Skip to main content
Top
Published in: Journal of Materials Engineering and Performance 2/2022

04-10-2021

Achievement of Super-Low Friction between Ultra-polished Quartz Lubricated by Hydrated Hydroxyethyl Cellulose

Authors: Dezun Sheng, Jinxi Zhou, Hongdun Zhang, Haitao Tian, Xicai Liu, Xuelian Qi, Huichen Zhang, Weiwei Wang

Published in: Journal of Materials Engineering and Performance | Issue 2/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The hydroxyethyl cellulose (HEC) is a biocompatible and nonperishable natural compound, which makes it an ideal additive for achieving super-low friction in hydration lubrication. In this work, ultra-polished quartz glasses were used as friction pairs with a contact area as large as 50.24 mm2. The lubrication behavior of HEC solutions was studied and the topology of the friction pairs was investigated. A super-low COF of 0.0012 was achieved under lubrication of 1.00 wt.% HEC. Increasing or decreasing the dosage of HEC will lead to defective lubrication. Dehydration tests have shown that saturated salts compete for the water of the hydrated HEC and destroy the lubricating film, demonstrating the importance of hydration in achieving super-low lubrication. The XPS spectra of quartz and quartz covered with lubricant indicate that there is no chemical interaction between the quartz and HEC during the friction. However, a negative shift in the peak of O 1s lines were detected, suggesting that physical adsorption of the oxygen atoms occurs at the interface between the quartz and the lubricant. The lubrication regime was analyzed by Hamrock-Dowson theory and the ratio λ is around 1.7–24.5, which suggested that the lubrication regime was mixed lubrication or hydrodynamic lubrication. According to the experiments and discussions, possible lubrication models are proposed for HEC lubricants with different concentrations, which can contribute to the development of new hydration lubricants with superlubricity properties and are of great importance for scientific exploration and engineering applications.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference D. Wu, Y. Liu, X. Zhao, D. Li and X. Ren, The Tribological Behaviors of Different Mass Ratio Al2O3-TiO2 Coatings in Water Lubrication Sliding Against Si3N4, Tribol. Trans., 2016, 59(2), p 352–362.CrossRef D. Wu, Y. Liu, X. Zhao, D. Li and X. Ren, The Tribological Behaviors of Different Mass Ratio Al2O3-TiO2 Coatings in Water Lubrication Sliding Against Si3N4, Tribol. Trans., 2016, 59(2), p 352–362.CrossRef
2.
go back to reference S.W. Zhang, Green Tribology: Fundamentals and Future Development, Friction, 2013, 1(2), p 186–194.CrossRef S.W. Zhang, Green Tribology: Fundamentals and Future Development, Friction, 2013, 1(2), p 186–194.CrossRef
4.
go back to reference A. Erdemir and J. Luo, Guest Editorial: Special Issue on Superlubricity, Friction, 2014, 2(2), p 93–94.CrossRef A. Erdemir and J. Luo, Guest Editorial: Special Issue on Superlubricity, Friction, 2014, 2(2), p 93–94.CrossRef
5.
go back to reference U. Raviv, P. Laurat and J. Klein, Fluidity of Water Confined to Subnanometre Films, Nature, 2001, 413(6851), p 51–54.CrossRef U. Raviv, P. Laurat and J. Klein, Fluidity of Water Confined to Subnanometre Films, Nature, 2001, 413(6851), p 51–54.CrossRef
6.
go back to reference B.C. Donose, I.U. Vakarelski and K. Higashitani, Silica Surfaces Lubrication by Hydrated Cations Adsorption from Electrolyte Solutions, Langmuir, 2005, 21(5), p 1834–1839.CrossRef B.C. Donose, I.U. Vakarelski and K. Higashitani, Silica Surfaces Lubrication by Hydrated Cations Adsorption from Electrolyte Solutions, Langmuir, 2005, 21(5), p 1834–1839.CrossRef
7.
go back to reference J.A. Heimberg, K.J. Wahl, I.L. Singer and A. Erdemir, Superlow Friction Behavior of Diamond-Like Carbon Coatings: Time and Speed Effects, Appl. Phys. Lett., 2001, 78(17), p 2449–2451.CrossRef J.A. Heimberg, K.J. Wahl, I.L. Singer and A. Erdemir, Superlow Friction Behavior of Diamond-Like Carbon Coatings: Time and Speed Effects, Appl. Phys. Lett., 2001, 78(17), p 2449–2451.CrossRef
8.
