Skip to main content
Top
Published in: Journal of Materials Engineering and Performance 2/2022

14-09-2021

Effect of Solution Heat Treatment on the Microstructure and Hardness of theTi-48Al-2Cr-2Nb Alloy Prepared by Electron Beam Smelting

Authors: Yi Tan, Yilin Wang, Xiaogang You, Huiping Liu, Pengting Li

Published in: Journal of Materials Engineering and Performance | Issue 2/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A Ti-48Al-2Cr-2Nb alloy was prepared by electron beam smelting. The effect of solution parameters on the microstructures, constituent phases and hardness was studied. The results show that impurities in the alloy could be significantly removed after electron beam smelting. The content of O and N in the ingot after smelting is about 93.25 and 25.75 ppmw, respectively. The average grain size of the ingot is 250 μm, and the lamellar spacing varies from 40 to 200 nm. As the solution temperature increases, the microstructure is coarsened obviously, accompanied with the increase in lamellar spacing. The lamellar spacing, the grain size and the microhardness of the alloy increase gradually as the solution time increases. When the alloy is solution treated at 1320 °C for 30 min, a uniform microstructure can be acquired, whose grain size is about 500 μm with an average lamellar spacing of 200 nm. The microhardness of the alloy after optimized heat treatment is 400HV.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference X. Xu, H. Ding, H. Huang, H. Liang, R. Chen, J. Guo and H. Fu, Microstructure and Elevated Temperature Tensile Property of Ti–46Al–7Nb-(W, Cr, B) Alloy Compared with Binary and Ternary TiAl Alloy, Mater. Sci. Eng. A., 2021, 807, p 140902.CrossRef X. Xu, H. Ding, H. Huang, H. Liang, R. Chen, J. Guo and H. Fu, Microstructure and Elevated Temperature Tensile Property of Ti–46Al–7Nb-(W, Cr, B) Alloy Compared with Binary and Ternary TiAl Alloy, Mater. Sci. Eng. A., 2021, 807, p 140902.CrossRef
2.
go back to reference Q. Zhang, M. Chen, H. Wang, N. Wang, J. Ouyang and X. Li, Thermal Deformation Behavior and Mechanism of Intermetallic Alloy Ti2AlNb, Trans. Nonferrous Met. Soc. China., 2016, 26, p 722–728.CrossRef Q. Zhang, M. Chen, H. Wang, N. Wang, J. Ouyang and X. Li, Thermal Deformation Behavior and Mechanism of Intermetallic Alloy Ti2AlNb, Trans. Nonferrous Met. Soc. China., 2016, 26, p 722–728.CrossRef
3.
go back to reference Y. Garip, Investigation of Isothermal Oxidation Performance of TiAl Alloys Sintered by Different Processing Methods, Intermetallics, 2020, 127, p 106985.CrossRef Y. Garip, Investigation of Isothermal Oxidation Performance of TiAl Alloys Sintered by Different Processing Methods, Intermetallics, 2020, 127, p 106985.CrossRef
4.
go back to reference Y. Hu, L. Zheng, H. Yan, L. Wu, X. Lin, F. Cao and M. Jiang, Improving Hot Corrosion Resistance of Aluminized TiAl Alloy by Anodization and Pre-Oxidation, Trans. Nonferrous Met. Soc. China., 2021, 31, p 193–206.CrossRef Y. Hu, L. Zheng, H. Yan, L. Wu, X. Lin, F. Cao and M. Jiang, Improving Hot Corrosion Resistance of Aluminized TiAl Alloy by Anodization and Pre-Oxidation, Trans. Nonferrous Met. Soc. China., 2021, 31, p 193–206.CrossRef
5.
go back to reference Q. You, H. Yuan, L. Zhao, J. Li, X. You, S. Shi, Y. Tan and X. Ding, Removal of Inclusions from Nickel-Based Superalloy by Induced Directional Solidification During Electron Beam Smelting, Vacuum, 2018, 156, p 39–47.CrossRef Q. You, H. Yuan, L. Zhao, J. Li, X. You, S. Shi, Y. Tan and X. Ding, Removal of Inclusions from Nickel-Based Superalloy by Induced Directional Solidification During Electron Beam Smelting, Vacuum, 2018, 156, p 39–47.CrossRef
6.
