Skip to main content
Top

2011 | OriginalPaper | Chapter

2. Acoustic Cavitation

Authors : Olivier Louisnard, José González-García

Published in: Ultrasound Technologies for Food and Bioprocessing

Publisher: Springer New York

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The benefit of acoustic cavitation owes to its ability to concentrate acoustic energy in small volumes. This results in temperatures of thousands of kelvin, pressures of GPa, local accelerations 12 orders of magnitude higher than gravity, shockwaves, and photon emission. In a few words, it converts acoustics into extreme physics.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Akhatov, I., Gumerov, N., Ohl, C. D., Parlitz, U., and Lauterborn, W. (1997a). The role of surface tension in stable single bubble sonoluminescence. Physics Review Letters, 78(2), 227–230.CrossRef Akhatov, I., Gumerov, N., Ohl, C. D., Parlitz, U., and Lauterborn, W. (1997a). The role of surface tension in stable single bubble sonoluminescence. Physics Review Letters, 78(2), 227–230.CrossRef
go back to reference Akhatov, I., Mettin, R., Ohl, C. D., Parlitz, U., and Lauterborn, W. (1997b). Bjerknes force threshold for stable single bubble sonoluminescence. Physical Review E, 55(3), 3747–3750.CrossRef Akhatov, I., Mettin, R., Ohl, C. D., Parlitz, U., and Lauterborn, W. (1997b). Bjerknes force threshold for stable single bubble sonoluminescence. Physical Review E, 55(3), 3747–3750.CrossRef
go back to reference Akhatov, I., Parlitz, U., and Lauterborn, W. (1994). Pattern formation in acoustic cavitation. Journal of the Acoustical Society of America, 96(6), 3627–3635.CrossRef Akhatov, I., Parlitz, U., and Lauterborn, W. (1994). Pattern formation in acoustic cavitation. Journal of the Acoustical Society of America, 96(6), 3627–3635.CrossRef
go back to reference Akhatov, I., Parlitz, U., and Lauterborn, W. (1996). Towards a theory of self-organization phenomena in bubble-liquid mixtures. Physical Review E, 54(5), 4990–5003.CrossRef Akhatov, I., Parlitz, U., and Lauterborn, W. (1996). Towards a theory of self-organization phenomena in bubble-liquid mixtures. Physical Review E, 54(5), 4990–5003.CrossRef
go back to reference Alekseev, V. N., and Yushin, V. P. (1986). Distribution of bubbles in acoustic cavitation. Soviet Physics Acoustics, 32(6), 469–472. Alekseev, V. N., and Yushin, V. P. (1986). Distribution of bubbles in acoustic cavitation. Soviet Physics Acoustics, 32(6), 469–472.
go back to reference Apfel, R. E. (1984). Acoustic cavitation inception. Ultrasonics, 22, 167–173.CrossRef Apfel, R. E. (1984). Acoustic cavitation inception. Ultrasonics, 22, 167–173.CrossRef
go back to reference Ashokkumar, M., Crum, L. A., Frensley, C. A., Grieser, F., Matula, T. J., McNamara, W. B., and Suslick, K. (2000). Effects of solutes on single-bubble sonoluminescence. Journal of Physical Chemistry A, 104, 8462–8465.CrossRef Ashokkumar, M., Crum, L. A., Frensley, C. A., Grieser, F., Matula, T. J., McNamara, W. B., and Suslick, K. (2000). Effects of solutes on single-bubble sonoluminescence. Journal of Physical Chemistry A, 104, 8462–8465.CrossRef
go back to reference Ashokkumar, M., Guan, J., Tronson, R., Matula, T. J., Nuske, J. W., and Grieser, F. (2002). Effects of surfactants, polymers, and alcohols on single bubble dynamics and sonoluminescence. Physical Review E, 65, 046310–1–046310–4.CrossRef Ashokkumar, M., Guan, J., Tronson, R., Matula, T. J., Nuske, J. W., and Grieser, F. (2002). Effects of surfactants, polymers, and alcohols on single bubble dynamics and sonoluminescence. Physical Review E, 65, 046310–1–046310–4.CrossRef
go back to reference Augsdorfer, U. H., Evans, A. K., and Oxley, D. P. (2000). Thermal noise and the stability of single sonoluminescing bubbles. Physical Review E, 61(5), 5278–5285.CrossRef Augsdorfer, U. H., Evans, A. K., and Oxley, D. P. (2000). Thermal noise and the stability of single sonoluminescing bubbles. Physical Review E, 61(5), 5278–5285.CrossRef
go back to reference Barber, B. P., Hiller, R. A., Löfstedt, R., Putterman, S. J., and Weninger, K. R. (1997). Defining the unknowns of sonoluminescence. Physics Report, 281, 65–143.CrossRef Barber, B. P., Hiller, R. A., Löfstedt, R., Putterman, S. J., and Weninger, K. R. (1997). Defining the unknowns of sonoluminescence. Physics Report, 281, 65–143.CrossRef
go back to reference Barber, B. P., Weninger, K. R., Putterman, S. J., and Löfstedt, R. (1995). Observation of a new phase of sonoluminescence at low partial pressures. Physics Review Letters, 74, 5276–5279.CrossRef Barber, B. P., Weninger, K. R., Putterman, S. J., and Löfstedt, R. (1995). Observation of a new phase of sonoluminescence at low partial pressures. Physics Review Letters, 74, 5276–5279.CrossRef
go back to reference Barber, B. P., Wu, C. C., Löfstedt, R., Roberts, P. H., and Putterman, S. J. (1994). Sensitivity of sonoluminescence to experimental parameters. Physics Review Letters, 72(9), 1380–1383.CrossRef Barber, B. P., Wu, C. C., Löfstedt, R., Roberts, P. H., and Putterman, S. J. (1994). Sensitivity of sonoluminescence to experimental parameters. Physics Review Letters, 72(9), 1380–1383.CrossRef
go back to reference Benjamin, T. B. (1958). Pressure waves from collapsing cavities. 2nd Symposium on Naval Hydrodynamics, pp. 207–229, Washington. Benjamin, T. B. (1958). Pressure waves from collapsing cavities. 2nd Symposium on Naval Hydrodynamics, pp. 207–229, Washington.
