Skip to main content
Top
Published in: Journal of Materials Engineering and Performance 2/2022

07-09-2021

Fabrication and Characterization of Nickel Microtubes through Electroforming: Deposition Optimization Using Evolutionary Algorithms

Authors: Hrudaya Jyoti Biswal, Pandu R. Vundavilli, Ankur Gupta

Published in: Journal of Materials Engineering and Performance | Issue 2/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The present work involves the fabrication of microtubes through the process of pulse electroforming by employing an in-house-developed micro-electroforming equipment. Theoretical modeling and simulation have demonstrated the role of cathode rotation and pulse waveform in ensuring uniformity of deposition. Nickel microtubes having wall thickness in the range of 8-144 µm have been successfully produced by varying the input parameters, viz. duty cycle and time of deposition. The fabricated micro-tubes have also been tested for their structural and mechanical characterization with the help of FESEM, EDAX, XRD, hardness testing, and surface roughness measurements. The electroformed Ni microtubes exhibit well aligned growth in the <111> direction with minimum crystallite size of 14 nm. The result demonstrates relation among duty cycle, crystallite size and hardness of the tubes. Moreover, the formulation of a multi-objective function and optimization utilizing two evolutionary algorithms, i.e., genetic algorithms and particle swarm optimization, are accomplished. An optimized parameter of 8 hours deposition time and 38.7% duty cycle is recommended. The results show the electroformed Ni tubes to possess geometries in microscale and crystallite size in nanoscale resulting in high hardness and good rigidity.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference F. Ortega, A. Sova, M.D. Monzón, M.D. Marrero, A.N. Benítez and P. Bertrand, Combination of Electroforming and Cold Gas Dynamic Spray for Fabrication of Rotational Moulds: Feasibility Study, Int. J. Adv. Manuf., 2015, 76, p 1243–1251.CrossRef F. Ortega, A. Sova, M.D. Monzón, M.D. Marrero, A.N. Benítez and P. Bertrand, Combination of Electroforming and Cold Gas Dynamic Spray for Fabrication of Rotational Moulds: Feasibility Study, Int. J. Adv. Manuf., 2015, 76, p 1243–1251.CrossRef
2.
go back to reference A.J. Bard, O.E. Huesser, D.H. Craston, High Resolution Deposition and Etching in Polymer Films. Patent 4,968,390 (United States) (1990) A.J. Bard, O.E. Huesser, D.H. Craston, High Resolution Deposition and Etching in Polymer Films. Patent 4,968,390 (United States) (1990)
3.
go back to reference Y.M. Hwang and T.Y. Kuo, Dieless Drawing of Stainless-Steel Tubes, Int. J. Adv. Manuf., 2013, 68, p 1311–1316.CrossRef Y.M. Hwang and T.Y. Kuo, Dieless Drawing of Stainless-Steel Tubes, Int. J. Adv. Manuf., 2013, 68, p 1311–1316.CrossRef
4.
go back to reference H. Hu, X. Qin, D. Zhang and X. Ma, A Novel Severe Plastic Deformation Method for Manufacturing AZ31 Magnesium Alloy Tube, Int. J. Adv. Manuf., 2018, 98(1), p 897–903.CrossRef H. Hu, X. Qin, D. Zhang and X. Ma, A Novel Severe Plastic Deformation Method for Manufacturing AZ31 Magnesium Alloy Tube, Int. J. Adv. Manuf., 2018, 98(1), p 897–903.CrossRef
5.
go back to reference K. Salonitis, L. D’Alvise, B. Schoinochoritis and D. Chantzis, Additive Manufacturing and Post-Processing Simulation: Laser Cladding Followed by High Speed Machining, Int. J. Adv. Manuf., 2016, 85(9), p 2401–2411.CrossRef K. Salonitis, L. D’Alvise, B. Schoinochoritis and D. Chantzis, Additive Manufacturing and Post-Processing Simulation: Laser Cladding Followed by High Speed Machining, Int. J. Adv. Manuf., 2016, 85(9), p 2401–2411.CrossRef
6.
