Skip to main content
Top
Published in: Journal of Materials Engineering and Performance 2/2022

18-10-2021

Correlation Between Processing Parameters in Direct Metal Deposition of IN625 Nickel-Base Superalloy

Authors: Mostafa Amirjan, Masoumeh Khodabandeh

Published in: Journal of Materials Engineering and Performance | Issue 2/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In the present study, the direct metal deposition (DMD) process was used to deposit the IN625 superalloy on the IN738LC substrate. The relationships between main processing parameters such as laser power (200–350 W), powder feed rate (40–220 mg/s), and scan speed (2–6 mm/s) with melt pool geometric characteristics (i.e., height, width, penetration depth, and dilution) were examined and discussed using linear regression analysis. The results showed; the melt pool height had a linear relationship with the P3/4·F3/4·V5/6 combination parameter. Similarly, the penetration depth and dilution controlled by the P0.3·V0.5·F−0.6 combination parameter. These obtained empirical dependencies showed a high amount of correlation coefficient (R > 0.90). But, there is no clear relationship between the width of melt pools with the scan speed and powder feed rate. Actually, due to the balling phenomenon, the melt pool's actual width in these single tracks is unclear. During the DMD process, different defects such as gas porosity, lack of fusion porosity, and adhesion occurred. Fortunately, no crack was observed, and the minimum porosity was about 0.09%.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference B. Craig, Superalloys: A Technical Guide, Corrosion, 2004, 60(12), p 1208. B. Craig, Superalloys: A Technical Guide, Corrosion, 2004, 60(12), p 1208.
3.
go back to reference T.E. Abioye, D.G. McCartney and A.T. Clare, Laser Cladding of Inconel 625 Wire for Corrosion Protection, J. Mater. Process. Technol., 2015, 217, p 232–240.CrossRef T.E. Abioye, D.G. McCartney and A.T. Clare, Laser Cladding of Inconel 625 Wire for Corrosion Protection, J. Mater. Process. Technol., 2015, 217, p 232–240.CrossRef
4.
go back to reference G.P. Dinda, A.K. Dasgupta and J. Mazumder, Laser Aided Direct Metal Deposition of Inconel 625 Superalloy: Microstructural Evolution and Thermal Stability, Mater. Sci. Eng. A, 2009, 509(1–2), p 98–104.CrossRef G.P. Dinda, A.K. Dasgupta and J. Mazumder, Laser Aided Direct Metal Deposition of Inconel 625 Superalloy: Microstructural Evolution and Thermal Stability, Mater. Sci. Eng. A, 2009, 509(1–2), p 98–104.CrossRef
5.
go back to reference G. Marchese et al., Characterization and Comparison of Inconel 625 Processed by Selective Laser Melting and Laser Metal Deposition, Adv. Eng. Mater., 2017, 19(3), p 1600635.CrossRef G. Marchese et al., Characterization and Comparison of Inconel 625 Processed by Selective Laser Melting and Laser Metal Deposition, Adv. Eng. Mater., 2017, 19(3), p 1600635.CrossRef
6.
go back to reference V. Shankar, K. Bhanu Sankara Rao and S.L. Mannan, Microstructure and Mechanical Properties of Inconel 625 Superalloy, J. Nuclear Mater., 2001, 288(2–3), p 222–232.CrossRef V. Shankar, K. Bhanu Sankara Rao and S.L. Mannan, Microstructure and Mechanical Properties of Inconel 625 Superalloy, J. Nuclear Mater., 2001, 288(2–3), p 222–232.CrossRef
7.
go back to reference G.H. Gessinger and M.J. Bomford, Powder Metallurgy of Superalloys, Int. Metall. Rev., 1974, 19(1), p 51–76.CrossRef G.H. Gessinger and M.J. Bomford, Powder Metallurgy of Superalloys, Int. Metall. Rev., 1974, 19(1), p 51–76.CrossRef
8.
go back to reference J.J. Valencia et al., Superalloys 718, 625, 706 and Various Derivatives, TMS, Warrendale, 1997, p 753–762CrossRef J.J. Valencia et al., Superalloys 718, 625, 706 and Various Derivatives, TMS, Warrendale, 1997, p 753–762CrossRef
9.
go back to reference L. Qin, et al., The Microstructure and Mechanical Properties of Deposited-IN625 by Laser Additive Manufacturing. Rapid Prototyping J. (2017). L. Qin, et al., The Microstructure and Mechanical Properties of Deposited-IN625 by Laser Additive Manufacturing. Rapid Prototyping J. (2017).
