Skip to main content
Top
Published in: Journal of Materials Engineering and Performance 2/2022

25-10-2021

Molecular Dynamics Simulation of the Tensile Deformation Behavior of the γ(TiAl)/α2(Ti3Al) Interface at Different Temperatures

Authors: Jiyao Liu, Laiqi Zhang

Published in: Journal of Materials Engineering and Performance | Issue 2/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The interface plays an important role in the deformation process and in improving the strength of TiAl alloy. In this study, the molecular dynamics method and the embedded atom model (EAM) potential function were used to simulate the tensile deformation process and the fracture mechanism of the γ(TiAl)/α2(Ti3Al) interface at different temperatures. The results showed that the γ(TiAl)/α2(Ti3Al) coherent interface and the semi-coherent interface exhibited different fracture mechanisms during the tensile fracture process. The tensile strengths of the coherent interface and the semi-coherent interface were equivalent, but the elongation of the semi-coherent interface was significantly higher than that of the coherent interface. The coherent interface exhibited brittle fracture characteristics as the stretching temperature increased. When stretched at 300 K and 600 K, the γ(TiAl)/α2(Ti3Al) semi-coherent interface exhibited brittle fracture characteristics. When stretched at 800 K, 1000 K and 1200 K, the semi-coherent interface exhibited certain ductile fracture characteristics. The main reason for this was that, the atomic arrangement at the semi-coherent interface could enter a disordered state more easily as the temperature increased relative to the coherent interface. The existence of these microvoids could produce dislocations, dislocations could passivate the microvoids, to play a strengthening role in the deformation process.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference F. Li, K. Yang, H.R. Ma, W.B. Zhao, X.X. Li and H.B. Lin, Analysis of In situ Synthesis and Cross-Sectional Evolution of Wear Scars of TiAl-Ag Composites, J. Mater. Eng. Perform., 2020, 29, p 2514–2523.CrossRef F. Li, K. Yang, H.R. Ma, W.B. Zhao, X.X. Li and H.B. Lin, Analysis of In situ Synthesis and Cross-Sectional Evolution of Wear Scars of TiAl-Ag Composites, J. Mater. Eng. Perform., 2020, 29, p 2514–2523.CrossRef
2.
go back to reference O. Ouadah, G. Merad, H.S. Abdelkader, Atomistic Modelling of the γ-TiAl/α2-Ti3Al Interfacial Properties Affected by Solutes, Mater. Chem. Phys., 2021, 257, p 123434. O. Ouadah, G. Merad, H.S. Abdelkader, Atomistic Modelling of the γ-TiAl/α2-Ti3Al Interfacial Properties Affected by Solutes, Mater. Chem. Phys., 2021, 257, p 123434.
3.
go back to reference V.S. Sokolovsky, D.N. Stepanov, V.S. Zherebtsov, N.A. Nochovnaya and G.A. Salishchev, Hot Deformation Behavior and Processing Maps of B and Gd Containing β-Solidified TiAl Based Alloy, Intermetallics, 2018, 94, p 138–151.CrossRef V.S. Sokolovsky, D.N. Stepanov, V.S. Zherebtsov, N.A. Nochovnaya and G.A. Salishchev, Hot Deformation Behavior and Processing Maps of B and Gd Containing β-Solidified TiAl Based Alloy, Intermetallics, 2018, 94, p 138–151.CrossRef
4.
go back to reference Y. Pan, X. Lu, T.L. Hui, C.C. Liu, B.W. Liu, W. Xu, C. Zhang, J.Z. Sun et al., High-Temperature Oxidation Behaviour of TiAl Alloys with Co Addition, J. Mater. Sci., 2021, 56, p 815–827.CrossRef Y. Pan, X. Lu, T.L. Hui, C.C. Liu, B.W. Liu, W. Xu, C. Zhang, J.Z. Sun et al., High-Temperature Oxidation Behaviour of TiAl Alloys with Co Addition, J. Mater. Sci., 2021, 56, p 815–827.CrossRef
5.
