.G. Stout, K.P. Staudhammer, and J.L. Smith: Metall. Trans. A, 1982, vol. 13, pp. 619–26.CrossRef S.S. Hecker, M.G. Stout, K.P. Staudhammer, and J.L. Smith: Metall. Trans. A, 1982, vol. 13, pp. 619–26.CrossRef
62.
64.
go back to reference G. Sun, L. Du, J. Hu, and B. Zhang: Mater. Charact., 2020, vol. 159, p. 110073.CrossRef G. Sun, L. Du, J. Hu, and B. Zhang: Mater. Charact., 2020, vol. 159, p. 110073.CrossRef
65.
go back to reference G. Gianini Braga Maria, D. Gomes Rodrigues, E. Tadeu Fraga Freitas, and D. Brandao Snatos: Mater. Lett., 2019, vol. 234, p. 283.CrossRef G. Gianini Braga Maria, D. Gomes Rodrigues, E. Tadeu Fraga Freitas, and D. Brandao Snatos: Mater. Lett., 2019, vol. 234, p. 283.CrossRef
66.
go back to reference J.S. Carpenter, R.J. McCabe, S.J. Zheng, T.A. Wynn, N.A. Mara, and I.J. Beyerlein: Metall. Mater. Trans. A, 2014, vol. 45A, pp. 2192–2208.CrossRef J.S. Carpenter, R.J. McCabe, S.J. Zheng, T.A. Wynn, N.A. Mara, and I.J. Beyerlein: Metall. Mater. Trans. A, 2014, vol. 45A, pp. 2192–2208.CrossRef
67.
go back to reference M. Ma, H. Ding, Y. Huang, C.W. Tian, and T.G. Langdon: Crystals, 2020, vol. 10, p. 1138.CrossRef M. Ma, H. Ding, Y. Huang, C.W. Tian, and T.G. Langdon: Crystals, 2020, vol. 10, p. 1138.CrossRef
68.
go back to reference G.K. Williamson and R.E. Smallman: Philos. Mag., 1956, vol. 1, pp. 34–46.CrossRef G.K. Williamson and R.E. Smallman: Philos. Mag., 1956, vol. 1, pp. 34–46.CrossRef
Metadata
Title
Accumulative Roll Bonding of Alloy 2205 Duplex Steel and the Accompanying Impacts on Microstructure, Texture, and Mechanical Properties
Authors
J. S. Carpenter
D. J. Savage
C. A. Miller
R. J. McCabe
S. J. Zheng
D. R. Coughlin
S. C. Vogel
Publication date
29-11-2022
Publisher
Springer US
Published in
Metallurgical and Materials Transactions A / Issue 2/2023
Print ISSN: 1073-5623
Electronic ISSN: 1543-1940
DOI
https://doi.org/10.1007/s11661-022-06897-7

Other articles of this Issue 2/2023

Metallurgical and Materials Transactions A 2/2023 Go to the issue

Premium Partners