10.
go back to reference B. Geddes, H. Leon and X. Huang, Superalloys: Alloying and Performance, ASM International, Almere, 2010.CrossRef B. Geddes, H. Leon and X. Huang, Superalloys: Alloying and Performance, ASM International, Almere, 2010.CrossRef
11.
go back to reference J.G. Lopes, C.M. Machado, V.R. Duarte, T.A. Rodrigues, T.G. Santos and J.P. Oliveira, Effect of Milling Parameters on HSLA Steel Parts Produced by Wire and Arc Additive Manufacturing (WAAM), J. Manuf. Processes, 2020, 59, p 739–749.CrossRef J.G. Lopes, C.M. Machado, V.R. Duarte, T.A. Rodrigues, T.G. Santos and J.P. Oliveira, Effect of Milling Parameters on HSLA Steel Parts Produced by Wire and Arc Additive Manufacturing (WAAM), J. Manuf. Processes, 2020, 59, p 739–749.CrossRef
13.
go back to reference A.W. Gebisa, H.G. Lemu. Additive Manufacturing for the Manufacture of Gas Turbine Engine Components: Literature Review and Future Perspectives, in ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers Digital Collection (2018). A.W. Gebisa, H.G. Lemu. Additive Manufacturing for the Manufacture of Gas Turbine Engine Components: Literature Review and Future Perspectives, in ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers Digital Collection (2018).
14.
go back to reference J. Mazumder et al., Closed Loop Direct Metal Deposition: Art to Part, Opt. Lasers Eng., 2000, 34(4–6), p 397–414.CrossRef J. Mazumder et al., Closed Loop Direct Metal Deposition: Art to Part, Opt. Lasers Eng., 2000, 34(4–6), p 397–414.CrossRef
15.
go back to reference D.D. Gu et al., Laser Additive Manufacturing of Metallic Components: Materials, Processes and Mechanisms, Int. Mater. Rev., 2012, 57(3), p 133–164.CrossRef D.D. Gu et al., Laser Additive Manufacturing of Metallic Components: Materials, Processes and Mechanisms, Int. Mater. Rev., 2012, 57(3), p 133–164.CrossRef
16.
go back to reference B. Dutta et al., Direct Metal Deposition, Adv. Mater. Processes, 2011, 169, p 33. B. Dutta et al., Direct Metal Deposition, Adv. Mater. Processes, 2011, 169, p 33.
17.
go back to reference T.A. Rodrigues, V.R. Duarte, D. Tomás, J.A. Avila, J.D. Escobar, E. Rossinyold, N. Schelle, T.G. Santosa and J.P. Oliveira, In-Situ Strengthening of a High Strength Low Alloy Steel During Wire and ArcAdditive Manufacturing (WAAM), Addit. Manuf., 2020, 34, p 101200. T.A. Rodrigues, V.R. Duarte, D. Tomás, J.A. Avila, J.D. Escobar, E. Rossinyold, N. Schelle, T.G. Santosa and J.P. Oliveira, In-Situ Strengthening of a High Strength Low Alloy Steel During Wire and ArcAdditive Manufacturing (WAAM), Addit. Manuf., 2020, 34, p 101200.
18.
go back to reference Z. Zeng, B.Q. Cong, J.P. Oliveira, W.C. Ke, N. Schell, B. Peng, Z.W. Qi, F.G. Ge, W. Zhang and S.S. Ao, Wire and Arc Additive Manufacturing of a Ni-Rich NiTi Shape Memory Alloy: Microstructure and Mechanical Properties, Addit. Manuf., 2020, 32, p 1–33. Z. Zeng, B.Q. Cong, J.P. Oliveira, W.C. Ke, N. Schell, B. Peng, Z.W. Qi, F.G. Ge, W. Zhang and S.S. Ao, Wire and Arc Additive Manufacturing of a Ni-Rich NiTi Shape Memory Alloy: Microstructure and Mechanical Properties, Addit. Manuf., 2020, 32, p 1–33.
