Skip to main content
Top
Published in: Journal of Materials Engineering and Performance 2/2022

22-09-2021

Microstructural Evolution and Anisotropic Mechanical Properties of 316L Stainless Steel Induced by Tensile Straining

Authors: Tao Han, Na Li, Yake Wu, Feng Jiang

Published in: Journal of Materials Engineering and Performance | Issue 2/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Microstructures and mechanical properties of tensile-strained 316L stainless steel are investigated using x-ray diffraction, electron backscatter diffraction, transmission electron microscopy, and mechanical tests to elucidate the underlying mechanisms for the evolved anisotropic mechanical properties. The straining facilitates the formation of dislocations, twins and martensite, and the yield strength increases with the strain while the elongation and the impact toughness exhibit the opposite trend. Under the same strain, the yield strength tested at angles of 0°, 45° and 90° and the impact toughness tested at angles of 0° and 90° to the straining direction are successively decreased, and this anisotropy will enhance with the strain extent. The yield strength is increased due to the higher dislocation and second-phase (martensite) hardening. The microstructure, the yield strength and the impact toughness are correlated, proving the linkage between the orientation dependence of the mechanical properties.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference G.B. Chitwood, L. Skogsberg, The SCC Resistance of 316L Expandable Pipe in Production Environments Containing H2S and Chloride, Corrosion, 2004, p 1–12. G.B. Chitwood, L. Skogsberg, The SCC Resistance of 316L Expandable Pipe in Production Environments Containing H2S and Chloride, Corrosion, 2004, p 1–12.
2.
go back to reference F.K. Yan, G.Z. Liu, N.R. Tao and K. Lu, Strength and Ductility of 316L Austenitic Stainless Steel Strengthened by Nano-scale Twin Bundles, Acta Mater., 2012, 60, p 1059–1071.CrossRef F.K. Yan, G.Z. Liu, N.R. Tao and K. Lu, Strength and Ductility of 316L Austenitic Stainless Steel Strengthened by Nano-scale Twin Bundles, Acta Mater., 2012, 60, p 1059–1071.CrossRef
3.
go back to reference M. Kulka, D. Mikolajczak, N. Makuch, P. Dziarski and A. Miklaszewski, Wear Resistance Improvement of Austenitic 316L Steel by Laser Alloying with Boron, Surf. Coat. Technol., 2016, 291, p 292–313.CrossRef M. Kulka, D. Mikolajczak, N. Makuch, P. Dziarski and A. Miklaszewski, Wear Resistance Improvement of Austenitic 316L Steel by Laser Alloying with Boron, Surf. Coat. Technol., 2016, 291, p 292–313.CrossRef
4.
go back to reference T. Xi, M.B. Shahzad, D. Xu, Z. Sun, J. Zhao, C. Yang, M. Qi and K. Yang, Effect of Copper Addition on Mechanical Properties, Corrosion Resistance and Antibacterial Property of 316L Stainless Steel, Mater. Sci. Eng. C, 2017, 71, p 1079–1085.CrossRef T. Xi, M.B. Shahzad, D. Xu, Z. Sun, J. Zhao, C. Yang, M. Qi and K. Yang, Effect of Copper Addition on Mechanical Properties, Corrosion Resistance and Antibacterial Property of 316L Stainless Steel, Mater. Sci. Eng. C, 2017, 71, p 1079–1085.CrossRef
5.
go back to reference B. AlMangour, D. Grzesiak and J.M. Yang, In-situ Formation of Novel TiC-Particle-Reinforced 316L Stainless Steel Bulk-form Composites by Selective Laser Melting, J. Alloys Compd., 2017, 706, p 409–418.CrossRef B. AlMangour, D. Grzesiak and J.M. Yang, In-situ Formation of Novel TiC-Particle-Reinforced 316L Stainless Steel Bulk-form Composites by Selective Laser Melting, J. Alloys Compd., 2017, 706, p 409–418.CrossRef
6.
go back to reference H. Pelletier, D. Müller, P. Mille, A. Cornet and J.J. Grob, Dose Effect on Mechanical Properties of High-energy Nitrogen Implanted 316L Stainless Steel, Surf. Coat. Technol., 2002, 151–152, p 377–382.CrossRef H. Pelletier, D. Müller, P. Mille, A. Cornet and J.J. Grob, Dose Effect on Mechanical Properties of High-energy Nitrogen Implanted 316L Stainless Steel, Surf. Coat. Technol., 2002, 151–152, p 377–382.CrossRef
7.
go back to reference M. El-Tahawy, P.H.R. Pereira, Y. Huang, H. Park, H. Choe, T.G. Langdon and J. Gubicza, Exceptionally High Strength and Good Ductility in an Ultrafine-Grained 316L Steel Processed by Severe Plastic Deformation and Subsequent Annealing, Mater. Lett., 2018, 214, p 240–242.CrossRef M. El-Tahawy, P.H.R. Pereira, Y. Huang, H. Park, H. Choe, T.G. Langdon and J. Gubicza, Exceptionally High Strength and Good Ductility in an Ultrafine-Grained 316L Steel Processed by Severe Plastic Deformation and Subsequent Annealing, Mater. Lett., 2018, 214, p 240–242.CrossRef
8.
go back to reference X.H. Chen, J. Lu, L. Lu and K. Lu, Tensile Properties of a Nanocrystalline 316L Austenitic Stainless Steel, Scripta Mater., 2005, 52, p 1039–1044.CrossRef X.H. Chen, J. Lu, L. Lu and K. Lu, Tensile Properties of a Nanocrystalline 316L Austenitic Stainless Steel, Scripta Mater., 2005, 52, p 1039–1044.CrossRef
9.