go back to reference Benjamin, T. B., and Ellis, A. T. (1966). The collapse of cavitation bubbles and the pressures thereby produced against solid boundaries. Philosophical Transactions of the Royal Society London A, 260(110), 221–240.CrossRef Benjamin, T. B., and Ellis, A. T. (1966). The collapse of cavitation bubbles and the pressures thereby produced against solid boundaries. Philosophical Transactions of the Royal Society London A, 260(110), 221–240.CrossRef
go back to reference Benjamin, T. B., and Ellis, A. T. (1990). Self-propulsion of asymmetrically vibrating bubbles. Journal of Fluid Mechanics, 212(2), 65–80.CrossRef Benjamin, T. B., and Ellis, A. T. (1990). Self-propulsion of asymmetrically vibrating bubbles. Journal of Fluid Mechanics, 212(2), 65–80.CrossRef
go back to reference Blake, F. G. (1949). The onset of cavitation in liquids; Technical memo 12. Acoustic Research Laboratory, Cambridge, MA, Harvard University. Blake, F. G. (1949). The onset of cavitation in liquids; Technical memo 12. Acoustic Research Laboratory, Cambridge, MA, Harvard University.
go back to reference Blake, J. R., and Gibson, D. C. (1987). Cavitation bubbles near boundaries. Annual Review of Fluid Mechanics, 19, 99–123.CrossRef Blake, J. R., and Gibson, D. C. (1987). Cavitation bubbles near boundaries. Annual Review of Fluid Mechanics, 19, 99–123.CrossRef
go back to reference Brennen, C. E. (1995). Cavitation and bubble dynamics. Oxford Engineering Science Series, no. 44. New York, Oxford, Oxford University Press. Brennen, C. E. (1995). Cavitation and bubble dynamics. Oxford Engineering Science Series, no. 44. New York, Oxford, Oxford University Press.
go back to reference Brenner, M. P., Hilgenfeldt, S., and Lohse, D. (2002). Single-bubble sonoluminescence. Reviews of Modern Physics, 74(2), 425–483.CrossRef Brenner, M. P., Hilgenfeldt, S., and Lohse, D. (2002). Single-bubble sonoluminescence. Reviews of Modern Physics, 74(2), 425–483.CrossRef
go back to reference Brenner, M. P., Lohse, D., and Dupont, T. F. (1995). Bubble shape oscillations and the onset of sonoluminescence. Physics Review Letters, 75(5), 954–957.CrossRef Brenner, M. P., Lohse, D., and Dupont, T. F. (1995). Bubble shape oscillations and the onset of sonoluminescence. Physics Review Letters, 75(5), 954–957.CrossRef
go back to reference Briggs, L. J. (1950). Limiting negative pressure of water. Journal of Applied Physics, 21, 721–722.CrossRef Briggs, L. J. (1950). Limiting negative pressure of water. Journal of Applied Physics, 21, 721–722.CrossRef
go back to reference Burdin, F., Tsochatzidis, N. A., Guiraud, P., Wilhelm, A. M., and Delmas, H. (1999). Characterisation of the acoustic cavitation cloud by two laser techniques. Ultrasonics Sonochemistry, 6, 43–51.CrossRef Burdin, F., Tsochatzidis, N. A., Guiraud, P., Wilhelm, A. M., and Delmas, H. (1999). Characterisation of the acoustic cavitation cloud by two laser techniques. Ultrasonics Sonochemistry, 6, 43–51.CrossRef
go back to reference Caflish, R. E., Miksis, M. J., Papanicolaou, G. C., and Ting, L. (1985). Effective equations for wave propagation in bubbly liquids. Journal of Fluid Mechanics, 153, 259–273.CrossRef Caflish, R. E., Miksis, M. J., Papanicolaou, G. C., and Ting, L. (1985). Effective equations for wave propagation in bubbly liquids. Journal of Fluid Mechanics, 153, 259–273.CrossRef
go back to reference Carstensen, E. L., and Foldy, L. L. (1947). Propagation of sound through a liquid containing bubbles. Journal of the Acoustical Society of America, 19(3), 481–501.CrossRef Carstensen, E. L., and Foldy, L. L. (1947). Propagation of sound through a liquid containing bubbles. Journal of the Acoustical Society of America, 19(3), 481–501.CrossRef
go back to reference Chen, H., Li, X., and Wan, M. (2006). Spatial-temporal dynamics of cavitation bubble clouds in 1.2 MHz focused ultrasound field. Ultrasonics Sonochemistry, 13, 480–486.CrossRef Chen, H., Li, X., and Wan, M. (2006). Spatial-temporal dynamics of cavitation bubble clouds in 1.2 MHz focused ultrasound field. Ultrasonics Sonochemistry, 13, 480–486.CrossRef
go back to reference Chen, H., Li, X., Wan, M., and Wang, S. (2007). High-speed observation of cavitation bubble cloud structures in the focal region of a 1.2 MHz high-intensity focused ultrasound transducer. Ultrasonics Sonochemistry, 14, 291–297.CrossRef Chen, H., Li, X., Wan, M., and Wang, S. (2007). High-speed observation of cavitation bubble cloud structures in the focal region of a 1.2 MHz high-intensity focused ultrasound transducer. Ultrasonics Sonochemistry, 14, 291–297.CrossRef
go back to reference Church, C. C. (1988). Prediction of rectified diffusion during nonlinear bubble pulsations at biomedical frequencies. Journal of the Acoustical Society of America, 83(6), 2210–2217.CrossRef Church, C. C. (1988). Prediction of rectified diffusion during nonlinear bubble pulsations at biomedical frequencies. Journal of the Acoustical Society of America, 83(6), 2210–2217.CrossRef
go back to reference Commander, K. W., and Prosperetti, A. (1989). Linear pressure waves in bubbly liquids: comparison between theory and experiments. Journal of the Acoustical Society of America, 85(2), 732–746.CrossRef Commander, K. W., and Prosperetti, A. (1989). Linear pressure waves in bubbly liquids: comparison between theory and experiments. Journal of the Acoustical Society of America, 85(2), 732–746.CrossRef
go back to reference Crum, L. A. (1975). Bjerknes forces on bubbles in a stationary sound field. Journal of the Acoustical Society of America, 57(6), 1363–1370.CrossRef Crum, L. A. (1975). Bjerknes forces on bubbles in a stationary sound field. Journal of the Acoustical Society of America, 57(6), 1363–1370.CrossRef