20.
go back to reference M. Ansari, R. Shoja Razavi and M. Barekat, An Empirical-Statistical Model for Coaxial Laser Cladding of NiCrAlY Powder on Inconel 738 Superalloy, Opt. Laser Technol., 2016, 86, p 136–144.CrossRef M. Ansari, R. Shoja Razavi and M. Barekat, An Empirical-Statistical Model for Coaxial Laser Cladding of NiCrAlY Powder on Inconel 738 Superalloy, Opt. Laser Technol., 2016, 86, p 136–144.CrossRef
21.
go back to reference V. Ocelík et al., Thick Co-Based Coating on Cast Iron by Side Laser Cladding: Analysis of Processing Conditions and Coating Properties, Surf. Coat. Technol., 2007, 201(12), p 5875–5883.CrossRef V. Ocelík et al., Thick Co-Based Coating on Cast Iron by Side Laser Cladding: Analysis of Processing Conditions and Coating Properties, Surf. Coat. Technol., 2007, 201(12), p 5875–5883.CrossRef
22.
go back to reference U. De Oliveira, V. Ocelik, J. Th and M. De Hosson, Analysis of Coaxial Laser Cladding Processing Conditions, Surf. Coat. Technol., 2005, 197(2–3), p 127–136.CrossRef U. De Oliveira, V. Ocelik, J. Th and M. De Hosson, Analysis of Coaxial Laser Cladding Processing Conditions, Surf. Coat. Technol., 2005, 197(2–3), p 127–136.CrossRef
23.
go back to reference E. Toyserkani, A. Khajepour and S.F. Corbin, Laser Cladding, CRC Press, Cambridge, 2004.CrossRef E. Toyserkani, A. Khajepour and S.F. Corbin, Laser Cladding, CRC Press, Cambridge, 2004.CrossRef
24.
go back to reference A.J. Pinkerton, Advances in the Modeling of Laser Direct Metal Deposition, J. Laser Appl., 2015, 27(S1), p S15001.CrossRef A.J. Pinkerton, Advances in the Modeling of Laser Direct Metal Deposition, J. Laser Appl., 2015, 27(S1), p S15001.CrossRef
25.
go back to reference J.P. Davim, C. Oliveira and A. Cardoso, Predicting the Geometric Form of Clad in Laser Cladding by Powder Using Multiple Regression Analysis (MRA), Mater. Des., 2008, 29(2), p 554–557.CrossRef J.P. Davim, C. Oliveira and A. Cardoso, Predicting the Geometric Form of Clad in Laser Cladding by Powder Using Multiple Regression Analysis (MRA), Mater. Des., 2008, 29(2), p 554–557.CrossRef
26.
go back to reference Y. Sun and M. Hao, Statistical Analysis and Optimization of Process Parameters in Ti6Al4V Laser Cladding Using Nd: YAG Laser, Opt. Lasers Eng., 2012, 50(7), p 985–995.CrossRef Y. Sun and M. Hao, Statistical Analysis and Optimization of Process Parameters in Ti6Al4V Laser Cladding Using Nd: YAG Laser, Opt. Lasers Eng., 2012, 50(7), p 985–995.CrossRef
27.
go back to reference S. Kumar et al., Determination of Layer Thickness in Direct Metal Deposition Using Dimensional Analysis, Int. J. Adv. Manuf. Technol., 2013, 67(9–12), p 2681–2687.CrossRef S. Kumar et al., Determination of Layer Thickness in Direct Metal Deposition Using Dimensional Analysis, Int. J. Adv. Manuf. Technol., 2013, 67(9–12), p 2681–2687.CrossRef
28.
go back to reference H. El Cheikh et al., Analysis and Prediction of Single Laser Tracks Geometrical Characteristics in Coaxial Laser Cladding Process, Opt. Lasers Eng., 2012, 50(3), p 413–422.CrossRef H. El Cheikh et al., Analysis and Prediction of Single Laser Tracks Geometrical Characteristics in Coaxial Laser Cladding Process, Opt. Lasers Eng., 2012, 50(3), p 413–422.CrossRef
29.
go back to reference Felde, I., et al. A Simple Technique to Estimate the Processing Window for Laser Clad Coatings, in 1 St ASM International Surface Engineering Conference and the 13 Th IFHTSE Congress, 2002. Felde, I., et al. A Simple Technique to Estimate the Processing Window for Laser Clad Coatings, in 1 St ASM International Surface Engineering Conference and the 13 Th IFHTSE Congress, 2002.