go back to reference Y. An, X. Xu, L. Liang, Y. Zhao and H. Hou, Microstructure Transformation and Grain Refinement During Non-Equilibrium Solidification of a Highly Undercooled Alloy System, J. Alloys Compd., 2021, 864, p 158821.CrossRef Y. An, X. Xu, L. Liang, Y. Zhao and H. Hou, Microstructure Transformation and Grain Refinement During Non-Equilibrium Solidification of a Highly Undercooled Alloy System, J. Alloys Compd., 2021, 864, p 158821.CrossRef
7.
go back to reference W. Wang, Y. Ma, B. Chen, M. Gao, K. Liu and Y. Li, Effects of Boron Addition on Grain Refinement in TiAl-based Alloys, J. Mater. Sci. Technol., 2010, 26, p 639–647.CrossRef W. Wang, Y. Ma, B. Chen, M. Gao, K. Liu and Y. Li, Effects of Boron Addition on Grain Refinement in TiAl-based Alloys, J. Mater. Sci. Technol., 2010, 26, p 639–647.CrossRef
8.
go back to reference J. Zhang, J. Zhang, D. Zhou, Z. Zhong, Z. Zhang and M. Zeng, Kinetics of Microstructure Formation and Mechanism of FFL in Cast TiAl Alloy, J. Heat Treat. Met., 1996, 17, p 12–16. J. Zhang, J. Zhang, D. Zhou, Z. Zhong, Z. Zhang and M. Zeng, Kinetics of Microstructure Formation and Mechanism of FFL in Cast TiAl Alloy, J. Heat Treat. Met., 1996, 17, p 12–16.
9.
go back to reference R. Chen, D. Zheng, J. Guo, T. Ma, H. Ding, Y. Su and H. Fu, A Novel Method for Grain Refinement and Microstructure Modification in TiAl alloy by Ultrasonic Vibration, Mater. Sci. Eng. A., 2016, 653, p 23–26.CrossRef R. Chen, D. Zheng, J. Guo, T. Ma, H. Ding, Y. Su and H. Fu, A Novel Method for Grain Refinement and Microstructure Modification in TiAl alloy by Ultrasonic Vibration, Mater. Sci. Eng. A., 2016, 653, p 23–26.CrossRef
10.
go back to reference L. Zhang, S. Su, B. Liu, G. Han, Y. Huang, Y. Wang and Y. Wang, Sustainable and High-Efficiency Recycling of Valuable Metals from Oily Honing Ferroalloy Scrap Via De-Oiling and Smelting Separation, J. Hazard. Mater., 2021, 413, p 125399.CrossRef L. Zhang, S. Su, B. Liu, G. Han, Y. Huang, Y. Wang and Y. Wang, Sustainable and High-Efficiency Recycling of Valuable Metals from Oily Honing Ferroalloy Scrap Via De-Oiling and Smelting Separation, J. Hazard. Mater., 2021, 413, p 125399.CrossRef
11.
go back to reference J. Deng, Y. Zhang, W. Jiang, Q. Mei and D. Liu, Harmless, Industrial Vacuum-Distillation Treatment of Noble Lead, Vacuum, 2018, 149, p 306–312.CrossRef J. Deng, Y. Zhang, W. Jiang, Q. Mei and D. Liu, Harmless, Industrial Vacuum-Distillation Treatment of Noble Lead, Vacuum, 2018, 149, p 306–312.CrossRef
12.
go back to reference Y. Chen, Y. Su and F. Kong, Research Progress in Preparation Technology of TiAl Intermetallic Compound, Rare Met. Mater. Eng., 2014, 43, p 757–762.CrossRef Y. Chen, Y. Su and F. Kong, Research Progress in Preparation Technology of TiAl Intermetallic Compound, Rare Met. Mater. Eng., 2014, 43, p 757–762.CrossRef
13.
go back to reference M.N. Doğu, Z. Esen, K. Davut, E. Tan, B. Gümüş and A.F. Dericioglu, Microstructural and Texture Evolution During Thermo-Hydrogen Processing of Ti6Al4V Alloys Produced by Electron Beam Melting, Mater. Charact., 2020, 168, p 110549.CrossRef M.N. Doğu, Z. Esen, K. Davut, E. Tan, B. Gümüş and A.F. Dericioglu, Microstructural and Texture Evolution During Thermo-Hydrogen Processing of Ti6Al4V Alloys Produced by Electron Beam Melting, Mater. Charact., 2020, 168, p 110549.CrossRef
14.