go back to reference Crum, L. A. (1980). Measurements of the growth of air bubbles by rectified diffusion. Journal of the Acoustical Society of America, 68(1), 203–211.CrossRef Crum, L. A. (1980). Measurements of the growth of air bubbles by rectified diffusion. Journal of the Acoustical Society of America, 68(1), 203–211.CrossRef
go back to reference Crum, L. A. (1982). Nucleation and stabilization of microbubbles in liquids. Applied Science Research, 38(3), 101–115.CrossRef Crum, L. A. (1982). Nucleation and stabilization of microbubbles in liquids. Applied Science Research, 38(3), 101–115.CrossRef
go back to reference Crum, L. A. (1983). The polytropic exponent of gas contained within air bubbles pulsating in a liquid. Journal of the Acoustical Society of America, 73(1), 116–120.CrossRef Crum, L. A. (1983). The polytropic exponent of gas contained within air bubbles pulsating in a liquid. Journal of the Acoustical Society of America, 73(1), 116–120.CrossRef
go back to reference Crum, L. A., and Eller, A. I. (1970). Motion of bubbles in a stationary sound field. Journal of the Acoustical Society of America, 48(1), 181–189.CrossRef Crum, L. A., and Eller, A. I. (1970). Motion of bubbles in a stationary sound field. Journal of the Acoustical Society of America, 48(1), 181–189.CrossRef
go back to reference Crum, L. A., and Hansen, G. M. (1982). Generalized equations for rectified diffusion. Journal of the Acoustical Society of America, 72(5), 1586–1592.CrossRef Crum, L. A., and Hansen, G. M. (1982). Generalized equations for rectified diffusion. Journal of the Acoustical Society of America, 72(5), 1586–1592.CrossRef
go back to reference Crum, L. A., Mason, T. J., Reisse, J. L., and Suslick, K. S. (eds.). (1999). Sonochemistry and Sonoluminescence. Dordrecht, Kluwer. Proceedings of the NATO Advanced Study Institute on Sonoluminescence and Sonoluminescence, Leavenworth, Washington, DC, 18–29 August 1997. Crum, L. A., Mason, T. J., Reisse, J. L., and Suslick, K. S. (eds.). (1999). Sonochemistry and Sonoluminescence. Dordrecht, Kluwer. Proceedings of the NATO Advanced Study Institute on Sonoluminescence and Sonoluminescence, Leavenworth, Washington, DC, 18–29 August 1997.
go back to reference Crum, L. A., and Prosperetti, A. (1983). Nonlinear oscillations of gas bubbles in liquids: an interpretation of some experimental results. Journal of the Acoustical Society of America, 73(1), 121–127.CrossRef Crum, L. A., and Prosperetti, A. (1983). Nonlinear oscillations of gas bubbles in liquids: an interpretation of some experimental results. Journal of the Acoustical Society of America, 73(1), 121–127.CrossRef
go back to reference Crum, L. A., and Prosperetti, A. (1984). Erratum and comments on “Nonlinear oscillations of gas bubbles in liquids: An interpretation of some experimental results”. Journal of the Acoustical Society of America – Letters to the Editor, 75(6), 1910–1912.CrossRef Crum, L. A., and Prosperetti, A. (1984). Erratum and comments on “Nonlinear oscillations of gas bubbles in liquids: An interpretation of some experimental results”. Journal of the Acoustical Society of America – Letters to the Editor, 75(6), 1910–1912.CrossRef
go back to reference Dähnke, S., Swamy, K. M., and Keil, F. J. (1999). Modeling of three-dimensional pressure fields in sonochemical reactors with an inhomogeneous density distribution of cavitation bubbles. Comparison of theoretical and experimental results. Ultrasonics Sonochemistry, 6, 31–41.CrossRef Dähnke, S., Swamy, K. M., and Keil, F. J. (1999). Modeling of three-dimensional pressure fields in sonochemical reactors with an inhomogeneous density distribution of cavitation bubbles. Comparison of theoretical and experimental results. Ultrasonics Sonochemistry, 6, 31–41.CrossRef
go back to reference Devin, C. Jr. (1959). Survey of thermal, radiation and viscous damping of pulsating air bubbles in water. Journal of the Acoustical Society of America, 31(12), 1654–1667.CrossRef Devin, C. Jr. (1959). Survey of thermal, radiation and viscous damping of pulsating air bubbles in water. Journal of the Acoustical Society of America, 31(12), 1654–1667.CrossRef
go back to reference Didenko, Y. T., McNamara, W. B., and Suslick, K. S. (2000). Effect of noble gases on sonoluminescence temperatures during multibubble cavitation. Physics Review Letters, 84(4), 777–780.CrossRef Didenko, Y. T., McNamara, W. B., and Suslick, K. S. (2000). Effect of noble gases on sonoluminescence temperatures during multibubble cavitation. Physics Review Letters, 84(4), 777–780.CrossRef
go back to reference Doinikov, A. A. (2004). Translational motion of a bubble undergoing shape oscillations. Journal of Fluid Mechanics, 501, 1–24.CrossRef Doinikov, A. A. (2004). Translational motion of a bubble undergoing shape oscillations. Journal of Fluid Mechanics, 501, 1–24.CrossRef
go back to reference Eller, A. I. (1972). Bubble growth by rectified diffusion in an 11-kHz sound field. Journal of the Acoustical Society of America, 52, 1447–1449.CrossRef Eller, A. I. (1972). Bubble growth by rectified diffusion in an 11-kHz sound field. Journal of the Acoustical Society of America, 52, 1447–1449.CrossRef
go back to reference Eller, A. I., and Crum, L. A. (1970). Instability of the motion of a pulsating bubble in a sound field. Journal of the Acoustical Society of America, 47(3), 762–767.CrossRef Eller, A. I., and Crum, L. A. (1970). Instability of the motion of a pulsating bubble in a sound field. Journal of the Acoustical Society of America, 47(3), 762–767.CrossRef