30.
go back to reference M. Barekat, R.S. Razavi and A. Ghasemi, Nd: YAG Laser Cladding of Co–Cr–Mo Alloy on γ-TiAl Substrate, Opt. Laser Technol., 2016, 80, p 145–152.CrossRef M. Barekat, R.S. Razavi and A. Ghasemi, Nd: YAG Laser Cladding of Co–Cr–Mo Alloy on γ-TiAl Substrate, Opt. Laser Technol., 2016, 80, p 145–152.CrossRef
31.
go back to reference M. Alizadeh-Sh et al., Prediction of Solidification Cracking by an Empirical-Statistical Analysis for Laser Cladding of Inconel 718 Powder on a Non-weldable Substrate, Opt. Laser Technol., 2020, 128, p 106244.CrossRef M. Alizadeh-Sh et al., Prediction of Solidification Cracking by an Empirical-Statistical Analysis for Laser Cladding of Inconel 718 Powder on a Non-weldable Substrate, Opt. Laser Technol., 2020, 128, p 106244.CrossRef
32.
go back to reference F. Caiazzo, Laser-Aided Directed Metal Deposition of Ni-based superalloy powder, Opt. Laser Technol., 2018, 103, p 193–198.CrossRef F. Caiazzo, Laser-Aided Directed Metal Deposition of Ni-based superalloy powder, Opt. Laser Technol., 2018, 103, p 193–198.CrossRef
33.
go back to reference B. Jahnke, High Temperature Electron-Beam Welding of the Nickel-Base Superalloy IN-738 LC, Weld. J., 1982, 61, p 343–347. B. Jahnke, High Temperature Electron-Beam Welding of the Nickel-Base Superalloy IN-738 LC, Weld. J., 1982, 61, p 343–347.
34.
go back to reference O. Andersson, A. Graichen, H. Brodin, V. Navrotsky, Developing AdditiveManufacturing Technology for Burner Repair, J. Eng. Gas Turb. Power 2017, 139, 031506-1 O. Andersson, A. Graichen, H. Brodin, V. Navrotsky, Developing AdditiveManufacturing Technology for Burner Repair, J. Eng. Gas Turb. Power 2017, 139, 031506-1
35.
go back to reference S. Jelvani et al., Evaluation of Solidification and Microstructure in Laser Cladding Inconel 718 Superalloy, Opt. Laser Technol., 2019, 120, p 105761.CrossRef S. Jelvani et al., Evaluation of Solidification and Microstructure in Laser Cladding Inconel 718 Superalloy, Opt. Laser Technol., 2019, 120, p 105761.CrossRef
36.
go back to reference A.J. Pinkerton, Laser Direct Metal Deposition: Theory and Applications in Manufacturing and Maintenance, in Advances in Laser Materials Processing. Woodhead Publishing, 2010, 461–491. A.J. Pinkerton, Laser Direct Metal Deposition: Theory and Applications in Manufacturing and Maintenance, in Advances in Laser Materials Processing. Woodhead Publishing, 2010, 461–491.
37.
go back to reference A. Dass and A. Moridi, State of the Art in Directed Energy Deposition: From Additive Manufacturing to Materials Design, Coatings, 2019, 9(7), p 418.CrossRef A. Dass and A. Moridi, State of the Art in Directed Energy Deposition: From Additive Manufacturing to Materials Design, Coatings, 2019, 9(7), p 418.CrossRef
38.
go back to reference Y.F. Shen, D.D. Gu, Y.F. Pan, Balling Process in Selective Laser Sintering 316 Stainless Steel Powder. Key Engineering Materials. Vol. 315. Trans Tech Publications Ltd, 2006. Y.F. Shen, D.D. Gu, Y.F. Pan, Balling Process in Selective Laser Sintering 316 Stainless Steel Powder. Key Engineering Materials. Vol. 315. Trans Tech Publications Ltd, 2006.