go back to reference Y. Liu, F. Grey and Q. Zheng, The High-Speed Sliding Friction of Graphene and Novel Routes to Persistent Superlubricity, Sci. Rep., 2014, 4(1), p 4875.CrossRef Y. Liu, F. Grey and Q. Zheng, The High-Speed Sliding Friction of Graphene and Novel Routes to Persistent Superlubricity, Sci. Rep., 2014, 4(1), p 4875.CrossRef
9.
go back to reference R. Zhang, Z. Ning, Y. Zhang, Q. Zheng, Q. Chen, H. Xie, Q. Zhang, W. Qian and F. Wei, Superlubricity in Centimetres-Long Double-Walled Carbon Nanotubes Under Ambient Conditions, Nat. Nanotechnol., 2013, 8(12), p 912–916.CrossRef R. Zhang, Z. Ning, Y. Zhang, Q. Zheng, Q. Chen, H. Xie, Q. Zhang, W. Qian and F. Wei, Superlubricity in Centimetres-Long Double-Walled Carbon Nanotubes Under Ambient Conditions, Nat. Nanotechnol., 2013, 8(12), p 912–916.CrossRef
10.
go back to reference J. Li, C. Zhang and J. Luo, Superlubricity Achieved with Mixtures of Polyhydroxy Alcohols and Acids, Langmuir, 2013, 29(17), p 5239–5245.CrossRef J. Li, C. Zhang and J. Luo, Superlubricity Achieved with Mixtures of Polyhydroxy Alcohols and Acids, Langmuir, 2013, 29(17), p 5239–5245.CrossRef
11.
go back to reference M. Chen, W.H. Briscoe, S.P. Armes, H. Cohen and J. Klein, Polyzwitterionic Brushes: Extreme Lubrication by Design, Eur. Polymer J., 2011, 47(4), p 511–523.CrossRef M. Chen, W.H. Briscoe, S.P. Armes, H. Cohen and J. Klein, Polyzwitterionic Brushes: Extreme Lubrication by Design, Eur. Polymer J., 2011, 47(4), p 511–523.CrossRef
12.
go back to reference R. Goldberg, A. Schroeder, G. Silbert, K. Turjeman, Y. Barenholz and J. Klein, Boundary Lubricants with Exceptionally Low Friction Coefficients Based on 2D Close-Packed Phosphatidylcholine Liposomes, Adv. Mater., 2011, 23(31), p 3517–3521.CrossRef R. Goldberg, A. Schroeder, G. Silbert, K. Turjeman, Y. Barenholz and J. Klein, Boundary Lubricants with Exceptionally Low Friction Coefficients Based on 2D Close-Packed Phosphatidylcholine Liposomes, Adv. Mater., 2011, 23(31), p 3517–3521.CrossRef
13.
go back to reference D. Gourdon, Q. Lin, E. Oroudjev, H. Hansma, Y. Golan, S. Arad and J. Israelachvili, Adhesion and Stable Low Friction Provided by a Subnanometer-Thick Monolayer of a Natural Polysaccharide, Langmuir, 2008, 24(4), p 1534–1540.CrossRef D. Gourdon, Q. Lin, E. Oroudjev, H. Hansma, Y. Golan, S. Arad and J. Israelachvili, Adhesion and Stable Low Friction Provided by a Subnanometer-Thick Monolayer of a Natural Polysaccharide, Langmuir, 2008, 24(4), p 1534–1540.CrossRef
14.
go back to reference J. Li, Y. Liu, J. Luo, P. Liu and C. Zhang, Excellent Lubricating Behavior of Brasenia Schreberi Mucilage, Langmuir, 2012, 28(20), p 7797–7802.CrossRef J. Li, Y. Liu, J. Luo, P. Liu and C. Zhang, Excellent Lubricating Behavior of Brasenia Schreberi Mucilage, Langmuir, 2012, 28(20), p 7797–7802.CrossRef
15.