go back to reference B. Ravi Kumar, S. Sharma and B. Mahato, Formation of Ultrafine Grained Microstructure in the Austenitic Stainless Steel and Its Impact on Tensile Properties, Mater. Sci. Eng. A, 2011, 528, p 2209–2216.CrossRef B. Ravi Kumar, S. Sharma and B. Mahato, Formation of Ultrafine Grained Microstructure in the Austenitic Stainless Steel and Its Impact on Tensile Properties, Mater. Sci. Eng. A, 2011, 528, p 2209–2216.CrossRef
10.
go back to reference J. Peng, K. Li, J. Peng, J. Pei and C. Zhou, The Effect of Pre-strain on Tensile Behaviour of 316L Austenitic Stainless Steel, Mater. Sci. Tech., 2018, 34, p 547–560.CrossRef J. Peng, K. Li, J. Peng, J. Pei and C. Zhou, The Effect of Pre-strain on Tensile Behaviour of 316L Austenitic Stainless Steel, Mater. Sci. Tech., 2018, 34, p 547–560.CrossRef
11.
go back to reference G. Marnier, C. Keller and L. Taleb, Fatigue of OFHC Pure Copper and 316L Stainless Steel Subjected to Prior Tensile and Cyclic Prestrains, Int. J. Fatigue, 2016, 91, p 204–219.CrossRef G. Marnier, C. Keller and L. Taleb, Fatigue of OFHC Pure Copper and 316L Stainless Steel Subjected to Prior Tensile and Cyclic Prestrains, Int. J. Fatigue, 2016, 91, p 204–219.CrossRef
12.
go back to reference J. Peng, K. Li, Q. Dai, G. Gao, Y. Zhang and W. Cao, Estimation of Mechanical Strength for Pre-strained 316L Austenitic Stainless Steel by Small Punch Test, Vacuum, 2019, 160, p 37–53.CrossRef J. Peng, K. Li, Q. Dai, G. Gao, Y. Zhang and W. Cao, Estimation of Mechanical Strength for Pre-strained 316L Austenitic Stainless Steel by Small Punch Test, Vacuum, 2019, 160, p 37–53.CrossRef
13.
go back to reference E. Galindo-Nava and P. Rivera-Díaz-del-Castillo, Understanding Martensite and Twin Formation in Austenitic Steels: a Model Describing TRIP and TWIP Effects, Acta Mater., 2017, 128, p 120–134.CrossRef E. Galindo-Nava and P. Rivera-Díaz-del-Castillo, Understanding Martensite and Twin Formation in Austenitic Steels: a Model Describing TRIP and TWIP Effects, Acta Mater., 2017, 128, p 120–134.CrossRef
14.
go back to reference S.B. Zaman, F. Barlat and J.H. Kim, Deformation-induced Anisotropy of Uniaxially Prestrained Steel Sheets, Int. J. Solids Struct., 2018, 134, p 20–29.CrossRef S.B. Zaman, F. Barlat and J.H. Kim, Deformation-induced Anisotropy of Uniaxially Prestrained Steel Sheets, Int. J. Solids Struct., 2018, 134, p 20–29.CrossRef
15.
go back to reference J. Li, Q. Mao, J. Nie, Z. Huang, S. Wang and Y. Li, Impact Property of High-strength 316L Stainless Steel with Heterostructures, Mater. Sci. Eng. A, 2019, 754, p 457–460.CrossRef J. Li, Q. Mao, J. Nie, Z. Huang, S. Wang and Y. Li, Impact Property of High-strength 316L Stainless Steel with Heterostructures, Mater. Sci. Eng. A, 2019, 754, p 457–460.CrossRef
16.
go back to reference A. Ben Rhouma, T. Amadou, H. Sidhom and C. Braham, Correlation between Microstructure and Intergranular Corrosion Behavior of Low Delta-ferrite Content AISI 316L Aged in the Range 550–700 °C, J. Alloys Compd., 2017, 708, p 871–886.CrossRef A. Ben Rhouma, T. Amadou, H. Sidhom and C. Braham, Correlation between Microstructure and Intergranular Corrosion Behavior of Low Delta-ferrite Content AISI 316L Aged in the Range 550–700 °C, J. Alloys Compd., 2017, 708, p 871–886.CrossRef
17.
go back to reference Y. Takagawa, Y. Tsujiuchi, C. Watanabe, R. Monzen and N. Tsuji, Improvement in Mechanical Properties of a Cu-2.0 Mass%Ni-0.5 Mass%Si-0.1 Mass%Zr Alloy by Combining Both Accumulative Roll-bonding and Cryo-rolling with Aging, Mater. Trans., 2013, 54, p 1–8.CrossRef Y. Takagawa, Y. Tsujiuchi, C. Watanabe, R. Monzen and N. Tsuji, Improvement in Mechanical Properties of a Cu-2.0 Mass%Ni-0.5 Mass%Si-0.1 Mass%Zr Alloy by Combining Both Accumulative Roll-bonding and Cryo-rolling with Aging, Mater. Trans., 2013, 54, p 1–8.CrossRef
18.