go back to reference Eller, A.I, and Flynn, H. G. (1965). Rectified diffusion during nonlinear pulsations of cavitation bubbles. Journal of the Acoustical Society of America, 37, 493–503.CrossRef Eller, A.I, and Flynn, H. G. (1965). Rectified diffusion during nonlinear pulsations of cavitation bubbles. Journal of the Acoustical Society of America, 37, 493–503.CrossRef
go back to reference Epstein, P. S., and Plesset, M. S. (1950). On the stability of gas bubbles in liquid-gas solutions. Journal of Chemical Physics, 18, 1505–1509.CrossRef Epstein, P. S., and Plesset, M. S. (1950). On the stability of gas bubbles in liquid-gas solutions. Journal of Chemical Physics, 18, 1505–1509.CrossRef
go back to reference Flannigan, D. J., and Suslick, K. S. (2005). Plasma formation and temperature measurement during single-bubble cavitation. Nature, 434, 52–55.CrossRef Flannigan, D. J., and Suslick, K. S. (2005). Plasma formation and temperature measurement during single-bubble cavitation. Nature, 434, 52–55.CrossRef
go back to reference Flint, E. B., and Suslick, K. S. (1991). The temperature of cavitation. Science, 253, 1397–1399.CrossRef Flint, E. B., and Suslick, K. S. (1991). The temperature of cavitation. Science, 253, 1397–1399.CrossRef
go back to reference Flynn, H. G. (1964). Physics of acoustic cavitation in liquids. In: Mason, W. P. (ed.), Physical Acoustics, vol. 1B, pp. 57–172. New York, NY, Academic. Flynn, H. G. (1964). Physics of acoustic cavitation in liquids. In: Mason, W. P. (ed.), Physical Acoustics, vol. 1B, pp. 57–172. New York, NY, Academic.
go back to reference Foldy, L. L. (1944). The multiple scattering of waves. Physical Review, 67(3–4), 107–119. Foldy, L. L. (1944). The multiple scattering of waves. Physical Review, 67(3–4), 107–119.
go back to reference Fox, F. E., Curley, S. R., and Larson, G. S. (1955). Phase velocity and absorption measurements in water containing air bubbles. Journal of the Acoustical Society of America, 27(3), 534–539.CrossRef Fox, F. E., Curley, S. R., and Larson, G. S. (1955). Phase velocity and absorption measurements in water containing air bubbles. Journal of the Acoustical Society of America, 27(3), 534–539.CrossRef
go back to reference Fujikawa, S., and Akamatsu, T. (1980). Effects of the nonequilibrium condensation of vapour on the pressure wave produced by the collapse of a bubble in a liquid. Journal of Fluid Mechanics, 97, 481–512.CrossRef Fujikawa, S., and Akamatsu, T. (1980). Effects of the nonequilibrium condensation of vapour on the pressure wave produced by the collapse of a bubble in a liquid. Journal of Fluid Mechanics, 97, 481–512.CrossRef
go back to reference Fyrillas, M. M., and Szeri, A. J. (1994). Dissolution or growth of soluble spherical oscillating bubbles. Journal of Fluid Mechanics, 277, 381–407.CrossRef Fyrillas, M. M., and Szeri, A. J. (1994). Dissolution or growth of soluble spherical oscillating bubbles. Journal of Fluid Mechanics, 277, 381–407.CrossRef
go back to reference Fyrillas, M. M., and Szeri, A. J. (1995). Dissolution or growth of soluble spherical oscillating bubbles: the effect of surfactants. Journal of Fluid Mechanics, 289, 295–314.CrossRef Fyrillas, M. M., and Szeri, A. J. (1995). Dissolution or growth of soluble spherical oscillating bubbles: the effect of surfactants. Journal of Fluid Mechanics, 289, 295–314.CrossRef
go back to reference Fyrillas, M. M., and Szeri, A. J. (1996). Surfactant dynamics and rectified diffusion of microbubbles. Journal of Fluid Mechanics, 311, 361–378.CrossRef Fyrillas, M. M., and Szeri, A. J. (1996). Surfactant dynamics and rectified diffusion of microbubbles. Journal of Fluid Mechanics, 311, 361–378.CrossRef
go back to reference Gaete-Garreton, L., Vargas-Hernandez, Y., Vargas-Herrera, R., Gallego-Juarez, J. A., and Montoya-Vitini, F. (1997). On the onset of cavitation in gassy liquids. Journal of the Acoustical Society of America, 101(5), 2536–2540.CrossRef Gaete-Garreton, L., Vargas-Hernandez, Y., Vargas-Herrera, R., Gallego-Juarez, J. A., and Montoya-Vitini, F. (1997). On the onset of cavitation in gassy liquids. Journal of the Acoustical Society of America, 101(5), 2536–2540.CrossRef
go back to reference Gaitan, D. F., and Holt, R. G. (1999). Experimental observations of bubble response and light intensity near the threshold for single bubble sonoluminescence in an air-water system. Physical Review E, 59, 5495–5502.CrossRef Gaitan, D. F., and Holt, R. G. (1999). Experimental observations of bubble response and light intensity near the threshold for single bubble sonoluminescence in an air-water system. Physical Review E, 59, 5495–5502.CrossRef
go back to reference Gaitan, D. F., Crum, L. A., Church, C. C., and Roy, R. A. (1992). Sonoluminescence and bubble dynamics for a single, stable, cavitation bubble. Journal of the Acoustical Society of America, 91(6), 3166–3183.CrossRef Gaitan, D. F., Crum, L. A., Church, C. C., and Roy, R. A. (1992). Sonoluminescence and bubble dynamics for a single, stable, cavitation bubble. Journal of the Acoustical Society of America, 91(6), 3166–3183.CrossRef
go back to reference Gallego-Juarez, J. A. (1999). High power ultrasonic transducers. In Crum, L. A., Mason, T. J., Reisse, J. L., and Suslick, K. S. (eds.), Sonochemistry and sonoluminescence. Dordrecht, Kluwer, pp. 259–270. Proceedings of the NATO Advanced Study Institute on Sonoluminescence and Sonoluminescence, Leavenworth, Washington, DC, 18–29 August 1997. Gallego-Juarez, J. A. (1999). High power ultrasonic transducers. In Crum, L. A., Mason, T. J., Reisse, J. L., and Suslick, K. S. (eds.), Sonochemistry and sonoluminescence. Dordrecht, Kluwer, pp. 259–270. Proceedings of the NATO Advanced Study Institute on Sonoluminescence and Sonoluminescence, Leavenworth, Washington, DC, 18–29 August 1997.
