Skip to main content
Top
Published in: Journal of Materials Engineering and Performance 2/2022

10-09-2021

Internal Damage Mechanism and Deformation Process Window of a Free-Cutting Stainless Steel Bar Rolled by Three-Roll Planetary Mill

Authors: Lixin Li, Junyu Li, Ben Ye

Published in: Journal of Materials Engineering and Performance | Issue 2/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In order to determine the deformation process window and inquire the cause of internal cracks and voids, three-roll planetary rolling process was modeled by three-dimensional finite element method, and internal cracks and voids were investigated by real rolling of a bismuth-containing austenitic stainless steel bar. It shows that improper process parameters will lead to cracks and voids in the rolled bar. The Brozzo ductile fracture criteria revised can be used to determine the damage factor. The deformation process window to avoid internal cracks and voids can be described by rolling elongation and temperature. The three positive principal stresses in the center of the rolled bar, the alternating stress caused by periodically discontinuous contact between the rolls and the rolled piece, and the uneven radial strain distribution can be counted to be the main reasons for internal cracks and voids in the rolled bar. This study shows that the elongation has an upper limitation for avoiding internal cracks and voids in the bismuth-containing austenitic stainless steel bar rolled by three-roll planetary mill.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference S. Rhode, V. Kain, V.S. Raja, and G.J. Abraham, Factors Affecting Corrosion Behavior of Inclusion Containing Stainless Steels: A Scanning Electrochemical Microscopic Study, Mater. Charact., 2013, 77, p 109–115.CrossRef S. Rhode, V. Kain, V.S. Raja, and G.J. Abraham, Factors Affecting Corrosion Behavior of Inclusion Containing Stainless Steels: A Scanning Electrochemical Microscopic Study, Mater. Charact., 2013, 77, p 109–115.CrossRef
2.
go back to reference L. Zhuang and W. Di, Effect of Free-Cutting Additives on Machining Characteristics of Austenitic Stainless Steels, J. Mater. Sci. Technol., 2010, 26, p 839–844.CrossRef L. Zhuang and W. Di, Effect of Free-Cutting Additives on Machining Characteristics of Austenitic Stainless Steels, J. Mater. Sci. Technol., 2010, 26, p 839–844.CrossRef
3.
go back to reference W. Di and L. Zhuang, A New Pb-Free Machinable Austenitic Stainless Steel, J. Iron Steel Res. Int., 2010, 17, p 59–63. W. Di and L. Zhuang, A New Pb-Free Machinable Austenitic Stainless Steel, J. Iron Steel Res. Int., 2010, 17, p 59–63.
4.
go back to reference Z. Yongjun, Z. Chen, W. Lifeng, and Z. Huanchun, Development of Free Cutting Steel for Machine Structure without Lead, Mater. Rev., 2005, 19, p 68–71. Z. Yongjun, Z. Chen, W. Lifeng, and Z. Huanchun, Development of Free Cutting Steel for Machine Structure without Lead, Mater. Rev., 2005, 19, p 68–71.
5.
go back to reference D. Mathilde, K. Hyoun-Ee, S. Vladimir, D. Sergey, and E. Yuri, Improving the Mechanical Properties of Pure Magnesium by Three-Roll Planetary Milling, Mater. Sci. Eng. A, 2014, 612, p 287–292.CrossRef D. Mathilde, K. Hyoun-Ee, S. Vladimir, D. Sergey, and E. Yuri, Improving the Mechanical Properties of Pure Magnesium by Three-Roll Planetary Milling, Mater. Sci. Eng. A, 2014, 612, p 287–292.CrossRef
6.
go back to reference B. Romantsev, A. Goncharuk, A. Aleshchenko, Y. Gamin, and M. Mintakhanov, Development of Multipass Skew Rolling Technology for Stainless Steel and Alloy Pipes’ Production, Int. J. Adv. Manuf. Technol., 2018, 97, p 3223–3230.CrossRef B. Romantsev, A. Goncharuk, A. Aleshchenko, Y. Gamin, and M. Mintakhanov, Development of Multipass Skew Rolling Technology for Stainless Steel and Alloy Pipes’ Production, Int. J. Adv. Manuf. Technol., 2018, 97, p 3223–3230.CrossRef