go back to reference M. El-Tahawy, J. Péter, K. Tamás, H. Gigap, P. Hyeji, C. Heeman and G. Jenő, Different Evolutions of the Microstructure, Texture, and Mechanical Performance During Tension and Compression of 316L Stainless Steel, Metall. Mater. Trans. A, 2020, 51, p 3447–3460.CrossRef M. El-Tahawy, J. Péter, K. Tamás, H. Gigap, P. Hyeji, C. Heeman and G. Jenő, Different Evolutions of the Microstructure, Texture, and Mechanical Performance During Tension and Compression of 316L Stainless Steel, Metall. Mater. Trans. A, 2020, 51, p 3447–3460.CrossRef
19.
go back to reference J. Zhu, G. Lin, Z. Zhang and J. Xie, The Martensitic Crystallography and Strengthening Mechanisms of Ultra-high Strength Rare Earth H13 Steel, Mater. Sci. Eng. A, 2020, 797, p 140139.CrossRef J. Zhu, G. Lin, Z. Zhang and J. Xie, The Martensitic Crystallography and Strengthening Mechanisms of Ultra-high Strength Rare Earth H13 Steel, Mater. Sci. Eng. A, 2020, 797, p 140139.CrossRef
20.
go back to reference C. Quitzke, C. Schröder, C. Ullrich, M. Mandel, L. Krüger, O. Volkova and M. Wendler, Evaluation of Strain-induced Martensite Formation and Mechanical Properties in N-alloyed Austenitic Stainless Steels by in situ Tensile Tests, Mater. Sci. Eng. A, 2021, 808, p 140930.CrossRef C. Quitzke, C. Schröder, C. Ullrich, M. Mandel, L. Krüger, O. Volkova and M. Wendler, Evaluation of Strain-induced Martensite Formation and Mechanical Properties in N-alloyed Austenitic Stainless Steels by in situ Tensile Tests, Mater. Sci. Eng. A, 2021, 808, p 140930.CrossRef
21.
go back to reference N. Guo, Z. Zhang, Q. Dong, H. Yu, B. Song, L. Chai, C. Liu, Z. Yao and M.R. Daymond, Strengthening and Toughening Austenitic Steel by Introducing Gradient Martensite via Cyclic Forward/Reverse Torsion, Mater. Des., 2018, 143, p 150–159.CrossRef N. Guo, Z. Zhang, Q. Dong, H. Yu, B. Song, L. Chai, C. Liu, Z. Yao and M.R. Daymond, Strengthening and Toughening Austenitic Steel by Introducing Gradient Martensite via Cyclic Forward/Reverse Torsion, Mater. Des., 2018, 143, p 150–159.CrossRef
22.
go back to reference M. Nezakat, H. Akhiani, M. Hoseini and J. Szpunar, Effect of Thermo-mechanical Processing on Texture Evolution in Austenitic Stainless Steel 316L, Mater. Charact., 2014, 98, p 10–17.CrossRef M. Nezakat, H. Akhiani, M. Hoseini and J. Szpunar, Effect of Thermo-mechanical Processing on Texture Evolution in Austenitic Stainless Steel 316L, Mater. Charact., 2014, 98, p 10–17.CrossRef
23.
go back to reference Y. Hong, C. Zhou, Y. Zheng, L. Zhang, J. Zheng, X. Chen and B. An, Formation of Strain-induced Martensite in Selective Laser Melting Austenitic Stainless Steel, Mater. Sci. Eng. A, 2019, 740–741, p 420–426.CrossRef Y. Hong, C. Zhou, Y. Zheng, L. Zhang, J. Zheng, X. Chen and B. An, Formation of Strain-induced Martensite in Selective Laser Melting Austenitic Stainless Steel, Mater. Sci. Eng. A, 2019, 740–741, p 420–426.CrossRef
24.
go back to reference V. Mazánová, M. Heczko, V. Škorík, A. Chlupová, J. Polák and T. Kruml, Microstructure and Martensitic Transformation in 316L Austenitic Steel During Multiaxial Low Cycle Fatigue at Room Temperature, Mater. Sci. Eng. A, 2019, 767, p 138407.CrossRef V. Mazánová, M. Heczko, V. Škorík, A. Chlupová, J. Polák and T. Kruml, Microstructure and Martensitic Transformation in 316L Austenitic Steel During Multiaxial Low Cycle Fatigue at Room Temperature, Mater. Sci. Eng. A, 2019, 767, p 138407.CrossRef
25.
go back to reference H.C. Shin, T.K. Ha and Y.W. Chang, Kinetics of Deformation Induced Martensitic Transformation in a 304 Stainless Steel, Scr. Mater., 2001, 45, p 823–829.CrossRef H.C. Shin, T.K. Ha and Y.W. Chang, Kinetics of Deformation Induced Martensitic Transformation in a 304 Stainless Steel, Scr. Mater., 2001, 45, p 823–829.CrossRef
26.
go back to reference C. Zheng, H. Jiang, X. Hao, J. Ye, L. Li and D. Li, Tailoring Mechanical Behavior of a Fine-grained Metastable Austenitic Stainless Steel by Pre-straining, Mater. Sci. Eng. A, 2019, 746, p 332–340.CrossRef C. Zheng, H. Jiang, X. Hao, J. Ye, L. Li and D. Li, Tailoring Mechanical Behavior of a Fine-grained Metastable Austenitic Stainless Steel by Pre-straining, Mater. Sci. Eng. A, 2019, 746, p 332–340.CrossRef
27.
go back to reference M. Naghizadeh and H. Mirzadeh, Modeling the Kinetics of Deformation-induced Martensitic Transformation in AISI 316 Metastable Austenitic Stainless Steel, Vacuum, 2018, 157, p 243–248.CrossRef M. Naghizadeh and H. Mirzadeh, Modeling the Kinetics of Deformation-induced Martensitic Transformation in AISI 316 Metastable Austenitic Stainless Steel, Vacuum, 2018, 157, p 243–248.CrossRef
28.