39.
go back to reference J. Xu, X. Lin, P. Guo, H. Dong, X. Wen, Q. Li, L. Xue and W. Huang, The Initiation and Propagation Mechanism of the Overlapping Zone Cracking During Laser Solid Forming of IN-738LC Superalloy, J. Alloys Compd., 2018, 749, p 859–870.CrossRef J. Xu, X. Lin, P. Guo, H. Dong, X. Wen, Q. Li, L. Xue and W. Huang, The Initiation and Propagation Mechanism of the Overlapping Zone Cracking During Laser Solid Forming of IN-738LC Superalloy, J. Alloys Compd., 2018, 749, p 859–870.CrossRef
40.
go back to reference K. Banerjee, N.L. Richards and M.C. Chaturvedi, Effect of Filler Alloys on Heat-Affected Zone Cracking in Preweld Heat-Treated IN-738 LC Gas-Tungsten-Arc Welds, Metall. Mater. Trans. A, 2005, 36(7), p 1881–1890.CrossRef K. Banerjee, N.L. Richards and M.C. Chaturvedi, Effect of Filler Alloys on Heat-Affected Zone Cracking in Preweld Heat-Treated IN-738 LC Gas-Tungsten-Arc Welds, Metall. Mater. Trans. A, 2005, 36(7), p 1881–1890.CrossRef
41.
go back to reference C. Zhong et al., A Comparative Study of Inconel 718 Formed by High Deposition Rate Laser Metal Deposition with GA Powder and PREP Powder, Mater. Des., 2016, 107, p 386–392.CrossRef C. Zhong et al., A Comparative Study of Inconel 718 Formed by High Deposition Rate Laser Metal Deposition with GA Powder and PREP Powder, Mater. Des., 2016, 107, p 386–392.CrossRef
42.
go back to reference S.J. Wolff et al., A Framework to Link Localized Cooling and Properties of Directed Energy Deposition (DED)-Processed Ti-6Al-4V, Acta Mater., 2017, 132, p 106–117.CrossRef S.J. Wolff et al., A Framework to Link Localized Cooling and Properties of Directed Energy Deposition (DED)-Processed Ti-6Al-4V, Acta Mater., 2017, 132, p 106–117.CrossRef
43.
go back to reference M.N. Ahsan, R. Bradley and A.J. Pinkerton, Microcomputed Tomography Analysis of Intralayer Porosity Generation in Laser Direct Metal Deposition and Its Causes, J. Laser Appl., 2011, 23(2), p 022009.CrossRef M.N. Ahsan, R. Bradley and A.J. Pinkerton, Microcomputed Tomography Analysis of Intralayer Porosity Generation in Laser Direct Metal Deposition and Its Causes, J. Laser Appl., 2011, 23(2), p 022009.CrossRef
44.
go back to reference C. Zhong et al., Experimental Study of Porosity Reduction in High Deposition-Rate Laser Material Deposition, Opt. Laser Technol., 2015, 75, p 87–92.CrossRef C. Zhong et al., Experimental Study of Porosity Reduction in High Deposition-Rate Laser Material Deposition, Opt. Laser Technol., 2015, 75, p 87–92.CrossRef
45.
go back to reference G. Bi and A. Gasser, Restoration of Nickel-Base Turbine Blade Knife-Edges with Controlled Laser Aided Additive Manufacturing, Phys. Procedia, 2011, 12, p 402–409.CrossRef G. Bi and A. Gasser, Restoration of Nickel-Base Turbine Blade Knife-Edges with Controlled Laser Aided Additive Manufacturing, Phys. Procedia, 2011, 12, p 402–409.CrossRef
Metadata
Title
Correlation Between Processing Parameters in Direct Metal Deposition of IN625 Nickel-Base Superalloy
Authors
Mostafa Amirjan
Masoumeh Khodabandeh
Publication date
18-10-2021
Publisher
Springer US
Published in
Journal of Materials Engineering and Performance / Issue 2/2022
Print ISSN: 1059-9495
Electronic ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-021-06299-7

Other articles of this Issue 2/2022

Journal of Materials Engineering and Performance 2/2022 Go to the issue

Premium Partners