go back to reference X.L. Han, P. Liu, D.L. Sun and Q. Wang, Quantifying the Role of Interface Atomic Structure in the Compressive Response of Ti2AlN/TiAl Composite Using MD Simulations, J. Mater. Sci., 2019, 5, p 5536–5550.CrossRef X.L. Han, P. Liu, D.L. Sun and Q. Wang, Quantifying the Role of Interface Atomic Structure in the Compressive Response of Ti2AlN/TiAl Composite Using MD Simulations, J. Mater. Sci., 2019, 5, p 5536–5550.CrossRef
6.
go back to reference K. Yang, X.L. Shi, Y.C. Huang, Z.H. Wang, Y.F. Wang, A. Zhang and Q.X. Zhang, The Research on the Sliding Friction and Wear Behaviors of TiAl-10 wt.%Ag at Elevated Temperatures, Mater. Chem. Phys., 2017, 186, p 317–326.CrossRef K. Yang, X.L. Shi, Y.C. Huang, Z.H. Wang, Y.F. Wang, A. Zhang and Q.X. Zhang, The Research on the Sliding Friction and Wear Behaviors of TiAl-10 wt.%Ag at Elevated Temperatures, Mater. Chem. Phys., 2017, 186, p 317–326.CrossRef
7.
go back to reference J.G. Li, R. Hu, J.R. Yang, Z.T. Gao, K.R. Zhang and X.Y. Wang, Evolution and Micromechanical Properties of Interface Structures in TiNbf/TiAl Composites Prepared by Powder Metallurgy, J. Mater. Sci., 2021, 55, p 12421–12433.CrossRef J.G. Li, R. Hu, J.R. Yang, Z.T. Gao, K.R. Zhang and X.Y. Wang, Evolution and Micromechanical Properties of Interface Structures in TiNbf/TiAl Composites Prepared by Powder Metallurgy, J. Mater. Sci., 2021, 55, p 12421–12433.CrossRef
8.
go back to reference L.K. Wu, J.J. Wu, W.Y. Wu, F.H. Cao and M.Y. Jiang, Sol-Gel-Based Coatings for Oxidation Protection of TiAl Alloys, J. Mater. Sci., 2020, 55, p 6330–6351.CrossRef L.K. Wu, J.J. Wu, W.Y. Wu, F.H. Cao and M.Y. Jiang, Sol-Gel-Based Coatings for Oxidation Protection of TiAl Alloys, J. Mater. Sci., 2020, 55, p 6330–6351.CrossRef
9.
go back to reference K. Yang, Z.J. Yang, P. Deng, Z.Y. Chen, Z.W. Huang and H.L. Sun, Microstructure and Mechanical Properties of As-Cast γ-TiAl Alloys with Different Cooling Rates, J. Mater. Eng. Perform., 2019, 28, p 2271–2280.CrossRef K. Yang, Z.J. Yang, P. Deng, Z.Y. Chen, Z.W. Huang and H.L. Sun, Microstructure and Mechanical Properties of As-Cast γ-TiAl Alloys with Different Cooling Rates, J. Mater. Eng. Perform., 2019, 28, p 2271–2280.CrossRef
10.
go back to reference Y.B. Ren, Y. Han, S. Yan, J.P. Sun, Z.X. Duan, Hua, Chen, X. Ran, Microstructure and Mechanical Properties of Powder Metallurgical TiAl-Based Alloy Made by Micron Bimodal-Sized Powders, J. Mater. Eng. Perform., 2021, 30, p 260-280. Y.B. Ren, Y. Han, S. Yan, J.P. Sun, Z.X. Duan, Hua, Chen, X. Ran, Microstructure and Mechanical Properties of Powder Metallurgical TiAl-Based Alloy Made by Micron Bimodal-Sized Powders, J. Mater. Eng. Perform., 2021, 30, p 260-280.