go back to reference X. You, Y. Tan, S. Shi, J.-M. Yang, Y. Wang, J. Li and Q. You, Effect of Solution Heat Treatment on the Precipitation Behavior and Strengthening Mechanisms of Electron Beam Smelted Inconel 718 Superalloy, Mater. Sci. Eng. A., 2017, 689, p 257–268.CrossRef X. You, Y. Tan, S. Shi, J.-M. Yang, Y. Wang, J. Li and Q. You, Effect of Solution Heat Treatment on the Precipitation Behavior and Strengthening Mechanisms of Electron Beam Smelted Inconel 718 Superalloy, Mater. Sci. Eng. A., 2017, 689, p 257–268.CrossRef
15.
go back to reference Q. You, H. Yuan, X. You, J. Li, L. Zhao, S. Shi and Y. Tan, Segregation Behavior of Nickel-Based Superalloy After Electron Beam Smelting, Vacuum, 2017, 145, p 116–122.CrossRef Q. You, H. Yuan, X. You, J. Li, L. Zhao, S. Shi and Y. Tan, Segregation Behavior of Nickel-Based Superalloy After Electron Beam Smelting, Vacuum, 2017, 145, p 116–122.CrossRef
16.
go back to reference M. Sakata, J.Y. Oh, K. Cho, H.Y. Yasuda, M. Todai, T. Nakano, A. Ikeda, M. Ueda and M. Takeyama, Effects of Heat Treatment on Unique Layered Microstructure and Tensile Properties of TiAl Fabricated by Electron Beam Melting, Mater. Sci. Forum., 2018, 941, p 1366–1371.CrossRef M. Sakata, J.Y. Oh, K. Cho, H.Y. Yasuda, M. Todai, T. Nakano, A. Ikeda, M. Ueda and M. Takeyama, Effects of Heat Treatment on Unique Layered Microstructure and Tensile Properties of TiAl Fabricated by Electron Beam Melting, Mater. Sci. Forum., 2018, 941, p 1366–1371.CrossRef
17.
go back to reference N. Yang, Y. Xu, J. Xu, Q. Ru and M. Hong, Effect of Heat Treatment Process on Uneven Deformation Behavior of Ti-48Al-2Cr-2Nb Alloy, Chinese J. Rare Met., 2020, 44(4), p 370–377. N. Yang, Y. Xu, J. Xu, Q. Ru and M. Hong, Effect of Heat Treatment Process on Uneven Deformation Behavior of Ti-48Al-2Cr-2Nb Alloy, Chinese J. Rare Met., 2020, 44(4), p 370–377.
18.
go back to reference A. Ykk, B. Jkh and A. Kal, Enhancing the Creep Resistance of Electron Beam Melted Gamma Ti–48Al–2Cr–2Nb Alloy by Using Two-Step Heat Treatment, Intermetallics, 2020, 121, p 106771.CrossRef A. Ykk, B. Jkh and A. Kal, Enhancing the Creep Resistance of Electron Beam Melted Gamma Ti–48Al–2Cr–2Nb Alloy by Using Two-Step Heat Treatment, Intermetallics, 2020, 121, p 106771.CrossRef
19.
go back to reference J. Lapin, K. Kamyshnykova, T. Pelachová and Š Nagy, Effect of Carbon Addition and Cooling Rate on Lamellar Structure of Peritectic TiAl-Based Alloy, Intermetallics, 2021, 128, p 107007.CrossRef J. Lapin, K. Kamyshnykova, T. Pelachová and Š Nagy, Effect of Carbon Addition and Cooling Rate on Lamellar Structure of Peritectic TiAl-Based Alloy, Intermetallics, 2021, 128, p 107007.CrossRef
20.
go back to reference Y. Jiao, T. Wu, L. Zhang and Z. Zhou, Effect of Heat Treatment on Microstructure and Properties of As-Cast Ti48Al2Cr2Nb1B Alloys, Prog. Titan. Ind., 2018, 35, p 26–29. Y. Jiao, T. Wu, L. Zhang and Z. Zhou, Effect of Heat Treatment on Microstructure and Properties of As-Cast Ti48Al2Cr2Nb1B Alloys, Prog. Titan. Ind., 2018, 35, p 26–29.