go back to reference S.M. Arad, L. Rapoport, A. Moshkovich, D. Van Moppes, M. Karpasas, R. Golan and Y. Golan, Superior Biolubricant from a Species of Red Microalga, Langmuir, 2006, 22(17), p 7313–7317.CrossRef S.M. Arad, L. Rapoport, A. Moshkovich, D. Van Moppes, M. Karpasas, R. Golan and Y. Golan, Superior Biolubricant from a Species of Red Microalga, Langmuir, 2006, 22(17), p 7313–7317.CrossRef
16.
go back to reference J.H. Bongaerts, J.J. Cooper-White and J.R. Stokes, Low Biofouling Chitosan-Hyaluronic Acid Multilayers with Ultra-Low Friction Coefficients, Biomacromol, 2009, 10(5), p 1287–1294.CrossRef J.H. Bongaerts, J.J. Cooper-White and J.R. Stokes, Low Biofouling Chitosan-Hyaluronic Acid Multilayers with Ultra-Low Friction Coefficients, Biomacromol, 2009, 10(5), p 1287–1294.CrossRef
17.
go back to reference L. Chai, R. Goldberg, N. Kampf and J. Klein, Selective Adsorption of poly(ethylene oxide) Onto a Charged Surface Mediated by Alkali Metal Ions, Langmuir, 2008, 24(4), p 1570–1576.CrossRef L. Chai, R. Goldberg, N. Kampf and J. Klein, Selective Adsorption of poly(ethylene oxide) Onto a Charged Surface Mediated by Alkali Metal Ions, Langmuir, 2008, 24(4), p 1570–1576.CrossRef
18.
go back to reference J. Klein, Modes of Energy Loss on Shearing of Thin Confined Films, Tribol. Lett., 2007, 26(3), p 229–233.CrossRef J. Klein, Modes of Energy Loss on Shearing of Thin Confined Films, Tribol. Lett., 2007, 26(3), p 229–233.CrossRef
19.
go back to reference N. Iuster, O. Tairy, M.J. Driver, S.P. Armes and J. Klein, Cross-Linking Highly Lubricious Phosphocholinated Polymer Brushes: Effect on Surface Interactions and Frictional Behavior, Macromolecules, 2017, 50(18), p 7361–7371.CrossRef N. Iuster, O. Tairy, M.J. Driver, S.P. Armes and J. Klein, Cross-Linking Highly Lubricious Phosphocholinated Polymer Brushes: Effect on Surface Interactions and Frictional Behavior, Macromolecules, 2017, 50(18), p 7361–7371.CrossRef
20.
go back to reference J. Li, C. Zhang, M. Deng and J. Luo, Investigations of the Superlubricity of Sapphire Against Ruby Under Phosphoric Acid Lubrication, Friction, 2014, 2(2), p 164–172.CrossRef J. Li, C. Zhang, M. Deng and J. Luo, Investigations of the Superlubricity of Sapphire Against Ruby Under Phosphoric Acid Lubrication, Friction, 2014, 2(2), p 164–172.CrossRef
21.
go back to reference M. Deng, C. Zhang, J. Li, L. Ma and J. Luo, Hydrodynamic Effect on the Superlubricity of Phosphoric Acid Between Ceramic and Sapphire, Friction, 2014, 2(2), p 173–181.CrossRef M. Deng, C. Zhang, J. Li, L. Ma and J. Luo, Hydrodynamic Effect on the Superlubricity of Phosphoric Acid Between Ceramic and Sapphire, Friction, 2014, 2(2), p 173–181.CrossRef
22.
go back to reference X. Ge, J. Li, C. Zhang and J. Luo, Liquid Superlubricity of Polyethylene Glycol Aqueous Solution Achieved with Boric acid Additive, Langmuir, 2018, 34(12), p 3578–3587.CrossRef X. Ge, J. Li, C. Zhang and J. Luo, Liquid Superlubricity of Polyethylene Glycol Aqueous Solution Achieved with Boric acid Additive, Langmuir, 2018, 34(12), p 3578–3587.CrossRef
23.
go back to reference O. Hod, E. Meyer, Q. Zheng and M. Urbakh, Structural Superlubricity and Ultralow Friction Across the Length Scales, Nature, 2018, 563(7732), p 485–492.CrossRef O. Hod, E. Meyer, Q. Zheng and M. Urbakh, Structural Superlubricity and Ultralow Friction Across the Length Scales, Nature, 2018, 563(7732), p 485–492.CrossRef
24.