7.
go back to reference W. Yali, M. Andrey, D. Mathilde, L. Rimma, K. Hyoun-ee, W. Jingtao et al., Gradient Structure Produced by Three Roll Planetary Milling: Numerical Simulation and Microstructural Observations, Mater. Sci. Eng. A, 2015, 639, p 165–172.CrossRef W. Yali, M. Andrey, D. Mathilde, L. Rimma, K. Hyoun-ee, W. Jingtao et al., Gradient Structure Produced by Three Roll Planetary Milling: Numerical Simulation and Microstructural Observations, Mater. Sci. Eng. A, 2015, 639, p 165–172.CrossRef
8.
go back to reference F. Yabo, C. Jing, and C. Zhiqiang, Cracks of Cu-Cr-Zr Alloy Bars Under Planetary Rolling, Rare Metal Mater. Eng., 2015, 44, p 567–570.CrossRef F. Yabo, C. Jing, and C. Zhiqiang, Cracks of Cu-Cr-Zr Alloy Bars Under Planetary Rolling, Rare Metal Mater. Eng., 2015, 44, p 567–570.CrossRef
9.
go back to reference M.M. Skripalenko, S.P. Galkin, S. Her-Jae, B.A. Romantsev, H. Tran-Ba, M.N. Skripalenko et al., Prediction of Potential Fracturing during Radial-Shear Rolling of Continuously Cast Copper Billets by Means of Computer Simulation, Metallurgist, 2019, 62, p 849–856.CrossRef M.M. Skripalenko, S.P. Galkin, S. Her-Jae, B.A. Romantsev, H. Tran-Ba, M.N. Skripalenko et al., Prediction of Potential Fracturing during Radial-Shear Rolling of Continuously Cast Copper Billets by Means of Computer Simulation, Metallurgist, 2019, 62, p 849–856.CrossRef
10.
go back to reference L. Sheng-Zhi, M. Wen-Hua, H. Lan-Wei, and D. Bo, Research on the Tendency of Inner Crack During 3-Roll Skew Rolling Process of Round Billets, Adv. Mater. Res., 2011, 145, p 238–242. L. Sheng-Zhi, M. Wen-Hua, H. Lan-Wei, and D. Bo, Research on the Tendency of Inner Crack During 3-Roll Skew Rolling Process of Round Billets, Adv. Mater. Res., 2011, 145, p 238–242.
11.
go back to reference Y.L. Wang, A. Molotnikov, M. Diez, R. Lapovok, H. Kime, J.T. Wang et al., Gradient Structure Produced by Three Roll Planetary Milling: Numerical Simulation and Microstructural Observations, Mater. Sci. Eng. A, 2015, 639, p 165–172.CrossRef Y.L. Wang, A. Molotnikov, M. Diez, R. Lapovok, H. Kime, J.T. Wang et al., Gradient Structure Produced by Three Roll Planetary Milling: Numerical Simulation and Microstructural Observations, Mater. Sci. Eng. A, 2015, 639, p 165–172.CrossRef
12.
go back to reference X. Wenchen, W. He, M. Hao, and S. Debin, Damage Evolution and Ductile Fracture Prediction During Tube Spinning of Titanium Alloy, Int. J. Mech. Sci., 2018, 135, p 226–239.CrossRef X. Wenchen, W. He, M. Hao, and S. Debin, Damage Evolution and Ductile Fracture Prediction During Tube Spinning of Titanium Alloy, Int. J. Mech. Sci., 2018, 135, p 226–239.CrossRef
13.
go back to reference F. Freudenthal, The Inelastic Behavior of Solids, Wiley, New York, 1950. F. Freudenthal, The Inelastic Behavior of Solids, Wiley, New York, 1950.
14.
go back to reference M.G. Cockroft and D.J. Latham, Ductile and Workability of Metals, J. Inst. Met., 1968, 96, p 33–39. M.G. Cockroft and D.J. Latham, Ductile and Workability of Metals, J. Inst. Met., 1968, 96, p 33–39.
15.
go back to reference P. Brozzo, B. DeLuca, and R. Rendina, A new method for the prediction of formability limits in metal sheets, in Proceedings of the Seventh Biennial Conference of the International Deep Drawing Research Group (1972) P. Brozzo, B. DeLuca, and R. Rendina, A new method for the prediction of formability limits in metal sheets, in Proceedings of the Seventh Biennial Conference of the International Deep Drawing Research Group (1972)
16.
go back to reference S. Xuedao, L. Guoping, and Z. Wangming, Prediction of the Central Defect Location for Multi-Wedge Cross Wedge Rolling Forming Automobile Semi-Axle, Appl. Sci. Technol., 2012, 39, p 45–48. S. Xuedao, L. Guoping, and Z. Wangming, Prediction of the Central Defect Location for Multi-Wedge Cross Wedge Rolling Forming Automobile Semi-Axle, Appl. Sci. Technol., 2012, 39, p 45–48.