21.
go back to reference Y. Wang, Y. Liu, G. Yang, J. Li, B. Liu, J. Wang and H. Li, Hot Deformation Behaviors of β Phase Containing Ti–43Al–4Nb–1.4W-Based Alloy, Mater. Sci. Eng. A., 2013, 577, p 210–217.CrossRef Y. Wang, Y. Liu, G. Yang, J. Li, B. Liu, J. Wang and H. Li, Hot Deformation Behaviors of β Phase Containing Ti–43Al–4Nb–1.4W-Based Alloy, Mater. Sci. Eng. A., 2013, 577, p 210–217.CrossRef
22.
go back to reference B. Li, Y. Chen and Z. Hou, Microstructure and Mechanical Properties of As-Cast Ti–43Al–9V–0.3Y Alloy, J. Alloys Compd., 2009, 473, p 123–126.CrossRef B. Li, Y. Chen and Z. Hou, Microstructure and Mechanical Properties of As-Cast Ti–43Al–9V–0.3Y Alloy, J. Alloys Compd., 2009, 473, p 123–126.CrossRef
23.
go back to reference H. Huang, H. Ding, X. Xu, R. Chen, J. Guo and H. Fu, Phase Transformation and Microstructure Evolution of a Beta-Solidified Gamma-TiAl Alloy, J. Alloys Compd., 2021, 860, p 158082.CrossRef H. Huang, H. Ding, X. Xu, R. Chen, J. Guo and H. Fu, Phase Transformation and Microstructure Evolution of a Beta-Solidified Gamma-TiAl Alloy, J. Alloys Compd., 2021, 860, p 158082.CrossRef
24.
go back to reference Z. Lu, N. Wei, P. Li, C. Guo and F. Jiang, Microstructure and Mechanical Properties of Intermetallic Al3Ti Alloy with Residual Aluminum, Mater. Des., 2016, 110, p 466–474.CrossRef Z. Lu, N. Wei, P. Li, C. Guo and F. Jiang, Microstructure and Mechanical Properties of Intermetallic Al3Ti Alloy with Residual Aluminum, Mater. Des., 2016, 110, p 466–474.CrossRef
25.
go back to reference V. Singh, C. Mondal, R. Sarkar, P.P. Bhattacharjee and P. Ghosal, Effects of Cr Alloying on the Evolution of Solidification Microstructure and Phase Transformations of high-Nb Containing γ-TiAl Based Alloys, Intermetallics, 2021, 131, p 107117.CrossRef V. Singh, C. Mondal, R. Sarkar, P.P. Bhattacharjee and P. Ghosal, Effects of Cr Alloying on the Evolution of Solidification Microstructure and Phase Transformations of high-Nb Containing γ-TiAl Based Alloys, Intermetallics, 2021, 131, p 107117.CrossRef
26.
go back to reference E. Schwaighofer, H. Clemens, S. Mayer, J. Lindemann, J. Klose, W. Smarsly and V. Güther, Microstructural Design and Mechanical Properties of a Cast and Heat-Treated Intermetallic Multi-Phase γ-TiAl Based Alloy, Intermetallics, 2014, 44, p 128–140.CrossRef E. Schwaighofer, H. Clemens, S. Mayer, J. Lindemann, J. Klose, W. Smarsly and V. Güther, Microstructural Design and Mechanical Properties of a Cast and Heat-Treated Intermetallic Multi-Phase γ-TiAl Based Alloy, Intermetallics, 2014, 44, p 128–140.CrossRef
27.
go back to reference S. Cao, S. Xiao, Y. Chen, L. Xu, X. Wang, J. Han and Y. Jia, Phase Transformations of the L12-Ti3Al Phase in γ-TiAl Alloy, Mater. Des., 2017, 121, p 61–68.CrossRef S. Cao, S. Xiao, Y. Chen, L. Xu, X. Wang, J. Han and Y. Jia, Phase Transformations of the L12-Ti3Al Phase in γ-TiAl Alloy, Mater. Des., 2017, 121, p 61–68.CrossRef
28.
go back to reference C. Wang, R. Zuo and W. Su, Numerical Simulation of Thermal Stress and Dislocation During Growth of Polysilicon Ingot, Chin. J. Artif. Cryst., 2018, 47(05), p 894–898. C. Wang, R. Zuo and W. Su, Numerical Simulation of Thermal Stress and Dislocation During Growth of Polysilicon Ingot, Chin. J. Artif. Cryst., 2018, 47(05), p 894–898.