go back to reference Goldman, D. E., and Ringo, G. R. (1949). Determination of pressure nodes in liquids. Journal of the Acoustical Society of America, 21, 270.CrossRef Goldman, D. E., and Ringo, G. R. (1949). Determination of pressure nodes in liquids. Journal of the Acoustical Society of America, 21, 270.CrossRef
go back to reference Gould, R. K. (1974). Rectified diffusion in the presence of, and absence of, acoustic streaming. Journal of the Acoustical Society of America, 56, 1740–1746.CrossRef Gould, R. K. (1974). Rectified diffusion in the presence of, and absence of, acoustic streaming. Journal of the Acoustical Society of America, 56, 1740–1746.CrossRef
go back to reference Hammer, D., and Frommhold, L. (2000). Spectra of sonoluminescent rare-gas bubbles. Physics Review Letters, 85(6), 1326–1329.CrossRef Hammer, D., and Frommhold, L. (2000). Spectra of sonoluminescent rare-gas bubbles. Physics Review Letters, 85(6), 1326–1329.CrossRef
go back to reference Hammer, D., and Frommhold, L. (2001). Sonoluminescence: how bubbles glow. Journal of Modern Optics, 48, 239–277. Hammer, D., and Frommhold, L. (2001). Sonoluminescence: how bubbles glow. Journal of Modern Optics, 48, 239–277.
go back to reference Hilgenfeldt, S., Brenner, M. P., Grossman, S., and Lohse, D. (1998). Analysis of Rayleigh-Plesset dynamics for sonoluminescing bubbles. Journal of Fluid Mechanics, 365, 171–204.CrossRef Hilgenfeldt, S., Brenner, M. P., Grossman, S., and Lohse, D. (1998). Analysis of Rayleigh-Plesset dynamics for sonoluminescing bubbles. Journal of Fluid Mechanics, 365, 171–204.CrossRef
go back to reference Hilgenfeldt, S., Grossmann, S., and Lohse, D. (1999a). A simple explanation of light emission in sonoluminescence. Nature, 398, 402–405.CrossRef Hilgenfeldt, S., Grossmann, S., and Lohse, D. (1999a). A simple explanation of light emission in sonoluminescence. Nature, 398, 402–405.CrossRef
go back to reference Hilgenfeldt, S., Grossmann, S., and Lohse, D. (1999b). Sonoluminescence light emission. Physics of Fluids, 11, 1318–1330.CrossRef Hilgenfeldt, S., Grossmann, S., and Lohse, D. (1999b). Sonoluminescence light emission. Physics of Fluids, 11, 1318–1330.CrossRef
go back to reference Hilgenfeldt, S., Lohse, D., and Brenner, M. P. (1996). Phase diagrams for sonoluminescing bubbles. Physics of Fluids, 8(11), 2808–2826.CrossRef Hilgenfeldt, S., Lohse, D., and Brenner, M. P. (1996). Phase diagrams for sonoluminescing bubbles. Physics of Fluids, 8(11), 2808–2826.CrossRef
go back to reference Hiller, R. A., Putterman, S. J., and Barber, B. P. (1992). Spectrum of synchronous picosecond sonoluminescence. Physics Review Letters, 69(8), 1182–1184.CrossRef Hiller, R. A., Putterman, S. J., and Barber, B. P. (1992). Spectrum of synchronous picosecond sonoluminescence. Physics Review Letters, 69(8), 1182–1184.CrossRef
go back to reference Hopkins, S. D., Putterman, S. J., Kappus, B. A., Suslick, K. S., and Camara, C. G. (2005). Dynamics of a sonoluminescing bubble in sulfuric acid. Physics Review Letters, 95(254301), 1–4. Hopkins, S. D., Putterman, S. J., Kappus, B. A., Suslick, K. S., and Camara, C. G. (2005). Dynamics of a sonoluminescing bubble in sulfuric acid. Physics Review Letters, 95(254301), 1–4.
go back to reference Hsieh, D. Y., and Plesset, M. S. (1961). Theory of rectified diffusion of mass into gas bubbles. Journal of the Acoustical Society of America, 33, 206–215.CrossRef Hsieh, D. Y., and Plesset, M. S. (1961). Theory of rectified diffusion of mass into gas bubbles. Journal of the Acoustical Society of America, 33, 206–215.CrossRef
go back to reference Iordansky, S. (1960). On the equations of motion for liquids containing gas bubbles. Journal of Applied Mechancis and Technical Physics, 3, 102–110. Iordansky, S. (1960). On the equations of motion for liquids containing gas bubbles. Journal of Applied Mechancis and Technical Physics, 3, 102–110.