17.
go back to reference F.A. McClintock, A Criterion for Ductile Fracture by the Growing of Holes, J. Appl. Mech., 1968, 35, p 363–371.CrossRef F.A. McClintock, A Criterion for Ductile Fracture by the Growing of Holes, J. Appl. Mech., 1968, 35, p 363–371.CrossRef
18.
go back to reference J.R. Rice and D.M. Tracey, On the Ductile Enlargement of Voids in Triaxial Stress Fields, J. Mech. Phys. Solids, 1969, 17, p 201–217.CrossRef J.R. Rice and D.M. Tracey, On the Ductile Enlargement of Voids in Triaxial Stress Fields, J. Mech. Phys. Solids, 1969, 17, p 201–217.CrossRef
19.
go back to reference Y. Lou, H. Huh, S. Lim, and K. Pack, New Ductile Fracture Criterion for Prediction of Fracture Forming Limit Diagrams of Sheet Metals, Int. J. Solids Struct., 2012, 49, p 3605–3615.CrossRef Y. Lou, H. Huh, S. Lim, and K. Pack, New Ductile Fracture Criterion for Prediction of Fracture Forming Limit Diagrams of Sheet Metals, Int. J. Solids Struct., 2012, 49, p 3605–3615.CrossRef
20.
go back to reference N. Park, H. Huh, S.J. Lim, Y. Lou, Y.S. Kang, and M.H. Seo, Fracture-based Forming Limit Criteria for Anisotropic Materials in Sheet Metal Forming, Int. J. Plast., 2017, 96, p 1–35.CrossRef N. Park, H. Huh, S.J. Lim, Y. Lou, Y.S. Kang, and M.H. Seo, Fracture-based Forming Limit Criteria for Anisotropic Materials in Sheet Metal Forming, Int. J. Plast., 2017, 96, p 1–35.CrossRef
21.
go back to reference Y.B. Bao and T. Wierzbicki, On the Cut-Off Value of Negative Triaxiality for Fracture, Eng. Fract. Mech., 2005, 72, p 1049–1069.CrossRef Y.B. Bao and T. Wierzbicki, On the Cut-Off Value of Negative Triaxiality for Fracture, Eng. Fract. Mech., 2005, 72, p 1049–1069.CrossRef
22.
go back to reference S. Basak and S.K. Panda, Failure Strains of Anisotropic Thin Sheet Metals: Experimental Evaluation and Theoretical Prediction, Int. J. Mech. Sci., 2019, 151, p 356–374.CrossRef S. Basak and S.K. Panda, Failure Strains of Anisotropic Thin Sheet Metals: Experimental Evaluation and Theoretical Prediction, Int. J. Mech. Sci., 2019, 151, p 356–374.CrossRef
23.
go back to reference Z. Pater, J. Tomczak, and T. Bulzak, Rotary Compression as a New Calibration Test for Prediction of a Critical Damage Value, J. Mater. Res. Technol., 2020, 9, p 5487–5498.CrossRef Z. Pater, J. Tomczak, and T. Bulzak, Rotary Compression as a New Calibration Test for Prediction of a Critical Damage Value, J. Mater. Res. Technol., 2020, 9, p 5487–5498.CrossRef
24.
go back to reference Z. Pater, J. Tomczak, T. Bulzak, L. Wojcik, and P. Walczuk, Assessment of Ductile Fracture Criteria with Respect to Their Application in the Modeling of Cross Wedge Rolling, J. Mater. Process. Technol., 2020, 278, p 1–11.CrossRef Z. Pater, J. Tomczak, T. Bulzak, L. Wojcik, and P. Walczuk, Assessment of Ductile Fracture Criteria with Respect to Their Application in the Modeling of Cross Wedge Rolling, J. Mater. Process. Technol., 2020, 278, p 1–11.CrossRef
25.
go back to reference Z. Jihua and G. Kezhi, Deformation Resistance of Alloy Structural Steel, J. Univ. Sci. Technol. B, 1986, 4, p 50–56. Z. Jihua and G. Kezhi, Deformation Resistance of Alloy Structural Steel, J. Univ. Sci. Technol. B, 1986, 4, p 50–56.
26.
go back to reference Y.-M. Hwang, W.M. Tsai, F.H. Tsai, and I. Her, Analytical and Experimental Study on the Spiral Marks of the Rolled Product During Three-Roll Planetary Rolling Processes, Int. J. Mach. Tool. Manuf., 2006, 46, p 1555–1562.CrossRef Y.-M. Hwang, W.M. Tsai, F.H. Tsai, and I. Her, Analytical and Experimental Study on the Spiral Marks of the Rolled Product During Three-Roll Planetary Rolling Processes, Int. J. Mach. Tool. Manuf., 2006, 46, p 1555–1562.CrossRef
27.