go back to reference H.J. Biswal, A. Yadav, P.R. Vundavilli and A. Gupta, High Aspect ZnO Nanorod Growth Over Electrodeposited Tubes for Photocatalytic Degradation of EtBr Dye, RSC Adv., 2021, 11(3), p 1623–1634. CrossRef H.J. Biswal, A. Yadav, P.R. Vundavilli and A. Gupta, High Aspect ZnO Nanorod Growth Over Electrodeposited Tubes for Photocatalytic Degradation of EtBr Dye, RSC Adv., 2021, 11(3), p 1623–1634. CrossRef
7.
go back to reference H.J. Biswal, P.R. Vundavilli, A. Gupta, Perspective—Electrodeposition of Graphene Reinforced Metal Matrix Composites for Enhanced Mechanical and Physical Properties: A Review. J. Electrochem. Soc. 167(14) (2020). H.J. Biswal, P.R. Vundavilli, A. Gupta, Perspective—Electrodeposition of Graphene Reinforced Metal Matrix Composites for Enhanced Mechanical and Physical Properties: A Review. J. Electrochem. Soc. 167(14) (2020).
8.
go back to reference L. Wang, G. Fang, L. Qian, S. Leeflang, J. Duszczyk and J. Zhou, Forming of Magnesium Alloy Microtubes in the Fabrication of Biodegradable Stents, Prog. Nat. Sci.-Mater., 2014, 24(5), p 500–506.CrossRef L. Wang, G. Fang, L. Qian, S. Leeflang, J. Duszczyk and J. Zhou, Forming of Magnesium Alloy Microtubes in the Fabrication of Biodegradable Stents, Prog. Nat. Sci.-Mater., 2014, 24(5), p 500–506.CrossRef
9.
go back to reference S. Amani, G. Faraji, H.K. Mehrabadi, K. Abrinia and H. Ghanbari, A Combined Method for Producing High Strength and Ductility Magnesium Microtubes for Biodegradable Vascular Stents Application, J. Alloys Compd., 2017, 723, p 467–476.CrossRef S. Amani, G. Faraji, H.K. Mehrabadi, K. Abrinia and H. Ghanbari, A Combined Method for Producing High Strength and Ductility Magnesium Microtubes for Biodegradable Vascular Stents Application, J. Alloys Compd., 2017, 723, p 467–476.CrossRef
10.
go back to reference A.M. Soydan, Ö. Yıldız, O.Y. Akduman and R. Akdeniz, A New Approach for Production of Anode Microtubes as Solid Oxide Fuel Cell Support, Ceram. Int., 2018, 44(18), p 23001–23007.CrossRef A.M. Soydan, Ö. Yıldız, O.Y. Akduman and R. Akdeniz, A New Approach for Production of Anode Microtubes as Solid Oxide Fuel Cell Support, Ceram. Int., 2018, 44(18), p 23001–23007.CrossRef
11.
go back to reference H.J. Biswal, P.R. Vundavilli, A. Gupta, Investigations on the effect of electrode gap variation over pulse-electrodeposition profile. In IOP Conference Series: Materials Science and Engineering, Nov 1 2019 (KIIT, Bhubaneswar), 653(1), 012046. IOP Publishing. H.J. Biswal, P.R. Vundavilli, A. Gupta, Investigations on the effect of electrode gap variation over pulse-electrodeposition profile. In IOP Conference Series: Materials Science and Engineering, Nov 1 2019 (KIIT, Bhubaneswar), 653(1), 012046. IOP Publishing.
12.
go back to reference B.R. Sarkar, B. Doloi and B. Bhattacharyya, Parametric Analysis on Electrochemical Discharge Machining of Silicon Nitride Ceramics, Int. J. Adv. Manuf., 2006, 28(9), p 873–881.CrossRef B.R. Sarkar, B. Doloi and B. Bhattacharyya, Parametric Analysis on Electrochemical Discharge Machining of Silicon Nitride Ceramics, Int. J. Adv. Manuf., 2006, 28(9), p 873–881.CrossRef
13.
go back to reference S.K. Chak and P.V. Rao, The Drilling of Al2O3 Using a Pulsed DC Supply with a Rotary Abrasive Electrode by the Electrochemical Discharge Process, Int. J. Adv. Manuf., 2008, 39(7–8), p 633–641.CrossRef S.K. Chak and P.V. Rao, The Drilling of Al2O3 Using a Pulsed DC Supply with a Rotary Abrasive Electrode by the Electrochemical Discharge Process, Int. J. Adv. Manuf., 2008, 39(7–8), p 633–641.CrossRef
14.