go back to reference Kamath, V., Oguz, H. N., and Prosperetti, A. (1992). Bubble oscillations in the nearly adiabatic limit. Journal of the Acoustical Society of America, 92(4), 2016–2023.CrossRef Kamath, V., Oguz, H. N., and Prosperetti, A. (1992). Bubble oscillations in the nearly adiabatic limit. Journal of the Acoustical Society of America, 92(4), 2016–2023.CrossRef
go back to reference Kamath, V., and Prosperetti, A. (1989). Numerical integration methods in gas-bubble dynamics. Journal of the Acoustical Society of America, 85(4), 1538–1548.CrossRef Kamath, V., and Prosperetti, A. (1989). Numerical integration methods in gas-bubble dynamics. Journal of the Acoustical Society of America, 85(4), 1538–1548.CrossRef
go back to reference Kamath, V., Prosperetti, A., and Egolfopoulos, F. N. (1993). A theoretical study of sonoluminescence. Journal of the Acoustical Society of America, 94(1), 248–260.CrossRef Kamath, V., Prosperetti, A., and Egolfopoulos, F. N. (1993). A theoretical study of sonoluminescence. Journal of the Acoustical Society of America, 94(1), 248–260.CrossRef
go back to reference Kapustina, O. A. (1973). Degassing of liquids. In: Rozenberg, L. D. (ed.), Physical principles of ultrasonic TECHNOLOGY. New York, NY, Plenum Press. Kapustina, O. A. (1973). Degassing of liquids. In: Rozenberg, L. D. (ed.), Physical principles of ultrasonic TECHNOLOGY. New York, NY, Plenum Press.
go back to reference Keller, J. B., and Miksis, M. (1980). Bubble oscillations of large amplitude. Journal of the Acoustical Society of America, 68, 628–633.CrossRef Keller, J. B., and Miksis, M. (1980). Bubble oscillations of large amplitude. Journal of the Acoustical Society of America, 68, 628–633.CrossRef
go back to reference Ketterling, J. A., and Apfel, R. E. (1998). Experimental validation of the dissociation hypothesis for single bubble sonoluminescence. Physics Review Letters, 81, 4991–4994.CrossRef Ketterling, J. A., and Apfel, R. E. (1998). Experimental validation of the dissociation hypothesis for single bubble sonoluminescence. Physics Review Letters, 81, 4991–4994.CrossRef
go back to reference Ketterling, J. A., and Apfel, R. E. (2000). Extensive experimental mapping of sonoluminescence parameter space. Physical Review E, 61(4), 3832–3837.CrossRef Ketterling, J. A., and Apfel, R. E. (2000). Extensive experimental mapping of sonoluminescence parameter space. Physical Review E, 61(4), 3832–3837.CrossRef
go back to reference Kobelev, Yu. A., and Ostrovskii, L. A. (1983). Collective self-effect of sound in a liquid with gas bubbles. Journal of Experimental and Theoretical Physics Letters, 37(1), 4–7. Kobelev, Yu. A., and Ostrovskii, L. A. (1983). Collective self-effect of sound in a liquid with gas bubbles. Journal of Experimental and Theoretical Physics Letters, 37(1), 4–7.
go back to reference Kobelev, Yu. A., and Ostrovskii, L. A. (1989). Nonlinear acoustic phenomena due to bubble drift in a gas-liquid mixture. Journal of the Acoustical Society of America, 85(2), 621–629.CrossRef Kobelev, Yu. A., and Ostrovskii, L. A. (1989). Nonlinear acoustic phenomena due to bubble drift in a gas-liquid mixture. Journal of the Acoustical Society of America, 85(2), 621–629.CrossRef
go back to reference Kobelev, Yu. A., Ostrovskii, L. A., and Sutin, A. M. (1979). Self-illumination effect for acoustic waves in a liquid with gas bubbles. JETP Letters, 30(7), 395–398. Kobelev, Yu. A., Ostrovskii, L. A., and Sutin, A. M. (1979). Self-illumination effect for acoustic waves in a liquid with gas bubbles. JETP Letters, 30(7), 395–398.
go back to reference Koch, P., Krefting, D., Tervo, T., Mettin, R., and Lauterborn, W. (2004a). Bubble path simulations in standing and traveling acoustic waves. Proceedings of ICA 2004, Kyoto (Japan), vol. Fr3.A.2, pp. V3571–V3572. Koch, P., Krefting, D., Tervo, T., Mettin, R., and Lauterborn, W. (2004a). Bubble path simulations in standing and traveling acoustic waves. Proceedings of ICA 2004, Kyoto (Japan), vol. Fr3.A.2, pp. V3571–V3572.
go back to reference Koch, P., Mettin, R., and Lauterborn, W. (2004b). Simulation of cavitation bubbles in travelling acoustic waves. In: Casseraeu, D. (ed.), Proceedings CFA/DAGA´04 Strasbourg, DEGA Oldenburg, pp. 919–920. Koch, P., Mettin, R., and Lauterborn, W. (2004b). Simulation of cavitation bubbles in travelling acoustic waves. In: Casseraeu, D. (ed.), Proceedings CFA/DAGA´04 Strasbourg, DEGA Oldenburg, pp. 919–920.