go back to reference G.K. Williamson and R.E. Smallman, Dislocation Densities in Some Annealed and Cold-worked Metals from Measurements on the X-ray Debye-Scherrer Spectrum, Philos. Mag., 1956, 1, p 34–46.CrossRef G.K. Williamson and R.E. Smallman, Dislocation Densities in Some Annealed and Cold-worked Metals from Measurements on the X-ray Debye-Scherrer Spectrum, Philos. Mag., 1956, 1, p 34–46.CrossRef
29.
go back to reference V. Tandon and A.P. Patil, On the Influence of Cold Working and Electrochemical Nitridation on the Corrosion Behaviour of 316L Austenitic Stainless Steel in Acidic Environment, Surf. Eng. Appl. Electrochem., 2020, 56, p 63–70.CrossRef V. Tandon and A.P. Patil, On the Influence of Cold Working and Electrochemical Nitridation on the Corrosion Behaviour of 316L Austenitic Stainless Steel in Acidic Environment, Surf. Eng. Appl. Electrochem., 2020, 56, p 63–70.CrossRef
30.
go back to reference N.N. Krishna, R. Tejas, K. Sivaprasad and K. Venkateswarlu, Study on Cryorolled Al–Cu Alloy Using X-ray Diffraction Line Profile Analysis and Evaluation of Strengthening Mechanisms, Mater. Des., 2013, 52, p 785–790.CrossRef N.N. Krishna, R. Tejas, K. Sivaprasad and K. Venkateswarlu, Study on Cryorolled Al–Cu Alloy Using X-ray Diffraction Line Profile Analysis and Evaluation of Strengthening Mechanisms, Mater. Des., 2013, 52, p 785–790.CrossRef
31.
go back to reference R. Smallman and K. Westmacott, Stacking Faults in Face-Centred Cubic Metals and Alloys, Philos. Mag., 1957, 2, p 669–683.CrossRef R. Smallman and K. Westmacott, Stacking Faults in Face-Centred Cubic Metals and Alloys, Philos. Mag., 1957, 2, p 669–683.CrossRef
32.
go back to reference M. El-Tahawy, Y. Huang, T. Um, H. Choe, J.L. Lábár, T.G. Langdon and J. Gubicza, Stored Energy in Ultrafine-Grained 316L Stainless Steel Processed by High-Pressure Torsion, J. Mater. Res. Technol, 2017, 6, p 339–347.CrossRef M. El-Tahawy, Y. Huang, T. Um, H. Choe, J.L. Lábár, T.G. Langdon and J. Gubicza, Stored Energy in Ultrafine-Grained 316L Stainless Steel Processed by High-Pressure Torsion, J. Mater. Res. Technol, 2017, 6, p 339–347.CrossRef
33.
go back to reference I.J. Park, J.G. Jung, S.Y. Jo, S.M. Lee and Y.K. Lee, The Effect of Pre-Strain on the Resistance to Hydrogen Embrittlement in 316L Austenitic Stainless Steel, Mater. Trans., 2014, 55, p 964–970.CrossRef I.J. Park, J.G. Jung, S.Y. Jo, S.M. Lee and Y.K. Lee, The Effect of Pre-Strain on the Resistance to Hydrogen Embrittlement in 316L Austenitic Stainless Steel, Mater. Trans., 2014, 55, p 964–970.CrossRef
34.
go back to reference L. Zhang, Z. Li, J. Zheng, Y. Zhao, P. Xu, C. Zhou and X. Li, Effect of Strain-induced Martensite on Hydrogen Embrittlement of Austenitic Stainless Steels Investigated by Combined Tension and Hydrogen Release Methods, Int. J. Hydrog. Energy, 2013, 38, p 8208–8214.CrossRef L. Zhang, Z. Li, J. Zheng, Y. Zhao, P. Xu, C. Zhou and X. Li, Effect of Strain-induced Martensite on Hydrogen Embrittlement of Austenitic Stainless Steels Investigated by Combined Tension and Hydrogen Release Methods, Int. J. Hydrog. Energy, 2013, 38, p 8208–8214.CrossRef
35.
go back to reference C. San Marchi, B.P. Somerday, X. Tang and G.H. Schiroky, Effects of Alloy Composition and Strain Hardening on Tensile Fracture of Hydrogen-precharged Type 316 Stainless Steels, Int. J. Hydrog. Energy, 2008, 33, p 889–904.CrossRef C. San Marchi, B.P. Somerday, X. Tang and G.H. Schiroky, Effects of Alloy Composition and Strain Hardening on Tensile Fracture of Hydrogen-precharged Type 316 Stainless Steels, Int. J. Hydrog. Energy, 2008, 33, p 889–904.CrossRef
36.
go back to reference S.G. Chowdhury, S. Das and P.K. De, Cold Rolling Behaviour and Textural Evolution in AISI 316L Austenitic Stainless Steel, Acta Mater., 2005, 53, p 3951–3959.CrossRef S.G. Chowdhury, S. Das and P.K. De, Cold Rolling Behaviour and Textural Evolution in AISI 316L Austenitic Stainless Steel, Acta Mater., 2005, 53, p 3951–3959.CrossRef
37.