go back to reference C. Senthilkumar, G. Ganesan and R. Karthikeyan, Study of Electrochemical Machining Characteristics of Al/SiC p Composites, Int. J. Adv. Manuf., 2009, 43(3–4), p 256–263.CrossRef C. Senthilkumar, G. Ganesan and R. Karthikeyan, Study of Electrochemical Machining Characteristics of Al/SiC p Composites, Int. J. Adv. Manuf., 2009, 43(3–4), p 256–263.CrossRef
15.
go back to reference P.R. Jagadish, M. Khalid, N. Amin, L.P. Li and A. Chan, Process Optimisation for n-type Bi2Te3 Films Electrodeposited on Flexible Recycled Carbon Fibre Using Response Surface Methodology, J. Mater. Sci., 2017, 52(19), p 11467–11481.CrossRef P.R. Jagadish, M. Khalid, N. Amin, L.P. Li and A. Chan, Process Optimisation for n-type Bi2Te3 Films Electrodeposited on Flexible Recycled Carbon Fibre Using Response Surface Methodology, J. Mater. Sci., 2017, 52(19), p 11467–11481.CrossRef
16.
go back to reference A.M. Fernandez and R.N. Bhattacharya, Electrodeposition of CuIn1−xGaxSe2 Precursor Films: Optimization of Film Composition and Morphology, Thin Solid Films, 2005, 474(1–2), p 10–13.CrossRef A.M. Fernandez and R.N. Bhattacharya, Electrodeposition of CuIn1−xGaxSe2 Precursor Films: Optimization of Film Composition and Morphology, Thin Solid Films, 2005, 474(1–2), p 10–13.CrossRef
17.
go back to reference D. Landolt, Electrochemical and Materials Science Aspects of Alloy Deposition, Electrochim. Acta, 1994, 39(8–9), p 1075–1090.CrossRef D. Landolt, Electrochemical and Materials Science Aspects of Alloy Deposition, Electrochim. Acta, 1994, 39(8–9), p 1075–1090.CrossRef
18.
go back to reference J.O.M. Bockris, Fundamental Aspects of Electrocrystallization, Springer, Berlin, 2012. J.O.M. Bockris, Fundamental Aspects of Electrocrystallization, Springer, Berlin, 2012.
19.
go back to reference J. Crank, The Mathematics of Diffusion, Oxford University Press, London, 1975. J. Crank, The Mathematics of Diffusion, Oxford University Press, London, 1975.
20.
go back to reference J.S. Newman, Electrochemical Systems, Prentice-Hall, Hoboken, 1973. J.S. Newman, Electrochemical Systems, Prentice-Hall, Hoboken, 1973.
21.
go back to reference C. Brett and A.M. Oliveira Brett, Electrochemistry: Principles, Methods, and Applications, Oxford University Press, Oxford, 1993, p 427. C. Brett and A.M. Oliveira Brett, Electrochemistry: Principles, Methods, and Applications, Oxford University Press, Oxford, 1993, p 427.
22.
go back to reference H. Yang, R. Chein, T.H. Tsai, J.C. Chang and J.C. Wu, High-Aspect-Ratio Microstructural Posts Electroforming Modeling and Fabrication in LIGA Process, Microsyst. Technol., 2006, 12(3), p 187–192.CrossRef H. Yang, R. Chein, T.H. Tsai, J.C. Chang and J.C. Wu, High-Aspect-Ratio Microstructural Posts Electroforming Modeling and Fabrication in LIGA Process, Microsyst. Technol., 2006, 12(3), p 187–192.CrossRef
23.
go back to reference M. Eisenberg, C.W. Tobias and C.R. Wilke, Ionic Mass Transfer and Concentration Polarization at Rotating Electrodes, J. Electrochem. Soc., 1954, 101(6), p 306.CrossRef M. Eisenberg, C.W. Tobias and C.R. Wilke, Ionic Mass Transfer and Concentration Polarization at Rotating Electrodes, J. Electrochem. Soc., 1954, 101(6), p 306.CrossRef
24.