go back to reference J. Li, C. Zhang and J. Luo, Superlubricity Behavior with Phosphoric Acid-Water Network Induced by Rubbing, Langmuir, 2011, 27(15), p 9413–9417.CrossRef J. Li, C. Zhang and J. Luo, Superlubricity Behavior with Phosphoric Acid-Water Network Induced by Rubbing, Langmuir, 2011, 27(15), p 9413–9417.CrossRef
25.
go back to reference Y. Watanabe, M.J. Meents, L.M. Mcdonnell, S. Barkwill, A. Sampathkumar, H.N. Cartwright, T. Demura, D.W. Ehrhardt, A.L. Samuels and S.D. Mansfield, Visualization of Cellulose Synthases in Arabidopsis Secondary Cell Walls, Science, 2015, 350(6257), p 198–203.CrossRef Y. Watanabe, M.J. Meents, L.M. Mcdonnell, S. Barkwill, A. Sampathkumar, H.N. Cartwright, T. Demura, D.W. Ehrhardt, A.L. Samuels and S.D. Mansfield, Visualization of Cellulose Synthases in Arabidopsis Secondary Cell Walls, Science, 2015, 350(6257), p 198–203.CrossRef
26.
go back to reference J. Klein, Chemistry. Repair or Replacement—a Joint Perspective, Science, 2009, 323(5910), p 47–48.CrossRef J. Klein, Chemistry. Repair or Replacement—a Joint Perspective, Science, 2009, 323(5910), p 47–48.CrossRef
27.
go back to reference G. Durand-Cavagna, P. Delort, P. Duprat, Y. Bailly, B. Plazonnet and L.R. Gordon, Corneal Toxicity Studies in Rabbits and Dogs With Hydroxyethyl Cellulose and Benzalkonium Chloride, Toxicol. Sci., 1989, 13(3), p 500–508.CrossRef G. Durand-Cavagna, P. Delort, P. Duprat, Y. Bailly, B. Plazonnet and L.R. Gordon, Corneal Toxicity Studies in Rabbits and Dogs With Hydroxyethyl Cellulose and Benzalkonium Chloride, Toxicol. Sci., 1989, 13(3), p 500–508.CrossRef
28.
go back to reference H.E. Smyth Jr., C.P. Carpenter and C.S. Weil, The Chronic Toxicity of Hydroxyethyl Cellulose for Rats, J. Am. Pharm. Assoc. Am. Pharm. Assoc., 1947, 36(11), p 335.CrossRef H.E. Smyth Jr., C.P. Carpenter and C.S. Weil, The Chronic Toxicity of Hydroxyethyl Cellulose for Rats, J. Am. Pharm. Assoc. Am. Pharm. Assoc., 1947, 36(11), p 335.CrossRef
29.
go back to reference D. Kapoor, R. Maheshwari, K. Verma, S. Sharma, P. Ghode and R.K. Tekade, Coating technologies in pharmaceutical product development, in Drug Delivery Systems, America (Academic Press, Cambridge, 2020), p. 665–719 D. Kapoor, R. Maheshwari, K. Verma, S. Sharma, P. Ghode and R.K. Tekade, Coating technologies in pharmaceutical product development, in Drug Delivery Systems, America (Academic Press, Cambridge, 2020), p. 665–719
30.
go back to reference P. Shetty, L. Mu and Y. Shi, Polyelectrolyte Cellulose Gel with PEG/water: Toward Fully Green Lubricating Grease, Carbohydr. Polym., 2020, 230, p 115670.CrossRef P. Shetty, L. Mu and Y. Shi, Polyelectrolyte Cellulose Gel with PEG/water: Toward Fully Green Lubricating Grease, Carbohydr. Polym., 2020, 230, p 115670.CrossRef
31.
go back to reference D. Sheng, T. Ni, M. Zou and H. Zhang, Effects Of Laser Surface Texturing on Tribological Properties of Ti-6Al-4V in Hydroxyethyl-Cellulose Water-Based Lubrication, Ind. Lubr. Tribol., 2019, 71(3), p 390–397.CrossRef D. Sheng, T. Ni, M. Zou and H. Zhang, Effects Of Laser Surface Texturing on Tribological Properties of Ti-6Al-4V in Hydroxyethyl-Cellulose Water-Based Lubrication, Ind. Lubr. Tribol., 2019, 71(3), p 390–397.CrossRef
32.