29.
go back to reference X. Luo, L. Liu, C. Yang, H. Lu, H. Ma, Z. Wang, D. Li, L. Zhang and Y. Li, Overcoming the Strength-Ductility Trade-Off by Tailoring Grain-Boundary Metastable Si-Containing Phase in β-Type Titanium Alloy, J. Mater. Sci. Technol., 2021, 68(09), p 112–123.CrossRef X. Luo, L. Liu, C. Yang, H. Lu, H. Ma, Z. Wang, D. Li, L. Zhang and Y. Li, Overcoming the Strength-Ductility Trade-Off by Tailoring Grain-Boundary Metastable Si-Containing Phase in β-Type Titanium Alloy, J. Mater. Sci. Technol., 2021, 68(09), p 112–123.CrossRef
30.
go back to reference X. Li and B. Zhang, Research Status of Lamellar Orientation and Lamellar Spacing Control of Full Lamellar TiAl Alloy, J. Aeronaut. Mater., 2015, 35, p 90–98. X. Li and B. Zhang, Research Status of Lamellar Orientation and Lamellar Spacing Control of Full Lamellar TiAl Alloy, J. Aeronaut. Mater., 2015, 35, p 90–98.
31.
go back to reference R. Song, The Effect of Heat Treatment on the Microstructure and Hardness of Ti-44Al-4Nb-2(Mo, Cr, B, Y) Alloy, Met. Funct. Mater., 2015, 22, p 48–52. R. Song, The Effect of Heat Treatment on the Microstructure and Hardness of Ti-44Al-4Nb-2(Mo, Cr, B, Y) Alloy, Met. Funct. Mater., 2015, 22, p 48–52.
32.
go back to reference Y. Liu, Lamellar Spacing and Mechanical Property of Undercooled Ti–45Al–2Cr–2Nb Alloy, Mater. Lett., 2003, 57, p 2262–2266.CrossRef Y. Liu, Lamellar Spacing and Mechanical Property of Undercooled Ti–45Al–2Cr–2Nb Alloy, Mater. Lett., 2003, 57, p 2262–2266.CrossRef
33.
go back to reference L. Kang, Y. Cai, X. Luo, Z. Li, B. Liu, Z. Wang, Y. Li and C. Yang, Bimorphic Microstructure in Ti-6Al-4V Alloy Manipulated by Spark Plasma Sintering and in-Situ Press Forging, Scr. Mater., 2021, 193, p 43–48.CrossRef L. Kang, Y. Cai, X. Luo, Z. Li, B. Liu, Z. Wang, Y. Li and C. Yang, Bimorphic Microstructure in Ti-6Al-4V Alloy Manipulated by Spark Plasma Sintering and in-Situ Press Forging, Scr. Mater., 2021, 193, p 43–48.CrossRef
34.
go back to reference J.C. Schuster and M. Palm, Reassessment of the Binary Aluminum-Titanium Phase Diagram, J. Phase. Equilib., 2006, 27(3), p 255–277.CrossRef J.C. Schuster and M. Palm, Reassessment of the Binary Aluminum-Titanium Phase Diagram, J. Phase. Equilib., 2006, 27(3), p 255–277.CrossRef
35.
go back to reference N. Cui, Q. Wu, K. Bi, T. Xu and F. Kong, Effect of Heat Treatment on Microstructures and Mechanical Properties of a Novel β-Solidifying TiAl Alloy, Materials, 2019, 12(10), p 1672.CrossRef N. Cui, Q. Wu, K. Bi, T. Xu and F. Kong, Effect of Heat Treatment on Microstructures and Mechanical Properties of a Novel β-Solidifying TiAl Alloy, Materials, 2019, 12(10), p 1672.CrossRef
Metadata
Title
Effect of Solution Heat Treatment on the Microstructure and Hardness of theTi-48Al-2Cr-2Nb Alloy Prepared by Electron Beam Smelting
Authors
Yi Tan
Yilin Wang
Xiaogang You
Huiping Liu
Pengting Li
Publication date
14-09-2021
Publisher
Springer US
Published in
Journal of Materials Engineering and Performance / Issue 2/2022
Print ISSN: 1059-9495
Electronic ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-021-06231-z

Other articles of this Issue 2/2022

Journal of Materials Engineering and Performance 2/2022 Go to the issue

Premium Partners