go back to reference Z.W. Zhu, D. Zhu, N.S. Qu, K. Wang and J.M. Yang, Electroforming of Revolving Parts with Near-Polished Surface and Uniform Thickness, Int. J. Adv. Manuf., 2008, 39(11–12), p 1164–1170.CrossRef Z.W. Zhu, D. Zhu, N.S. Qu, K. Wang and J.M. Yang, Electroforming of Revolving Parts with Near-Polished Surface and Uniform Thickness, Int. J. Adv. Manuf., 2008, 39(11–12), p 1164–1170.CrossRef
25.
go back to reference F.C. Walsh, G. Kear, A.H. Nahle, J.A. Wharton and L.F. Arenas, The Rotating Cylinder Electrode for Studies of Corrosion Engineering and Protection of Metals—An Illustrated Review, Corros. Sci., 2017, 123, p 1–20.CrossRef F.C. Walsh, G. Kear, A.H. Nahle, J.A. Wharton and L.F. Arenas, The Rotating Cylinder Electrode for Studies of Corrosion Engineering and Protection of Metals—An Illustrated Review, Corros. Sci., 2017, 123, p 1–20.CrossRef
26.
go back to reference A. Monshi, M.R. Foroughi and M.R. Monshi, Modified Scherrer Equation to Estimate More Accurately Nano-crystallite Size Using XRD, World J. Nano Sci. Eng., 2012, 2(3), p 154–160.CrossRef A. Monshi, M.R. Foroughi and M.R. Monshi, Modified Scherrer Equation to Estimate More Accurately Nano-crystallite Size Using XRD, World J. Nano Sci. Eng., 2012, 2(3), p 154–160.CrossRef
27.
go back to reference J. Kennedy, R. Eberhart, Particle swarm optimization, in Proceedings of ICNN'95-International Conference on Neural Networks, IEEE, 1995, 4, p. 1942. J. Kennedy, R. Eberhart, Particle swarm optimization, in Proceedings of ICNN'95-International Conference on Neural Networks, IEEE, 1995, 4, p. 1942.
28.
go back to reference C. Suryanarayana and M. Grant Norton, X-Ray Diffraction: A Practical Approach, Springer, New York, 1998.CrossRef C. Suryanarayana and M. Grant Norton, X-Ray Diffraction: A Practical Approach, Springer, New York, 1998.CrossRef
29.
go back to reference P. Scherrer, Bestimmung der Größe und der inneren Struktur von Kolloidteilchenmittels Röntgenstrahlen Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Math. Phys. Klasse, 1918, 2, p 98. P. Scherrer, Bestimmung der Größe und der inneren Struktur von Kolloidteilchenmittels Röntgenstrahlen Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Math. Phys. Klasse, 1918, 2, p 98.
30.
go back to reference X. Zhan, Q.D. Cao, K. Trieu and X. Zhang, Microstructure and Mechanical Properties of Copper Microtubes Fabricated Via the Electroforming Process, J. Mater. Eng. Perform., 2020, 29(3), p 1741–1750. CrossRef X. Zhan, Q.D. Cao, K. Trieu and X. Zhang, Microstructure and Mechanical Properties of Copper Microtubes Fabricated Via the Electroforming Process, J. Mater. Eng. Perform., 2020, 29(3), p 1741–1750. CrossRef
31.
go back to reference F.E. Atalay, H.A. Kaya and S.E. Atalay, Effect of pH on the Magnetoimpedance Properties of Electrodeposited CoNiFe Microtubes, Phys. B Condens. Matter., 2006, 371(2), p 327–331. CrossRef F.E. Atalay, H.A. Kaya and S.E. Atalay, Effect of pH on the Magnetoimpedance Properties of Electrodeposited CoNiFe Microtubes, Phys. B Condens. Matter., 2006, 371(2), p 327–331. CrossRef
32.
go back to reference S.E. Atalay, F.E. Atalay and H.A. Kaya, Field-Dependent Young’s Modulus and Magnetoimpedance in Electrodeposited NiFe and NiFeCo Microtubes, J. Magn. Magn. Mater., 2007, 316(2), p 805–808. CrossRef S.E. Atalay, F.E. Atalay and H.A. Kaya, Field-Dependent Young’s Modulus and Magnetoimpedance in Electrodeposited NiFe and NiFeCo Microtubes, J. Magn. Magn. Mater., 2007, 316(2), p 805–808. CrossRef
33.
go back to reference V.H. Nguyen, T.A. Ngo, H.H. Pham and N.P. Nguyen, Nickel Composite Plating with Fly Ash as Inert Particle, Trans. Nonferr. Metal Soc., 2013, 23(8), p 2348–2353.CrossRef V.H. Nguyen, T.A. Ngo, H.H. Pham and N.P. Nguyen, Nickel Composite Plating with Fly Ash as Inert Particle, Trans. Nonferr. Metal Soc., 2013, 23(8), p 2348–2353.CrossRef
34.
go back to reference G.E. Dieter and D.J. Bacon, Mechanical Metallurgy, McGraw-hill, New York, 1986. G.E. Dieter and D.J. Bacon, Mechanical Metallurgy, McGraw-hill, New York, 1986.