go back to reference J. Li, C. Zhang, L. Sun and J. Luo, Analysis of Measurement Inaccuracy in Superlubricity Tests, Tribol. Trans., 2013, 56(1), p 141–147.CrossRef J. Li, C. Zhang, L. Sun and J. Luo, Analysis of Measurement Inaccuracy in Superlubricity Tests, Tribol. Trans., 2013, 56(1), p 141–147.CrossRef
33.
go back to reference L. Ma, A. Gaisinskaya-Kipnis, N. Kampf and J. Klein, Origins of Hydration Lubrication, Nat. Commun., 2015, 6(1), p 6060.CrossRef L. Ma, A. Gaisinskaya-Kipnis, N. Kampf and J. Klein, Origins of Hydration Lubrication, Nat. Commun., 2015, 6(1), p 6060.CrossRef
34.
go back to reference K. Benyounes, S. Remli and A. Benmounah, Rheological behavior of Hydroxyethylcellulose (HEC) Solutions, in Journal of Physics: Conference Series, 2018, vol. 1045(1), p 1. K. Benyounes, S. Remli and A. Benmounah, Rheological behavior of Hydroxyethylcellulose (HEC) Solutions, in Journal of Physics: Conference Series, 2018, vol. 1045(1), p 1.
35.
go back to reference N.B. Wyatt, C.M. Gunther and M.W. Liberatore, Increasing Viscosity in Entangled Polyelectrolyte Solutions by the Addition of Salt, Polymer, 2011, 52(11), p 2437–2444.CrossRef N.B. Wyatt, C.M. Gunther and M.W. Liberatore, Increasing Viscosity in Entangled Polyelectrolyte Solutions by the Addition of Salt, Polymer, 2011, 52(11), p 2437–2444.CrossRef
36.
go back to reference K.M. Lindborg, C. Trägårdh, A.-C. Eliasson and P. Dejmek, Time-Resolved Shear Viscosity of Wheat Flour Doughs—Effect of Mixing, Shear Rate, and Resting on the Viscosity of Doughs of Different Flours, Cereal Chem. J., 1997, 74(1), p 49–55.CrossRef K.M. Lindborg, C. Trägårdh, A.-C. Eliasson and P. Dejmek, Time-Resolved Shear Viscosity of Wheat Flour Doughs—Effect of Mixing, Shear Rate, and Resting on the Viscosity of Doughs of Different Flours, Cereal Chem. J., 1997, 74(1), p 49–55.CrossRef
37.
go back to reference C. Branca, S. Magazù, G. Maisano, F. Migliardo, P. Migliardo and G. Romeo, α, α-Trehalose/Water Solutions. 5. Hydration and Viscosity in Dilute and Semidilute Disaccharide Solutions, J. Phys. Chem. B, 2001, 105(41), p 10140–10145.CrossRef C. Branca, S. Magazù, G. Maisano, F. Migliardo, P. Migliardo and G. Romeo, α, α-Trehalose/Water Solutions. 5. Hydration and Viscosity in Dilute and Semidilute Disaccharide Solutions, J. Phys. Chem. B, 2001, 105(41), p 10140–10145.CrossRef
38.
go back to reference J. Li, C. Zhang, L. Ma, Y. Liu and J. Luo, Superlubricity Achieved with Mixtures of Acids and Glycerol, Langmuir, 2013, 29(1), p 271–275.CrossRef J. Li, C. Zhang, L. Ma, Y. Liu and J. Luo, Superlubricity Achieved with Mixtures of Acids and Glycerol, Langmuir, 2013, 29(1), p 271–275.CrossRef
39.
go back to reference J. Li, C. Zhang and J. Luo, Effect of pH on the Liquid Superlubricity Between Si3N4 and Glass Achieved With Phosphoric Acid, RSC Adv., 2014, 4(86), p 45735–45741.CrossRef J. Li, C. Zhang and J. Luo, Effect of pH on the Liquid Superlubricity Between Si3N4 and Glass Achieved With Phosphoric Acid, RSC Adv., 2014, 4(86), p 45735–45741.CrossRef
40.