go back to reference Kornfeld, M., and Suvorov, L. (1944). On the destructive action of cavitation. Journal of Applied Physics, 15, 495–506.CrossRef Kornfeld, M., and Suvorov, L. (1944). On the destructive action of cavitation. Journal of Applied Physics, 15, 495–506.CrossRef
go back to reference Krefting, D., Mettin, R., and Lauterborn, W. (2004). High-speed observation of acoustic cavitation erosion in multibubble systems. Ultrasonics Sonochemistry, 11, 119–123.CrossRef Krefting, D., Mettin, R., and Lauterborn, W. (2004). High-speed observation of acoustic cavitation erosion in multibubble systems. Ultrasonics Sonochemistry, 11, 119–123.CrossRef
go back to reference Labouret, S., Frohly, J., and Rivart, F. (2006). Evolution of an 1 MHz ultrasonic cavitation bubble field in a chopped irradiation mode. Ultrasonics Sonochemistry, 13(4), 287–294.CrossRef Labouret, S., Frohly, J., and Rivart, F. (2006). Evolution of an 1 MHz ultrasonic cavitation bubble field in a chopped irradiation mode. Ultrasonics Sonochemistry, 13(4), 287–294.CrossRef
go back to reference Lauterborn, W. (1976). Numerical investigation of nonlinear oscillations of gas bubbles in liquids. Journal of the Acoustical Society of America, 59(2), 283–296.CrossRef Lauterborn, W. (1976). Numerical investigation of nonlinear oscillations of gas bubbles in liquids. Journal of the Acoustical Society of America, 59(2), 283–296.CrossRef
go back to reference Lauterborn, W., and Bolle, H. (1975). Experimental investigations of cavitation-bubble collapse in the neighborhood of a solid boundary. Journal of Fluid Mechanics, 72, 391–399.CrossRef Lauterborn, W., and Bolle, H. (1975). Experimental investigations of cavitation-bubble collapse in the neighborhood of a solid boundary. Journal of Fluid Mechanics, 72, 391–399.CrossRef
go back to reference Lauterborn, W., and Cramer, E. (1981a). On the dynamics of acoustic cavitation noise spectra. Acustica, 49, 280–287. Lauterborn, W., and Cramer, E. (1981a). On the dynamics of acoustic cavitation noise spectra. Acustica, 49, 280–287.
go back to reference Lauterborn, W., and Cramer, E. (1981b). Subharmonic route to chaos observed in acoustics. Physics Review Letters, 47(20), 1445–1448.CrossRef Lauterborn, W., and Cramer, E. (1981b). Subharmonic route to chaos observed in acoustics. Physics Review Letters, 47(20), 1445–1448.CrossRef
go back to reference Lauterborn, W., Kurz, T., Mettin, R., and Ohl, C. D. (1999). Experimental and theoretical bubble dynamics. Advanced in Chemical Physics, 110, 295–380.CrossRef Lauterborn, W., Kurz, T., Mettin, R., and Ohl, C. D. (1999). Experimental and theoretical bubble dynamics. Advanced in Chemical Physics, 110, 295–380.CrossRef
go back to reference Lauterborn, W., and Mettin, R. (1999). Nonlinear bubble dynamics: response curves and more. In: Crum, L. A., Mason, T. J., Reisse, J. L., and Suslick, K. S. (eds.), Sonochemistry and Sonoluminescence, pp. 63–72. Dordrecht, Kluwer. Proceedings of the NATO Advanced Study Institute on Sonoluminescence and Sonoluminescence, Leavenworth, Washington, DC, 18–29 August 1997. Lauterborn, W., and Mettin, R. (1999). Nonlinear bubble dynamics: response curves and more. In: Crum, L. A., Mason, T. J., Reisse, J. L., and Suslick, K. S. (eds.), Sonochemistry and Sonoluminescence, pp. 63–72. Dordrecht, Kluwer. Proceedings of the NATO Advanced Study Institute on Sonoluminescence and Sonoluminescence, Leavenworth, Washington, DC, 18–29 August 1997.
go back to reference Leighton, T. G. (1994). The acoustic bubble. London, Academic. Leighton, T. G. (1994). The acoustic bubble. London, Academic.
go back to reference Leighton, T. G. (1995). Bubble population phenomena in acoustic cavitation. Ultrasonics Sonochemistry, 2(2), S123–S136.CrossRef Leighton, T. G. (1995). Bubble population phenomena in acoustic cavitation. Ultrasonics Sonochemistry, 2(2), S123–S136.CrossRef
go back to reference Lezzi, A., and Prosperetti, A. (1987). Bubble dynamics in a compressible liquid. Part 2. Second-order theory. Journal of Fluid Mechanics, 185, 289–321.CrossRef Lezzi, A., and Prosperetti, A. (1987). Bubble dynamics in a compressible liquid. Part 2. Second-order theory. Journal of Fluid Mechanics, 185, 289–321.CrossRef
go back to reference Li, M. K., and Fogler, H. S. (2004). Acoustic emulsification. Part 2. Breakup of the large primary oil droplets in a water medium. Journal of Fluid Mechanics, 88, 513–528.CrossRef Li, M. K., and Fogler, H. S. (2004). Acoustic emulsification. Part 2. Breakup of the large primary oil droplets in a water medium. Journal of Fluid Mechanics, 88, 513–528.CrossRef
go back to reference Lin, H., Storey, B. D., and Szeri, A. J. (2002a). Inertially driven inhomogeneities in violently collapsing bubbles: the validity of the Rayleigh-Plesset equation. Journal of Fluid Mechanics, 452(10), 145–162. Lin, H., Storey, B. D., and Szeri, A. J. (2002a). Inertially driven inhomogeneities in violently collapsing bubbles: the validity of the Rayleigh-Plesset equation. Journal of Fluid Mechanics, 452(10), 145–162.
go back to reference Lin, H., Storey, B. D., and Szeri, A. J. (2002b). Rayleigh-Taylor instability of violently collapsing bubbles. Physics of Fluids, 14(8), 2925–2928.CrossRef Lin, H., Storey, B. D., and Szeri, A. J. (2002b). Rayleigh-Taylor instability of violently collapsing bubbles. Physics of Fluids, 14(8), 2925–2928.CrossRef
go back to reference Lindau, O., and Lauterborn, W. (2003). Cinematographic observation of the collapse and rebound of a laser-produced cavitation bubble near a wall. Journal of Fluid Mechanics, 479, 327–348.CrossRef Lindau, O., and Lauterborn, W. (2003). Cinematographic observation of the collapse and rebound of a laser-produced cavitation bubble near a wall. Journal of Fluid Mechanics, 479, 327–348.CrossRef
go back to reference Löfstedt, R., Barber, B. P., and Putterman, S. J. (1993). Toward a hydrodynamic theory of sonoluminescence. Physics of Fluids, A5(11), 2911–2928. Löfstedt, R., Barber, B. P., and Putterman, S. J. (1993). Toward a hydrodynamic theory of sonoluminescence. Physics of Fluids, A5(11), 2911–2928.