35.
go back to reference A.H. Chokshi, A. Rosen, J. Karch and H. Gleiter, On the Validity of the Hall–Petch Relationship in Nanocrystalline Materials, Scr. Metall. Mater., 1989, 23(10), p 1679–1683. CrossRef A.H. Chokshi, A. Rosen, J. Karch and H. Gleiter, On the Validity of the Hall–Petch Relationship in Nanocrystalline Materials, Scr. Metall. Mater., 1989, 23(10), p 1679–1683. CrossRef
36.
go back to reference C.C. Koch, J. Narayan, The Inverse Hall–Petch Effect—Fact or Artifact? MRS Online Proceedings Library (OPL), p. 634 (2000) C.C. Koch, J. Narayan, The Inverse Hall–Petch Effect—Fact or Artifact? MRS Online Proceedings Library (OPL), p. 634 (2000)
37.
go back to reference R.W. Armstrong, Dislocation Pile-Ups, Material Strength Levels, and Thermal Activation, Metall. Mater. Trans. A, 2016, 47(12), p 5801–5810. CrossRef R.W. Armstrong, Dislocation Pile-Ups, Material Strength Levels, and Thermal Activation, Metall. Mater. Trans. A, 2016, 47(12), p 5801–5810. CrossRef
38.
go back to reference J.E. Carsley, J. Ning, W.W. Milligan, S.A. Hackney and E.C. Aifantis, A Simple, Mixtures-Based Model for the Grain Size Dependence of Strength in Nanophase Metals, Nanostruct. Mater., 1995, 5(4), p 441–448. CrossRef J.E. Carsley, J. Ning, W.W. Milligan, S.A. Hackney and E.C. Aifantis, A Simple, Mixtures-Based Model for the Grain Size Dependence of Strength in Nanophase Metals, Nanostruct. Mater., 1995, 5(4), p 441–448. CrossRef
39.
go back to reference J.E. Carsley, A. Fisher, W.W. Milligan and E.C. Aifantis, Mechanical Behavior of a Bulk Nanostructured Iron Alloy, Metall. Mater. Trans. A, 1998, 29, p 2261–2271. CrossRef J.E. Carsley, A. Fisher, W.W. Milligan and E.C. Aifantis, Mechanical Behavior of a Bulk Nanostructured Iron Alloy, Metall. Mater. Trans. A, 1998, 29, p 2261–2271. CrossRef
40.
go back to reference C.A. Schuh, T.G. Nieh and T. Yamasaki, Hall–Petch Breakdown Manifested in Abrasive Wear Resistance of Nanocrystalline Nickel, Scr. Metall. Mater., 2002, 46(10), p 735–740. CrossRef C.A. Schuh, T.G. Nieh and T. Yamasaki, Hall–Petch Breakdown Manifested in Abrasive Wear Resistance of Nanocrystalline Nickel, Scr. Metall. Mater., 2002, 46(10), p 735–740. CrossRef
41.
go back to reference U. Erb, A.M. El-Sherik, G. Palumbo and K.T. Aust, Synthesis, Structure and Properties of Electroplated Nanocrystalline Materials, Nanostruct. Mater., 1993, 2(4), p 383–390. CrossRef U. Erb, A.M. El-Sherik, G. Palumbo and K.T. Aust, Synthesis, Structure and Properties of Electroplated Nanocrystalline Materials, Nanostruct. Mater., 1993, 2(4), p 383–390. CrossRef
42.