go back to reference B. Briscoe, P. Luckham and S. Zhu, The Effects of Hydrogen Bonding Upon the Viscosity of Aqueous poly(vinyl alcohol) Solutions, Polymer, 2000, 41(10), p 3851–3860.CrossRef B. Briscoe, P. Luckham and S. Zhu, The Effects of Hydrogen Bonding Upon the Viscosity of Aqueous poly(vinyl alcohol) Solutions, Polymer, 2000, 41(10), p 3851–3860.CrossRef
41.
go back to reference A.R. Katritzky, K. Chen, Y. Wang, M. Karelson, B. Lucic, N. Trinajstic, T. Suzuki and G. Schüürmann, Prediction of Liquid Viscosity for Organic Compounds by a Quantitative Structure-Property Relationship, J. Phys. Org. Chem., 2000, 13(1), p 80–86.CrossRef A.R. Katritzky, K. Chen, Y. Wang, M. Karelson, B. Lucic, N. Trinajstic, T. Suzuki and G. Schüürmann, Prediction of Liquid Viscosity for Organic Compounds by a Quantitative Structure-Property Relationship, J. Phys. Org. Chem., 2000, 13(1), p 80–86.CrossRef
42.
go back to reference A.R. Burns, J.E. Houston, R.W. Carpick and T.A. Michalske, Molecular Level Friction as Revealed with a Novel Scanning Probe, Langmuir, 1999, 15(8), p 2922–2930.CrossRef A.R. Burns, J.E. Houston, R.W. Carpick and T.A. Michalske, Molecular Level Friction as Revealed with a Novel Scanning Probe, Langmuir, 1999, 15(8), p 2922–2930.CrossRef
43.
go back to reference A. Ghatak, K. Vorvolakos, H. She, D.L. Malotky and M.K. Chaudhury, Interfacial Rate Processes in Adhesion and Friction, J. Phys. Chem. B, 2000, 104(17), p 4018–4030.CrossRef A. Ghatak, K. Vorvolakos, H. She, D.L. Malotky and M.K. Chaudhury, Interfacial Rate Processes in Adhesion and Friction, J. Phys. Chem. B, 2000, 104(17), p 4018–4030.CrossRef
44.
go back to reference G.M. Hamilton and L. Bottomley, Measurement of Viscosity Loss of Polymer-Containing Oils at High Shear Stresses, Tribol Int, 1987, 20(1), p 41–48.CrossRef G.M. Hamilton and L. Bottomley, Measurement of Viscosity Loss of Polymer-Containing Oils at High Shear Stresses, Tribol Int, 1987, 20(1), p 41–48.CrossRef
45.
go back to reference A. Gangopadhyay, Z. Liu, S.J. Simko, S.L. Peczonczyk, J.B. Cuthbert, E.D. Hock, A. Erdemir and G. Ramirez, Friction and Wear Reduction Mechanism of Polyalkylene Glycol-Based Engine Oils, Tribol. Trans., 2018, 61(4), p 621–631.CrossRef A. Gangopadhyay, Z. Liu, S.J. Simko, S.L. Peczonczyk, J.B. Cuthbert, E.D. Hock, A. Erdemir and G. Ramirez, Friction and Wear Reduction Mechanism of Polyalkylene Glycol-Based Engine Oils, Tribol. Trans., 2018, 61(4), p 621–631.CrossRef
46.
go back to reference J. Serra, P. González, S. Liste, C. Serra, S. Chiussi, B. León, M. Pérez-Amor, H.O. Ylänen and M. Hupa, FTIR and XPS Studies of Bioactive Silica Based Glasses, J. Non-Cryst. Solids, 2003, 332(1–3), p 20–27.CrossRef J. Serra, P. González, S. Liste, C. Serra, S. Chiussi, B. León, M. Pérez-Amor, H.O. Ylänen and M. Hupa, FTIR and XPS Studies of Bioactive Silica Based Glasses, J. Non-Cryst. Solids, 2003, 332(1–3), p 20–27.CrossRef
47.