11.
go back to reference X.W. Liu, Z.L. Zhang, R. Sun, F.C. Liu, Z.T. Fan and H.Z. Niu, Microstructure and Mechanical Properties of Beta TiAl Alloys Elaborated by Spark Plasma Sintering, Intermetallics, 2014, 55, p 177–183.CrossRef X.W. Liu, Z.L. Zhang, R. Sun, F.C. Liu, Z.T. Fan and H.Z. Niu, Microstructure and Mechanical Properties of Beta TiAl Alloys Elaborated by Spark Plasma Sintering, Intermetallics, 2014, 55, p 177–183.CrossRef
12.
go back to reference S. Simões, F. Viana, M. Koçak, A.S. Ramos, M.T. Vieira, M.F. Vieira MF, Diffusion Bonding of TiAl Using Reactive Ni/Al Nanolayers and Ti and Ni Foils, Mater. Chem. Phys., 2011, 128, p 202-207. S. Simões, F. Viana, M. Koçak, A.S. Ramos, M.T. Vieira, M.F. Vieira MF, Diffusion Bonding of TiAl Using Reactive Ni/Al Nanolayers and Ti and Ni Foils, Mater. Chem. Phys., 2011, 128, p 202-207.
13.
go back to reference F. Appel, H. Clemens and F.D. Fischer, Modeling Concepts for Intermetallic Titanium Aluminides, Prog. Mater. Sci., 2016, 81, p 55–124.CrossRef F. Appel, H. Clemens and F.D. Fischer, Modeling Concepts for Intermetallic Titanium Aluminides, Prog. Mater. Sci., 2016, 81, p 55–124.CrossRef
14.
go back to reference R.R. Chen, H.Z. Fang, X.Y. Chen, Y.Q. Su, H.S. Ding, J.J. Guo and H.Z. Fu, Formation of TiC/Ti2AlC and α2+γ in In-situ TiAl Composites with Different Solidification Paths, Intermetallics, 2017, 81, p 9–15.CrossRef R.R. Chen, H.Z. Fang, X.Y. Chen, Y.Q. Su, H.S. Ding, J.J. Guo and H.Z. Fu, Formation of TiC/Ti2AlC and α2+γ in In-situ TiAl Composites with Different Solidification Paths, Intermetallics, 2017, 81, p 9–15.CrossRef
15.
go back to reference Y. Wu, S.K. Hwang, K. Hagihara and Y. Umakoshi, Isothermal Oxidation Behavior of Two-Phase TiAl-Mn-Mo-C-Y Alloys Fabricated by Different Processes, Intermetallics, 2006, 14, p 9–23.CrossRef Y. Wu, S.K. Hwang, K. Hagihara and Y. Umakoshi, Isothermal Oxidation Behavior of Two-Phase TiAl-Mn-Mo-C-Y Alloys Fabricated by Different Processes, Intermetallics, 2006, 14, p 9–23.CrossRef
16.
go back to reference Y.M. Xiong, C.H. Guan, S.L. Zhu and F.H. Wang, Effect of Enamel Coating on Oxidation and Hot Corrosion Behaviors of Ti-24Al-14Nb-3V Alloy, J. Mater. Eng. Perform., 2006, 15, p 564–569.CrossRef Y.M. Xiong, C.H. Guan, S.L. Zhu and F.H. Wang, Effect of Enamel Coating on Oxidation and Hot Corrosion Behaviors of Ti-24Al-14Nb-3V Alloy, J. Mater. Eng. Perform., 2006, 15, p 564–569.CrossRef
17.
go back to reference K. Kothari, R. Radhakrishnan and N.M. Wereley, Advances in Gamma Titanium Aluminides and Their Manufacturing Techniques, Prog. Aerosp. Sci., 2012, 55, p 1–16.CrossRef K. Kothari, R. Radhakrishnan and N.M. Wereley, Advances in Gamma Titanium Aluminides and Their Manufacturing Techniques, Prog. Aerosp. Sci., 2012, 55, p 1–16.CrossRef
18.
go back to reference Y.G. Zhang, Y.F. Han, G.L. Cheng, J.T. Guo, X.J. Wang, D. Feng, Structural Intermetallics, 2001 (Beijing) National Defence Industry Press, p 604-619. Y.G. Zhang, Y.F. Han, G.L. Cheng, J.T. Guo, X.J. Wang, D. Feng, Structural Intermetallics, 2001 (Beijing) National Defence Industry Press, p 604-619.