go back to reference J. Gubicza, M. El-Tahawy, Y. Huang, H. Choi, H. Choe, J.L. Lábár and T.G. Langdon, Microstructure, Phase Composition and Hardness Evolution in 316L Stainless Steel Processed by High-pressure Torsion, Mater. Sci. Eng. A, 2016, 657, p 215–223.CrossRef J. Gubicza, M. El-Tahawy, Y. Huang, H. Choi, H. Choe, J.L. Lábár and T.G. Langdon, Microstructure, Phase Composition and Hardness Evolution in 316L Stainless Steel Processed by High-pressure Torsion, Mater. Sci. Eng. A, 2016, 657, p 215–223.CrossRef
38.
go back to reference S. Kheiri, H. Mirzadeh and M. Naghizadeh, Tailoring the Microstructure and Mechanical Properties of AISI 316L Austenitic Stainless Steel Via Cold Rolling and Reversion Annealing, Mater. Sci. Eng. A, 2019, 759, p 90–96.CrossRef S. Kheiri, H. Mirzadeh and M. Naghizadeh, Tailoring the Microstructure and Mechanical Properties of AISI 316L Austenitic Stainless Steel Via Cold Rolling and Reversion Annealing, Mater. Sci. Eng. A, 2019, 759, p 90–96.CrossRef
39.
go back to reference D.N. Wasnik, I.K. Gopalakrishnan, J.V. Yakhmi, V. Kain and I. Samajdar, Cold Rolled Texture and Microstructure in Types 304 and 316L Austenitic Stainless Steels, ISIJ Int., 2003, 43, p 1581–1589.CrossRef D.N. Wasnik, I.K. Gopalakrishnan, J.V. Yakhmi, V. Kain and I. Samajdar, Cold Rolled Texture and Microstructure in Types 304 and 316L Austenitic Stainless Steels, ISIJ Int., 2003, 43, p 1581–1589.CrossRef
40.
go back to reference S.J. Huang, L.W. Chang and T.W. Shyr, Characterization of Microtexture of 316L Stainless Steel Fiber after Multi-pass Drawing by Electron Backscatter Diffraction, Mater. Charact., 2018, 141, p 338–347.CrossRef S.J. Huang, L.W. Chang and T.W. Shyr, Characterization of Microtexture of 316L Stainless Steel Fiber after Multi-pass Drawing by Electron Backscatter Diffraction, Mater. Charact., 2018, 141, p 338–347.CrossRef
41.
go back to reference N. Nakada, H. Ito, Y. Matsuoka, T. Tsuchiyama and S. Takaki, Deformation-induced Martensitic Transformation Behavior in Cold-rolled and Cold-drawn Type 316 Stainless Steels, Acta Mater., 2010, 58, p 895–903.CrossRef N. Nakada, H. Ito, Y. Matsuoka, T. Tsuchiyama and S. Takaki, Deformation-induced Martensitic Transformation Behavior in Cold-rolled and Cold-drawn Type 316 Stainless Steels, Acta Mater., 2010, 58, p 895–903.CrossRef
42.
go back to reference A. Eres-Castellanos, F.G. Caballero and C. Garcia-Mateo, Stress or Strain Induced Martensitic and Bainitic Transformations During Ausforming Processes, Acta Mater., 2020, 189, p 60–72.CrossRef A. Eres-Castellanos, F.G. Caballero and C. Garcia-Mateo, Stress or Strain Induced Martensitic and Bainitic Transformations During Ausforming Processes, Acta Mater., 2020, 189, p 60–72.CrossRef
43.
go back to reference G.M. de Bellefon, J. Van Duysen and K. Sridharan, Composition-dependence of Stacking Fault Energy in Austenitic Stainless Steels Through Linear Regression with Random Intercepts, J. Nucl. Mater., 2017, 492, p 227–230.CrossRef G.M. de Bellefon, J. Van Duysen and K. Sridharan, Composition-dependence of Stacking Fault Energy in Austenitic Stainless Steels Through Linear Regression with Random Intercepts, J. Nucl. Mater., 2017, 492, p 227–230.CrossRef
44.
go back to reference ASM Handbook, Properties and Selection: Irons, Steels, and High-performance Alloys, ASM International, 1992. ASM Handbook, Properties and Selection: Irons, Steels, and High-performance Alloys, ASM International, 1992.
45.
go back to reference R. Singh, S. Agrahari, S.D. Yadav and A. Kumar, Microstructural Evolution and Mechanical Properties of 316 Austenitic Stainless Steel by CGP, Mater. Sci. Eng. A, 2021, 812, p 141105.CrossRef R. Singh, S. Agrahari, S.D. Yadav and A. Kumar, Microstructural Evolution and Mechanical Properties of 316 Austenitic Stainless Steel by CGP, Mater. Sci. Eng. A, 2021, 812, p 141105.CrossRef
46.
go back to reference H. Wen, T.D. Topping, D. Isheim, D.N. Seidman and E.J. Lavernia, Strengthening Mechanisms in a High-strength Bulk Nanostructured Cu–Zn–Al Alloy Processed via Cryomilling and Spark Plasma Sintering, Acta Mater., 2013, 61, p 2769–2782.CrossRef H. Wen, T.D. Topping, D. Isheim, D.N. Seidman and E.J. Lavernia, Strengthening Mechanisms in a High-strength Bulk Nanostructured Cu–Zn–Al Alloy Processed via Cryomilling and Spark Plasma Sintering, Acta Mater., 2013, 61, p 2769–2782.CrossRef
47.