go back to reference Y. Duval, J.A. Mielczarski, O.S. Pokrovsky, E. Mielczarski and J.J. Ehrhardt, Evidence of the Existence of Three Types of Species at the Quartz−Aqueous Solution Interface at pH 0–10: XPS Surface Group Quantification and Surface Complexation Modeling, J. Phys. Chem. B, 2002, 106(11), p 2937–2945.CrossRef Y. Duval, J.A. Mielczarski, O.S. Pokrovsky, E. Mielczarski and J.J. Ehrhardt, Evidence of the Existence of Three Types of Species at the Quartz−Aqueous Solution Interface at pH 0–10: XPS Surface Group Quantification and Surface Complexation Modeling, J. Phys. Chem. B, 2002, 106(11), p 2937–2945.CrossRef
48.
go back to reference V.P. Zakaznova-Herzog, H.W. Nesbitt, G.M. Bancroft, J.S. Tse, X. Gao and W. Skinner, High-Resolution Valence-Band XPS Spectra of the Nonconductors Quartz and Olivine, Phys. Rev. B, 2005, 72(20), p 1–5.CrossRef V.P. Zakaznova-Herzog, H.W. Nesbitt, G.M. Bancroft, J.S. Tse, X. Gao and W. Skinner, High-Resolution Valence-Band XPS Spectra of the Nonconductors Quartz and Olivine, Phys. Rev. B, 2005, 72(20), p 1–5.CrossRef
49.
go back to reference E. Görlich, J. Haber, A. Stoch and J. Stoch, XPS Study of α-Quartz Surface, J. Solid State Chem., 1980, 33(1), p 121–124.CrossRef E. Görlich, J. Haber, A. Stoch and J. Stoch, XPS Study of α-Quartz Surface, J. Solid State Chem., 1980, 33(1), p 121–124.CrossRef
50.
go back to reference C. Tang, J. Zhu, Q. Zhou, J. Wei, R. Zhu and H. He, Surface Heterogeneity of SiO2 Polymorphs: An XPS Investigation of α-Quartz and α-Cristobalite, J. Phys. Chem. C, 2014, 118(45), p 26249–26257.CrossRef C. Tang, J. Zhu, Q. Zhou, J. Wei, R. Zhu and H. He, Surface Heterogeneity of SiO2 Polymorphs: An XPS Investigation of α-Quartz and α-Cristobalite, J. Phys. Chem. C, 2014, 118(45), p 26249–26257.CrossRef
51.
go back to reference S. Kaya, J. Weissenrieder, D. Stacchiola, S. Shaikhutdinov and H.J. Freund, Formation of an Ordered Ice Layer on a Thin Silica Film, J. Phys. Chem. C, 2007, 111(2), p 759–764.CrossRef S. Kaya, J. Weissenrieder, D. Stacchiola, S. Shaikhutdinov and H.J. Freund, Formation of an Ordered Ice Layer on a Thin Silica Film, J. Phys. Chem. C, 2007, 111(2), p 759–764.CrossRef
52.
go back to reference J. Weissenrieder, S. Kaya, J.L. Lu, H.J. Gao, S. Shaikhutdinov, H.J. Freund, M. Sierka, T.K. Todorova and J. Sauer, Atomic Structure of a Thin Silica Film on a Mo(112) Substrate: a Two-Dimensional Network of SiO4 Tetrahedra, Phys. Rev. Lett., 2005, 95(7), p 076103.CrossRef J. Weissenrieder, S. Kaya, J.L. Lu, H.J. Gao, S. Shaikhutdinov, H.J. Freund, M. Sierka, T.K. Todorova and J. Sauer, Atomic Structure of a Thin Silica Film on a Mo(112) Substrate: a Two-Dimensional Network of SiO4 Tetrahedra, Phys. Rev. Lett., 2005, 95(7), p 076103.CrossRef
53.
go back to reference G. Guangteng and H.A. Spikes, An experimental study of film thickness in the mixed lubrication regime, Tribol. Ser., 1997, 32(1), p 159–166.CrossRef G. Guangteng and H.A. Spikes, An experimental study of film thickness in the mixed lubrication regime, Tribol. Ser., 1997, 32(1), p 159–166.CrossRef
54.
go back to reference S. Wen and P. Huang, Numerical Methods of Lubrication Calculation Principles of Tribology, Tsinghua University Press, Beijing, 2017, p 41–77 S. Wen and P. Huang, Numerical Methods of Lubrication Calculation Principles of Tribology, Tsinghua University Press, Beijing, 2017, p 41–77
55.