19.
go back to reference D.C. Luo, Z.Y. Rui, R. Fu, L. Zhang, H. Cao and C.F. Yan, Molecular Dynamics Research of Crack Propagation of Single Crystal γ-TiAl Alloy Along the Different Crystalline Phases, Rare. Metal. Mat. Eng., 2017, 46, p 3792–3798. D.C. Luo, Z.Y. Rui, R. Fu, L. Zhang, H. Cao and C.F. Yan, Molecular Dynamics Research of Crack Propagation of Single Crystal γ-TiAl Alloy Along the Different Crystalline Phases, Rare. Metal. Mat. Eng., 2017, 46, p 3792–3798.
20.
go back to reference P.T. Li, Y.Q. Yang, V. Koval, J.X. Chen, X. Luo, W. Zhang, B.W. Wang, H.X. Yan, Temperature-Dependent Deformation Processes in Two-Phase TiAl+Ti3Al Nano-Polycrystalline Alloys, Mater. Design., 2021, 199, p 109422. P.T. Li, Y.Q. Yang, V. Koval, J.X. Chen, X. Luo, W. Zhang, B.W. Wang, H.X. Yan, Temperature-Dependent Deformation Processes in Two-Phase TiAl+Ti3Al Nano-Polycrystalline Alloys, Mater. Design., 2021, 199, p 109422.
21.
go back to reference M. Kanani, A. Hartmaier and R. Janisch, Stacking Fault Based Analysis of Shear Mechanisms at Interfaces in Lamellar TiAl alloys, Acta. Mater., 2016, 106, p 208–218.CrossRef M. Kanani, A. Hartmaier and R. Janisch, Stacking Fault Based Analysis of Shear Mechanisms at Interfaces in Lamellar TiAl alloys, Acta. Mater., 2016, 106, p 208–218.CrossRef
22.
go back to reference W. Li, Y.J. Yin, Q. Xu, J.X. Zhou, H. Nan, X.Y. Ji, X. Shen, X. Feng, W. Yu, Z.X. Tu and N. Pang, Tensile Behavior of γ/α2 Interface System in Lamellar TiAl Alloy via Molecular Dynamics, Comp. Mater. Sci., 2019, 159, p 397–402.CrossRef W. Li, Y.J. Yin, Q. Xu, J.X. Zhou, H. Nan, X.Y. Ji, X. Shen, X. Feng, W. Yu, Z.X. Tu and N. Pang, Tensile Behavior of γ/α2 Interface System in Lamellar TiAl Alloy via Molecular Dynamics, Comp. Mater. Sci., 2019, 159, p 397–402.CrossRef
23.
go back to reference T.D. Nguyen and S.J. Plimpton, Accelerating Dissipative Particle Dynamics Simulations for Soft Matter Systems, Comp. Mater. Sci., 2015, 100, p 173–180.CrossRef T.D. Nguyen and S.J. Plimpton, Accelerating Dissipative Particle Dynamics Simulations for Soft Matter Systems, Comp. Mater. Sci., 2015, 100, p 173–180.CrossRef
24.
go back to reference W. Li, W. Yu, Q. Xu, et al, Effects of γ/γ Interfaces in TiAl Lamellae Subjected to Uniaxial Tensile Loading, Comp. Mater. Sci., 2020, 172, p 109361. W. Li, W. Yu, Q. Xu, et al, Effects of γ/γ Interfaces in TiAl Lamellae Subjected to Uniaxial Tensile Loading, Comp. Mater. Sci., 2020, 172, p 109361.
25.
go back to reference J.Y. Liu, L.Q. Zhang, G.W. Ge, A Study of Residual Ti3Al in γ(TiAl) Sheets Using Mismatch Theory, Mater. Lett., 2020, 278, p 128423. J.Y. Liu, L.Q. Zhang, G.W. Ge, A Study of Residual Ti3Al in γ(TiAl) Sheets Using Mismatch Theory, Mater. Lett., 2020, 278, p 128423.