go back to reference I. Matsui, M. Kanetake, H. Mori, Y. Takigawa and K. Higashi, Relationship Between Grain Boundary Relaxation Strengthening and Orientation in Electrodeposited Bulk Nanocrystalline Ni Alloys, Mater. Lett., 2017, 205, p 211–214. CrossRef I. Matsui, M. Kanetake, H. Mori, Y. Takigawa and K. Higashi, Relationship Between Grain Boundary Relaxation Strengthening and Orientation in Electrodeposited Bulk Nanocrystalline Ni Alloys, Mater. Lett., 2017, 205, p 211–214. CrossRef
43.
go back to reference A. Godon, J. Creus, S. Cohendoz, E. Conforto, X. Feaugas, P. Girault and C. Savall, Effects of Grain Orientation on the Hall–Petch Relationship in Electrodeposited Nickel with Nanocrystalline Grains, Scr. Metall. Mater., 2010, 62(6), p 403–406. CrossRef A. Godon, J. Creus, S. Cohendoz, E. Conforto, X. Feaugas, P. Girault and C. Savall, Effects of Grain Orientation on the Hall–Petch Relationship in Electrodeposited Nickel with Nanocrystalline Grains, Scr. Metall. Mater., 2010, 62(6), p 403–406. CrossRef
44.
go back to reference L. Feng, Y.Y. Ren, Y.H. Zhang, S. Wang and L. Li, Direct Correlations Among the Grain Size, Texture, and Indentation Behavior of Nanocrystalline Nickel Coatings, Metals, 2019, 9(2), p 188. CrossRef L. Feng, Y.Y. Ren, Y.H. Zhang, S. Wang and L. Li, Direct Correlations Among the Grain Size, Texture, and Indentation Behavior of Nanocrystalline Nickel Coatings, Metals, 2019, 9(2), p 188. CrossRef
45.
go back to reference X. Zhang, G. Cheng, Z. You and H. Zhang, Energy Absorption of Axially Compressed Thin-Walled Square Tubes with Patterns, Thin-Walled Struct., 2007, 45(9), p 737–746. CrossRef X. Zhang, G. Cheng, Z. You and H. Zhang, Energy Absorption of Axially Compressed Thin-Walled Square Tubes with Patterns, Thin-Walled Struct., 2007, 45(9), p 737–746. CrossRef
46.
go back to reference S. Salehghaffari, M. Tajdari, M. Panahi and F. Mokhtarnezhad, Attempts to Improve Energy Absorption Characteristics of Circular Metal Tubes Subjected To Axial Loading, Thin-Walled Struct., 2010, 48(6), p 379–390. CrossRef S. Salehghaffari, M. Tajdari, M. Panahi and F. Mokhtarnezhad, Attempts to Improve Energy Absorption Characteristics of Circular Metal Tubes Subjected To Axial Loading, Thin-Walled Struct., 2010, 48(6), p 379–390. CrossRef
47.
go back to reference Z. Fan, G. Lu and K.J. Liu, Quasi-static Axial Compression of Thin-Walled Tubes with Different Cross-Sectional Shapes, Eng. Struct., 2013, 1(55), p 80–89. CrossRef Z. Fan, G. Lu and K.J. Liu, Quasi-static Axial Compression of Thin-Walled Tubes with Different Cross-Sectional Shapes, Eng. Struct., 2013, 1(55), p 80–89. CrossRef
48.
go back to reference X. Luo, J. Xu, J. Zhu, Y. Gao, L. Nie and W. Li, A New Method to Investigate the Energy Absorption Characteristics of Thin-Walled Metal Circular Tube using Finite Element Analysis, Thin-Walled Struct., 2015, 1(95), p 24–30. CrossRef X. Luo, J. Xu, J. Zhu, Y. Gao, L. Nie and W. Li, A New Method to Investigate the Energy Absorption Characteristics of Thin-Walled Metal Circular Tube using Finite Element Analysis, Thin-Walled Struct., 2015, 1(95), p 24–30. CrossRef
Metadata
Title
Fabrication and Characterization of Nickel Microtubes through Electroforming: Deposition Optimization Using Evolutionary Algorithms
Authors
Hrudaya Jyoti Biswal
Pandu R. Vundavilli
Ankur Gupta
Publication date
07-09-2021
Publisher
Springer US
Published in
Journal of Materials Engineering and Performance / Issue 2/2022
Print ISSN: 1059-9495
Electronic ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-021-06223-z

Other articles of this Issue 2/2022

Journal of Materials Engineering and Performance 2/2022 Go to the issue

Premium Partners