go back to reference Y. Wu, J. Lu, S. Tan, F. Jiang and J. Sun, Accessing Enhanced Uniformity and Property in CuNiSiCr Alloy by High-temperature Recrystallization, Mater. Sci. Eng. A, 2019, 764, p 1–9.CrossRef Y. Wu, J. Lu, S. Tan, F. Jiang and J. Sun, Accessing Enhanced Uniformity and Property in CuNiSiCr Alloy by High-temperature Recrystallization, Mater. Sci. Eng. A, 2019, 764, p 1–9.CrossRef
48.
go back to reference Y. Wu, Y. Li, J. Lu, S. Tan, F. Jiang and J. Sun, Effects of Pre-deformation on Precipitation Behaviors and Properties in Cu-Ni-Si-Cr Alloy, Mater. Sci. Eng. A, 2019, 742, p 501–507.CrossRef Y. Wu, Y. Li, J. Lu, S. Tan, F. Jiang and J. Sun, Effects of Pre-deformation on Precipitation Behaviors and Properties in Cu-Ni-Si-Cr Alloy, Mater. Sci. Eng. A, 2019, 742, p 501–507.CrossRef
49.
go back to reference P. Zhang, Y. Li, Q. Lei, H. Tan, R. Shi, J. She, S. Li, J. Zhu, X. Sheng, J. Zhang and Z. Li, Microstructure and Mechanical Properties of a CuNiTi Alloy with a Large Product of Strength and Elongation, J. Mater. Res. Technol, 2020, 9, p 2299–2307.CrossRef P. Zhang, Y. Li, Q. Lei, H. Tan, R. Shi, J. She, S. Li, J. Zhu, X. Sheng, J. Zhang and Z. Li, Microstructure and Mechanical Properties of a CuNiTi Alloy with a Large Product of Strength and Elongation, J. Mater. Res. Technol, 2020, 9, p 2299–2307.CrossRef
50.
go back to reference L. Jiang, H. Fu, C. Wang, W. Li and J. Xie, Enhanced Mechanical and Electrical Properties of a Cu-Ni-Si Alloy by Thermo-mechanical Processing, Metall. Mater. Trans. A, 2020, 51, p 331–341.CrossRef L. Jiang, H. Fu, C. Wang, W. Li and J. Xie, Enhanced Mechanical and Electrical Properties of a Cu-Ni-Si Alloy by Thermo-mechanical Processing, Metall. Mater. Trans. A, 2020, 51, p 331–341.CrossRef
51.
go back to reference J. Li, G. Huang, X. Mi, L. Peng, H. Xie and Y. Kang, Microstructure Evolution and Properties of a Quaternary Cu–Ni–Co–Si Alloy with High Strength and Conductivity, Mater. Sci. Eng. A, 2019, 766, p 1–14.CrossRef J. Li, G. Huang, X. Mi, L. Peng, H. Xie and Y. Kang, Microstructure Evolution and Properties of a Quaternary Cu–Ni–Co–Si Alloy with High Strength and Conductivity, Mater. Sci. Eng. A, 2019, 766, p 1–14.CrossRef
52.
go back to reference Z. Zhao, Z. Xiao, Z. Li, W. Qiu, H. Jiang, Q. Lei, Z. Liu, Y. Jiang and S. Zhang, Microstructure and Properties of a Cu–Ni–Si–Co–Cr Alloy with High Strength and High Conductivity, Mater. Sci. Eng. A, 2019, 759, p 396–403.CrossRef Z. Zhao, Z. Xiao, Z. Li, W. Qiu, H. Jiang, Q. Lei, Z. Liu, Y. Jiang and S. Zhang, Microstructure and Properties of a Cu–Ni–Si–Co–Cr Alloy with High Strength and High Conductivity, Mater. Sci. Eng. A, 2019, 759, p 396–403.CrossRef
53.
go back to reference Q. Lei, S. Li, J. Zhu, Z. Xiao, F. Zhang and Z. Li, Microstructural Evolution, Phase Transition, and Physics Properties of a High Strength Cu–Ni–Si–Al Alloy, Mater. Charact., 2019, 147, p 315–323.CrossRef Q. Lei, S. Li, J. Zhu, Z. Xiao, F. Zhang and Z. Li, Microstructural Evolution, Phase Transition, and Physics Properties of a High Strength Cu–Ni–Si–Al Alloy, Mater. Charact., 2019, 147, p 315–323.CrossRef
54.
go back to reference B. Liu, X. Zhang, Z. Huang, J. Guo, S. Gong, G. Xie, L. Peng and Z. Li, Microstructure and Properties of a Novel Ultra-high Strength, High Elasticity and High Plasticity Cu–20Ni–20Mn-0.3Nb-0.3Cr-0.1Zr Alloy, J. Alloys Compd., 2021, 853, p 157402.CrossRef B. Liu, X. Zhang, Z. Huang, J. Guo, S. Gong, G. Xie, L. Peng and Z. Li, Microstructure and Properties of a Novel Ultra-high Strength, High Elasticity and High Plasticity Cu–20Ni–20Mn-0.3Nb-0.3Cr-0.1Zr Alloy, J. Alloys Compd., 2021, 853, p 157402.CrossRef
55.
go back to reference S. Mohd Yusuf, Y. Chen, S. Yang and N. Gao, Microstructural Evolution and Strengthening of Selective Laser Melted 316L Stainless Steel Processed by High-pressure Torsion, Mater. Charact., 2020, 159, p 110012.CrossRef S. Mohd Yusuf, Y. Chen, S. Yang and N. Gao, Microstructural Evolution and Strengthening of Selective Laser Melted 316L Stainless Steel Processed by High-pressure Torsion, Mater. Charact., 2020, 159, p 110012.CrossRef
56.