go back to reference Wu. Shyue-Jian, Y.-M. Hwang, and M.-H. Chang, A Three-Dimensional Finite Element Analysis of the Three-Roll Planetary Mill, J. Mater. Process. Technol., 2002, 123, p 336–345.CrossRef Wu. Shyue-Jian, Y.-M. Hwang, and M.-H. Chang, A Three-Dimensional Finite Element Analysis of the Three-Roll Planetary Mill, J. Mater. Process. Technol., 2002, 123, p 336–345.CrossRef
28.
go back to reference C.-K. Shih and C. Hung, Experimental and Numerical Analyses on Three-Roll Planetary Rolling Process, J. Mater. Process. Technol., 2003, 142, p 702–709.CrossRef C.-K. Shih and C. Hung, Experimental and Numerical Analyses on Three-Roll Planetary Rolling Process, J. Mater. Process. Technol., 2003, 142, p 702–709.CrossRef
29.
go back to reference B. Li, S.H. Zhang, G.L. Zhang, H.Y. Zhang, and H.Q. Zhang, Microstructure Simulation of Copper Tube and Its Application in Three Roll Planetary Rolling, Mater. Sci. Technol., 2007, 23, p 715–722.CrossRef B. Li, S.H. Zhang, G.L. Zhang, H.Y. Zhang, and H.Q. Zhang, Microstructure Simulation of Copper Tube and Its Application in Three Roll Planetary Rolling, Mater. Sci. Technol., 2007, 23, p 715–722.CrossRef
30.
go back to reference S.-D. Hu, Y.-N. Jiang, C. Zhou, L.-X. Li, X.-Y. Wang, and C. Wang, Prediction and Prevention of Cracks in Free-Cutting Stainless Steel Bar Forming, Metall. Mater. Trans. B, 2020, 51B, p 1687–1696.CrossRef S.-D. Hu, Y.-N. Jiang, C. Zhou, L.-X. Li, X.-Y. Wang, and C. Wang, Prediction and Prevention of Cracks in Free-Cutting Stainless Steel Bar Forming, Metall. Mater. Trans. B, 2020, 51B, p 1687–1696.CrossRef
31.
go back to reference M. Hao, X. Wenchen, J. BoCheng, S. Debin, and R.N. Steven, Damage Evaluation in Tube Spinnability Test with Ductile Fracture Criteria, Int. J. Mech. Sci., 2015, 100, p 99–111.CrossRef M. Hao, X. Wenchen, J. BoCheng, S. Debin, and R.N. Steven, Damage Evaluation in Tube Spinnability Test with Ductile Fracture Criteria, Int. J. Mech. Sci., 2015, 100, p 99–111.CrossRef
32.
go back to reference S. Dobatkin, S. Galkin, Y. Estrin, V. Serebryany, M. Diez, N. Martynenko et al., Grain Refinement, Texture, and Mechanical Properties of a Magnesium Alloy After Radial-Shear Rolling, J. Alloys Comp., 2019, 774, p 969–979.CrossRef S. Dobatkin, S. Galkin, Y. Estrin, V. Serebryany, M. Diez, N. Martynenko et al., Grain Refinement, Texture, and Mechanical Properties of a Magnesium Alloy After Radial-Shear Rolling, J. Alloys Comp., 2019, 774, p 969–979.CrossRef
33.
go back to reference P. Montmitonett, P. Gratacos, and R. Ducloux, Application of Anisotropic Viscoplastic Behaviour in 3D Finite-Element Simulations of Hot Rolling, J. Mater. Process. Technol., 1996, 58, p 201–211.CrossRef P. Montmitonett, P. Gratacos, and R. Ducloux, Application of Anisotropic Viscoplastic Behaviour in 3D Finite-Element Simulations of Hot Rolling, J. Mater. Process. Technol., 1996, 58, p 201–211.CrossRef
34.
go back to reference T.K. Akopyan, Y.V. Gamin, S.P. Galkin, A.S. Prosviryakov, A.S. Aleshchenko, M.A. Noshin et al., Radial-Shear Rolling of High-Strength Aluminum Alloys: Finite Element Simulation and Analysis of Microstructure and Mechanical Properties, Mater. Sci. Eng. A, 2020, 786, p 1–10.CrossRef T.K. Akopyan, Y.V. Gamin, S.P. Galkin, A.S. Prosviryakov, A.S. Aleshchenko, M.A. Noshin et al., Radial-Shear Rolling of High-Strength Aluminum Alloys: Finite Element Simulation and Analysis of Microstructure and Mechanical Properties, Mater. Sci. Eng. A, 2020, 786, p 1–10.CrossRef
Metadata
Title
Internal Damage Mechanism and Deformation Process Window of a Free-Cutting Stainless Steel Bar Rolled by Three-Roll Planetary Mill
Authors
Lixin Li
Junyu Li
Ben Ye
Publication date
10-09-2021
Publisher
Springer US
Published in
Journal of Materials Engineering and Performance / Issue 2/2022
Print ISSN: 1059-9495
Electronic ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-021-06234-w

Other articles of this Issue 2/2022

Journal of Materials Engineering and Performance 2/2022 Go to the issue

Premium Partners