26.
go back to reference M. Kanani, A. Hartmaier and R. Janisch, Interface Properties in Lamellar TiAl Microstructures from Density Functional Theory, Intermetallics, 2014, 54, p 154–163.CrossRef M. Kanani, A. Hartmaier and R. Janisch, Interface Properties in Lamellar TiAl Microstructures from Density Functional Theory, Intermetallics, 2014, 54, p 154–163.CrossRef
27.
go back to reference M. Kanani, A. Hartmaier and R. Janisch, Stacking fault based Analysis of Shear Mechanisms at Interfaces in Lamellar TiAl Alloys, Act. Mater., 2016, 106, p 208–218.CrossRef M. Kanani, A. Hartmaier and R. Janisch, Stacking fault based Analysis of Shear Mechanisms at Interfaces in Lamellar TiAl Alloys, Act. Mater., 2016, 106, p 208–218.CrossRef
28.
go back to reference V. Paidar, K. Kishida and M. Yamaguchi, Polarization of Plastic Deformation Modes in Polysynthetically Twinned TiAl Crystals, J. Mater. Res., 2003, 18, p 702–708.CrossRef V. Paidar, K. Kishida and M. Yamaguchi, Polarization of Plastic Deformation Modes in Polysynthetically Twinned TiAl Crystals, J. Mater. Res., 2003, 18, p 702–708.CrossRef
29.
go back to reference M. Gerboth, W. Setyawan and C.H. Henager Jr., Displacement Threshold Energy and Recovery in an Al–Ti Nanolayered System with Intrinsic Point Defect Partitioning, Comp. Mater. Sci., 2014, 85, p 269–279.CrossRef M. Gerboth, W. Setyawan and C.H. Henager Jr., Displacement Threshold Energy and Recovery in an Al–Ti Nanolayered System with Intrinsic Point Defect Partitioning, Comp. Mater. Sci., 2014, 85, p 269–279.CrossRef
30.
go back to reference R.R. Zope, Y. Mishin, Interatomic Potentials for Atomistic Simulations of the Ti-Al System, Phys. Rev. B., 2003, 68, p 024102. R.R. Zope, Y. Mishin, Interatomic Potentials for Atomistic Simulations of the Ti-Al System, Phys. Rev. B., 2003, 68, p 024102.
31.
go back to reference K. Tanaka, K. Okamoto, H. Inui, Y. Minonishi, M. Yamaguchi and M. Koiwa, Elastic Constants and Their Temperature Dependence for the Intermetallic Compound Ti3Al, Philos. Mag. A., 1996, 73, p 1475–1488.CrossRef K. Tanaka, K. Okamoto, H. Inui, Y. Minonishi, M. Yamaguchi and M. Koiwa, Elastic Constants and Their Temperature Dependence for the Intermetallic Compound Ti3Al, Philos. Mag. A., 1996, 73, p 1475–1488.CrossRef
32.
go back to reference Q.X. Pei, M.H. Jhon, S.S. Quek, Z.X. Wu, A systematic Study of Interatomic Potentials for Mechanical Behaviours of Ti-Al Alloys, Comp. Mater. Sci., 2021, 188, p 110239. Q.X. Pei, M.H. Jhon, S.S. Quek, Z.X. Wu, A systematic Study of Interatomic Potentials for Mechanical Behaviours of Ti-Al Alloys, Comp. Mater. Sci., 2021, 188, p 110239.
33.
go back to reference Y. He, R.B. Schwarz, A. Migliori and S.H. Whang, Elastic Constants of Single Crystal γ–TiAl, J. Mater. Res., 1995, 10, p 1187–1195.CrossRef Y. He, R.B. Schwarz, A. Migliori and S.H. Whang, Elastic Constants of Single Crystal γ–TiAl, J. Mater. Res., 1995, 10, p 1187–1195.CrossRef
34.
go back to reference K. Tanaka, Single-Crystal Elastic Constants of γ–TiAl, Philos. Mag. Lett., 1996, 73, p 71–78.CrossRef K. Tanaka, Single-Crystal Elastic Constants of γ–TiAl, Philos. Mag. Lett., 1996, 73, p 71–78.CrossRef
35.
go back to reference Y.K. Kim, H.K. Kim, W.S. Jung and B.J. Lee, Atomistic Modeling of the Ti-Al Binary System, Comp. Mater. Sci., 2016, 119, p 1–8.CrossRef Y.K. Kim, H.K. Kim, W.S. Jung and B.J. Lee, Atomistic Modeling of the Ti-Al Binary System, Comp. Mater. Sci., 2016, 119, p 1–8.CrossRef
36.