go back to reference Z.D. Wang, G.F. Sun, Y. Lu, M.Z. Chen, K.D. Bi and Z.H. Ni, Microstructural Characterization and Mechanical Behavior of Ultrasonic Impact Peened and Laser Shock Peened AISI 316L Stainless Steel, Surf. Coat. Technol., 2020, 385, p 125403.CrossRef Z.D. Wang, G.F. Sun, Y. Lu, M.Z. Chen, K.D. Bi and Z.H. Ni, Microstructural Characterization and Mechanical Behavior of Ultrasonic Impact Peened and Laser Shock Peened AISI 316L Stainless Steel, Surf. Coat. Technol., 2020, 385, p 125403.CrossRef
57.
go back to reference W. Wang, T. Liu, X. Cao, Y. Lu and T. Shoji, In-situ Observation on Twin Boundary Evolution and Crack Initiation Behavior During Tensile Test on 316L Austenitic Stainless Steel, Mater. Charact., 2017, 132, p 169–174.CrossRef W. Wang, T. Liu, X. Cao, Y. Lu and T. Shoji, In-situ Observation on Twin Boundary Evolution and Crack Initiation Behavior During Tensile Test on 316L Austenitic Stainless Steel, Mater. Charact., 2017, 132, p 169–174.CrossRef
58.
go back to reference E. Hall, The Deformation and Ageing of Mild Steel: III Discussion of Results, Proc. Phys. Soc. B, 1951, 64, p 747–753.CrossRef E. Hall, The Deformation and Ageing of Mild Steel: III Discussion of Results, Proc. Phys. Soc. B, 1951, 64, p 747–753.CrossRef
59.
go back to reference N. Petch, The Cleavage Strength of Polycrystals, J. Iron Steel Inst., 1953, 174, p 25–28. N. Petch, The Cleavage Strength of Polycrystals, J. Iron Steel Inst., 1953, 174, p 25–28.
60.
go back to reference L. Balogh, T. Ungár, Y. Zhao, Y. Zhu, Z. Horita, C. Xu and T.G. Langdon, Influence of Stacking-fault Energy on Microstructural Characteristics of Ultrafine-grain Copper and Copper-Zinc Alloys, Acta Mater., 2008, 56, p 809–820.CrossRef L. Balogh, T. Ungár, Y. Zhao, Y. Zhu, Z. Horita, C. Xu and T.G. Langdon, Influence of Stacking-fault Energy on Microstructural Characteristics of Ultrafine-grain Copper and Copper-Zinc Alloys, Acta Mater., 2008, 56, p 809–820.CrossRef
61.
go back to reference J.Y. He, H. Wang, H.L. Huang, X.D. Xu, M.W. Chen, Y. Wu, X.J. Liu, T.G. Nieh, K. An and Z.P. Lu, A Precipitation-hardened High-entropy Alloy with Outstanding Tensile Properties, Acta Mater., 2016, 102, p 187–196.CrossRef J.Y. He, H. Wang, H.L. Huang, X.D. Xu, M.W. Chen, Y. Wu, X.J. Liu, T.G. Nieh, K. An and Z.P. Lu, A Precipitation-hardened High-entropy Alloy with Outstanding Tensile Properties, Acta Mater., 2016, 102, p 187–196.CrossRef
62.
go back to reference T.H. Courtney, Mechanical Behavior of Materials, China Machine Press, Beijing, 2011. T.H. Courtney, Mechanical Behavior of Materials, China Machine Press, Beijing, 2011.
63.
go back to reference J. Talonen, Effect of Strain-Induced α'-martensite Transformation on Mechanical Properties of Metastable Austenitic Stainless Steels, 2007. J. Talonen, Effect of Strain-Induced α'-martensite Transformation on Mechanical Properties of Metastable Austenitic Stainless Steels, 2007.
64.
go back to reference T. Myeong, Y. Yamabayashi, M. Shimojo and Y. Higo, A New Life Extension Method for High Cycle Fatigue Using Micro-martensitic Transformation in an Austenitic Stainless Steel, Int. J. Fatigue, 1997, 19, p 69–73.CrossRef T. Myeong, Y. Yamabayashi, M. Shimojo and Y. Higo, A New Life Extension Method for High Cycle Fatigue Using Micro-martensitic Transformation in an Austenitic Stainless Steel, Int. J. Fatigue, 1997, 19, p 69–73.CrossRef
65.
go back to reference K. Spencer, J. Embury, K. Conlon, M. Véron and Y. Bréchet, Strengthening via the Formation of Strain-induced Martensite in Stainless Steels, Mater. Sci. Eng. A, 2004, 387, p 873–881.CrossRef K. Spencer, J. Embury, K. Conlon, M. Véron and Y. Bréchet, Strengthening via the Formation of Strain-induced Martensite in Stainless Steels, Mater. Sci. Eng. A, 2004, 387, p 873–881.CrossRef
66.
go back to reference I. Shakhova, A. Belyakov, Z. Yanushkevich, K. Tsuzaki and R. Kaibyshev, On Strengthening of Austenitic Stainless Steel by Large Strain Cold Working, ISIJ Int., 2016, 56, p 1289–1296.CrossRef I. Shakhova, A. Belyakov, Z. Yanushkevich, K. Tsuzaki and R. Kaibyshev, On Strengthening of Austenitic Stainless Steel by Large Strain Cold Working, ISIJ Int., 2016, 56, p 1289–1296.CrossRef
67.