go back to reference B.J. Hamrock and D. Dowson, Elastohydrodynamic Lubrication of Elliptical Contacts for Materials of Low Elastic Modulus I—Fully Flooded Conjunction, J. Lubri. Tech., 1978, 100(2), p 236–245.CrossRef B.J. Hamrock and D. Dowson, Elastohydrodynamic Lubrication of Elliptical Contacts for Materials of Low Elastic Modulus I—Fully Flooded Conjunction, J. Lubri. Tech., 1978, 100(2), p 236–245.CrossRef
56.
go back to reference B.C. Stump, Y. Zhou, M.B. Viola, H. Xu, R.J. Parten and J. Qu, A Rolling-Sliding Bench Test for Investigating Rear Axle Lubrication, Tribol. Int., 2018, 121(1), p 450–459.CrossRef B.C. Stump, Y. Zhou, M.B. Viola, H. Xu, R.J. Parten and J. Qu, A Rolling-Sliding Bench Test for Investigating Rear Axle Lubrication, Tribol. Int., 2018, 121(1), p 450–459.CrossRef
57.
go back to reference C. Zhang, Understanding the wear and tribological properties of ceramic matrix composites, Advances in Ceramic Matrix Composites (Second Edition), 2nd ed., I.M. Low Ed., Woodhead Publishing, England, 2014, p 401–428CrossRef C. Zhang, Understanding the wear and tribological properties of ceramic matrix composites, Advances in Ceramic Matrix Composites (Second Edition), 2nd ed., I.M. Low Ed., Woodhead Publishing, England, 2014, p 401–428CrossRef
58.
go back to reference A. Azam, A. Ghanbarzadeh, A. Neville, A. Morina and M.C.T. Wilson, Modelling Tribochemistry in the Mixed Lubrication Regime, Tribol. Int., 2019, 132(1), p 265–274.CrossRef A. Azam, A. Ghanbarzadeh, A. Neville, A. Morina and M.C.T. Wilson, Modelling Tribochemistry in the Mixed Lubrication Regime, Tribol. Int., 2019, 132(1), p 265–274.CrossRef
59.
go back to reference J. Luo, S. Wen and P. Huang, Thin Film Lubrication. Part I. Study on the Transition Between EHL and Thin Film Lubrication using a Relative Optical Interference Intensity Technique, Wear, 1996, 194(1–2), p 107–115.CrossRef J. Luo, S. Wen and P. Huang, Thin Film Lubrication. Part I. Study on the Transition Between EHL and Thin Film Lubrication using a Relative Optical Interference Intensity Technique, Wear, 1996, 194(1–2), p 107–115.CrossRef
60.
go back to reference C. Zhang, Research on Thin Film Lubrication: State of the Art, Tribol. Int., 2005, 38(4), p 443–448.CrossRef C. Zhang, Research on Thin Film Lubrication: State of the Art, Tribol. Int., 2005, 38(4), p 443–448.CrossRef
61.
go back to reference N.S. Hosmane, Bioinorganic Chemistry and Applications, Advanced Inorganic Chemistry, Academic Press, Boston, 2017, p 225–249CrossRef N.S. Hosmane, Bioinorganic Chemistry and Applications, Advanced Inorganic Chemistry, Academic Press, Boston, 2017, p 225–249CrossRef
62.
go back to reference M. Cieplak, E.D. Smith and M.O. Robbins, Molecular origins of friction: the force on adsorbed layers, Science, 1994, 265(5176), p 1209–1212.CrossRef M. Cieplak, E.D. Smith and M.O. Robbins, Molecular origins of friction: the force on adsorbed layers, Science, 1994, 265(5176), p 1209–1212.CrossRef
Metadata
Title
Achievement of Super-Low Friction between Ultra-polished Quartz Lubricated by Hydrated Hydroxyethyl Cellulose
Authors
Dezun Sheng
Jinxi Zhou
Hongdun Zhang
Haitao Tian
Xicai Liu
Xuelian Qi
Huichen Zhang
Weiwei Wang
Publication date
04-10-2021
Publisher
Springer US
Published in
Journal of Materials Engineering and Performance / Issue 2/2022
Print ISSN: 1059-9495
Electronic ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-021-06284-0

Other articles of this Issue 2/2022

Journal of Materials Engineering and Performance 2/2022 Go to the issue

Premium Partners