go back to reference C.L. Kelchner, S.J. Plimpton and J.C. Hamilton, Dislocation Nucleation and Defect Structure During Surface Indentation, Phys. Reb. B., 1998, 58, p 11085–11088.CrossRef C.L. Kelchner, S.J. Plimpton and J.C. Hamilton, Dislocation Nucleation and Defect Structure During Surface Indentation, Phys. Reb. B., 1998, 58, p 11085–11088.CrossRef
37.
go back to reference A. Stukowski, V.V. Bulatov, A. Arsenlis, Automated Identification and Indexing of Dislocations in Crystal Interfaces, Modell. Simul. Mater. Sci. Eng., 2012, 20, p 085007. A. Stukowski, V.V. Bulatov, A. Arsenlis, Automated Identification and Indexing of Dislocations in Crystal Interfaces, Modell. Simul. Mater. Sci. Eng., 2012, 20, p 085007.
38.
go back to reference P. Liu, Atomic-Scale Investigation on the Ti2AlN/TiAl Interface Models and Deformation Mechanisms PhD Thesis, Harbin Institute of Technology, 2019. P. Liu, Atomic-Scale Investigation on the Ti2AlN/TiAl Interface Models and Deformation Mechanisms PhD Thesis, Harbin Institute of Technology, 2019.
39.
go back to reference F. Appel, U. Christoph and R. Wagner, An Electron Microscope Study of Deformation and Crack Propagation in (α2+γ) Titanium Aluminides, Philos. Mag. A., 1995, 72, p 341.CrossRef F. Appel, U. Christoph and R. Wagner, An Electron Microscope Study of Deformation and Crack Propagation in (α2+γ) Titanium Aluminides, Philos. Mag. A., 1995, 72, p 341.CrossRef
40.
go back to reference A.D. Tu, (2018) Atomstic Simulations of Deformation Behaviors at Interfaces of TiAl Alloys and Some Metals, MASc Thesis, University of Science and Technology of China, 2018. A.D. Tu, (2018) Atomstic Simulations of Deformation Behaviors at Interfaces of TiAl Alloys and Some Metals, MASc Thesis, University of Science and Technology of China, 2018.
41.
go back to reference H.Y. Zhang, X.J. Liu, S.Y. Yang, H.X. Jiang, Z. Shi, M.J. Yang and C.P. Wang, The Clarification of α″ Phase Precipitate from β Phase in Ti-15Mn Alloy by Mismatch Theory, Mater. Lett., 2017, 202, p 138–141.CrossRef H.Y. Zhang, X.J. Liu, S.Y. Yang, H.X. Jiang, Z. Shi, M.J. Yang and C.P. Wang, The Clarification of α″ Phase Precipitate from β Phase in Ti-15Mn Alloy by Mismatch Theory, Mater. Lett., 2017, 202, p 138–141.CrossRef
42.
go back to reference Z.R. Liu, B.N. Yao, D. Legut, F.X. Kong, T.C. Germann, H.J. Zhang and R.F. Zhang, Mechanistic Understanding of the Size Effect on Shock Facilitated Dislocation Nucleation at Semicoherent Interfaces, Scripta. Mater., 2020, 178, p 457–462.CrossRef Z.R. Liu, B.N. Yao, D. Legut, F.X. Kong, T.C. Germann, H.J. Zhang and R.F. Zhang, Mechanistic Understanding of the Size Effect on Shock Facilitated Dislocation Nucleation at Semicoherent Interfaces, Scripta. Mater., 2020, 178, p 457–462.CrossRef
Metadata
Title
Molecular Dynamics Simulation of the Tensile Deformation Behavior of the γ(TiAl)/α2(Ti3Al) Interface at Different Temperatures
Authors
Jiyao Liu
Laiqi Zhang
Publication date
25-10-2021
Publisher
Springer US
Published in
Journal of Materials Engineering and Performance / Issue 2/2022
Print ISSN: 1059-9495
Electronic ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-021-06270-6

Other articles of this Issue 2/2022

Journal of Materials Engineering and Performance 2/2022 Go to the issue

Premium Partners