go back to reference M.N. Gussev, J.T. Busby, T.S. Byun and C.M. Parish, Twinning and Martensitic Transformations in Nickel-enriched 304 Austenitic Steel During Tensile and Indentation Deformations, Mater. Sci. Eng. A, 2013, 588, p 299–307.CrossRef M.N. Gussev, J.T. Busby, T.S. Byun and C.M. Parish, Twinning and Martensitic Transformations in Nickel-enriched 304 Austenitic Steel During Tensile and Indentation Deformations, Mater. Sci. Eng. A, 2013, 588, p 299–307.CrossRef
68.
go back to reference A. Goodfellow, E. Galindo-Nava, C. Schwalbe and H. Stone, The Role of Composition on the Extent of Individual Strengthening Mechanisms in Polycrystalline Ni-based Superalloys, Mater. Des., 2019, 173, p 107760.CrossRef A. Goodfellow, E. Galindo-Nava, C. Schwalbe and H. Stone, The Role of Composition on the Extent of Individual Strengthening Mechanisms in Polycrystalline Ni-based Superalloys, Mater. Des., 2019, 173, p 107760.CrossRef
69.
go back to reference Y. Wu, J. Tian, W. Xiong, P. Zhang, F. Jiang, Z. Zhang and J. Sun, Correlation between Evolving Microstructures and Mechanical Properties of Served Inconel 783 Superalloys, J. Alloys Compd., 2021, 851, p 156921.CrossRef Y. Wu, J. Tian, W. Xiong, P. Zhang, F. Jiang, Z. Zhang and J. Sun, Correlation between Evolving Microstructures and Mechanical Properties of Served Inconel 783 Superalloys, J. Alloys Compd., 2021, 851, p 156921.CrossRef
70.
go back to reference Z. Li, G. Winther and N. Hansen, Anisotropy in Rolled Metals Induced by Dislocation Structure, Acta Mater., 2006, 54, p 401–410.CrossRef Z. Li, G. Winther and N. Hansen, Anisotropy in Rolled Metals Induced by Dislocation Structure, Acta Mater., 2006, 54, p 401–410.CrossRef
71.
go back to reference K. Yvell, T. Grehk and G. Engberg, Microstructure Characterization of 316L Deformed at High Strain Rates Using EBSD, Mater. Charact., 2016, 122, p 14–21.CrossRef K. Yvell, T. Grehk and G. Engberg, Microstructure Characterization of 316L Deformed at High Strain Rates Using EBSD, Mater. Charact., 2016, 122, p 14–21.CrossRef
72.
go back to reference Z. You, H. Fu, S. Qu, W. Bao and L. Lu, Revisiting Anisotropy in the Tensile and Fracture Behavior of Cold-rolled 316L Stainless Steel with Heterogeneous Nano-lamellar Structures, Nano Mater. Sci., 2020, 2, p 72–79.CrossRef Z. You, H. Fu, S. Qu, W. Bao and L. Lu, Revisiting Anisotropy in the Tensile and Fracture Behavior of Cold-rolled 316L Stainless Steel with Heterogeneous Nano-lamellar Structures, Nano Mater. Sci., 2020, 2, p 72–79.CrossRef
73.
go back to reference C. Gennari, L. Pezzato, E. Piva, R. Gobbo and I. Calliari, Influence of Small Amount and Different Morphology of Secondary Phases on Impact Toughness of UNS S32205 Duplex Stainless Steel, Mater. Sci. Eng. A, 2018, 729, p 149–156.CrossRef C. Gennari, L. Pezzato, E. Piva, R. Gobbo and I. Calliari, Influence of Small Amount and Different Morphology of Secondary Phases on Impact Toughness of UNS S32205 Duplex Stainless Steel, Mater. Sci. Eng. A, 2018, 729, p 149–156.CrossRef
74.
go back to reference B. Sun, D. Palanisamy, D. Ponge, B. Gault, F. Fazeli, C. Scott, S. Yue and D. Raabe, Revealing Fracture Mechanisms of Medium Manganese Steels with and without Delta-ferrite, Acta Mater., 2019, 164, p 683–696.CrossRef B. Sun, D. Palanisamy, D. Ponge, B. Gault, F. Fazeli, C. Scott, S. Yue and D. Raabe, Revealing Fracture Mechanisms of Medium Manganese Steels with and without Delta-ferrite, Acta Mater., 2019, 164, p 683–696.CrossRef
75.
go back to reference H. Ding, Y. Wu, Q. Lu, P. Xu, J. Zheng and L. Wei, Tensile Properties and Impact Toughness of S30408 Stainless Steel and Its Welded Joints at Cryogenic Temperatures, Cryogenics, 2018, 92, p 50–59.CrossRef H. Ding, Y. Wu, Q. Lu, P. Xu, J. Zheng and L. Wei, Tensile Properties and Impact Toughness of S30408 Stainless Steel and Its Welded Joints at Cryogenic Temperatures, Cryogenics, 2018, 92, p 50–59.CrossRef
Metadata
Title
Microstructural Evolution and Anisotropic Mechanical Properties of 316L Stainless Steel Induced by Tensile Straining
Authors
Tao Han
Na Li
Yake Wu
Feng Jiang
Publication date
22-09-2021
Publisher
Springer US
Published in
Journal of Materials Engineering and Performance / Issue 2/2022
Print ISSN: 1059-9495
Electronic ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-021-06253-7

Other articles of this Issue 2/2022

Journal of Materials Engineering and Performance 2/2022 Go to the issue

Premium Partners