go back to reference Löfstedt, R., Weninger, K., Putterman, S., and Barber, B. P. (1995). Sonoluminescing bubbles and mass diffusion. Physical Review E, 51(5), 4400–4410.CrossRef Löfstedt, R., Weninger, K., Putterman, S., and Barber, B. P. (1995). Sonoluminescing bubbles and mass diffusion. Physical Review E, 51(5), 4400–4410.CrossRef
go back to reference Lohse, D., and Hilgenfeldt, S. (1997). Inert gas accumulation in sonoluminescing bubbles. Journal of Chemical Physics, 107(17), 6986–6997.CrossRef Lohse, D., and Hilgenfeldt, S. (1997). Inert gas accumulation in sonoluminescing bubbles. Journal of Chemical Physics, 107(17), 6986–6997.CrossRef
go back to reference Lohse, D., Brenner, M. P., Dupont, T. F., Hilgenfeldt, S., and Johnston, B. (1997). Sonoluminescing air bubbles rectify argon. Physics Review Letters, 78(7), 1359–1362.CrossRef Lohse, D., Brenner, M. P., Dupont, T. F., Hilgenfeldt, S., and Johnston, B. (1997). Sonoluminescing air bubbles rectify argon. Physics Review Letters, 78(7), 1359–1362.CrossRef
go back to reference Louisnard, O., and Gomez, F. (2003). Growth by rectified diffusion of strongly acoustically forced gas bubbles in nearly saturated liquids. Physical Review E, 67(036610), 1–12. Louisnard, O., and Gomez, F. (2003). Growth by rectified diffusion of strongly acoustically forced gas bubbles in nearly saturated liquids. Physical Review E, 67(036610), 1–12.
go back to reference Magnaudet, J. (1997). The forces acting on bubbles and rigid particles. In: ASME Fluids Engineering Division Summer Meeting, Vancouver, Canada, paper 97–3522. Magnaudet, J. (1997). The forces acting on bubbles and rigid particles. In: ASME Fluids Engineering Division Summer Meeting, Vancouver, Canada, paper 97–3522.
go back to reference Magnaudet, J., and Legendre, D. (1998). The viscous drag force on a spherical bubble with a time-dependent radius. Physics of Fluids, 10, 550–554.CrossRef Magnaudet, J., and Legendre, D. (1998). The viscous drag force on a spherical bubble with a time-dependent radius. Physics of Fluids, 10, 550–554.CrossRef
go back to reference Mason, T. J. (1999). Laboratory equipment and usage considerations. In: Crum, L. A., Mason, T. J., Reisse, J. L., and Suslick, K. S. (eds.), Sonochemistry and sonoluminescence, pp. 245–258. Dordrecht, Kluwer. Proceedings of the NATO Advanced Study Institute on Sonoluminescence and Sonoluminescence, Leavenworth, Washington, DC, 18–29 August 1997. Mason, T. J. (1999). Laboratory equipment and usage considerations. In: Crum, L. A., Mason, T. J., Reisse, J. L., and Suslick, K. S. (eds.), Sonochemistry and sonoluminescence, pp. 245–258. Dordrecht, Kluwer. Proceedings of the NATO Advanced Study Institute on Sonoluminescence and Sonoluminescence, Leavenworth, Washington, DC, 18–29 August 1997.
go back to reference Matula, T. J. (2000). Single-bubble sonoluminescence in microgravity. Ultrasonics, 357, 203–223. Matula, T. J. (2000). Single-bubble sonoluminescence in microgravity. Ultrasonics, 357, 203–223.
go back to reference Matula, T. J., and Crum, L. A. (1998). Evidence of gas exchange in single-bubble sonoluminescence. Physics Review Letters, 80(4), 865–868.CrossRef Matula, T. J., and Crum, L. A. (1998). Evidence of gas exchange in single-bubble sonoluminescence. Physics Review Letters, 80(4), 865–868.CrossRef
go back to reference Matula, T. J., Roy, R. A., Mourad, P. D., McNamara, W. B., and Suslick, K. S. (1995). Comparison of multibubble and single-bubble sonoluminescence spectra. Physics Review Letters, 75(13), 2602–2605.CrossRef Matula, T. J., Roy, R. A., Mourad, P. D., McNamara, W. B., and Suslick, K. S. (1995). Comparison of multibubble and single-bubble sonoluminescence spectra. Physics Review Letters, 75(13), 2602–2605.CrossRef
go back to reference McNamara, W. B., Didenko, Y. T., and Suslick, K. S. (1999). Sonoluminescence temperatures during multi-bubble cavitation. Nature, 401, 772–775.CrossRef McNamara, W. B., Didenko, Y. T., and Suslick, K. S. (1999). Sonoluminescence temperatures during multi-bubble cavitation. Nature, 401, 772–775.CrossRef
go back to reference Mettin, R. (2005). Bubble structures in acoustic cavitation. In: Doinikov, A. A. (ed.), Bubble and particle dynamics in acoustic fields: Modern trends and applications, pp. 1–36. Kerala (India), Research Signpost. Mettin, R. (2005). Bubble structures in acoustic cavitation. In: Doinikov, A. A. (ed.), Bubble and particle dynamics in acoustic fields: Modern trends and applications, pp. 1–36. Kerala (India), Research Signpost.
go back to reference Mettin, R., Akhatov, I., Parlitz, U., Ohl, C. D., and Lauterborn, W. (1997). Bjerknes force between small cavitation bubbles in a strong acoustic field. Physical Review E, 56(3), 2924–2931.CrossRef Mettin, R., Akhatov, I., Parlitz, U., Ohl, C. D., and Lauterborn, W. (1997). Bjerknes force between small cavitation bubbles in a strong acoustic field. Physical Review E, 56(3), 2924–2931.CrossRef
go back to reference Mettin, R., Koch, P., Lauterborn, W., and Krefting, D. (11-15 September 2006). Modeling acoustic cavitation with bubble redistribution. Sixth International Symposium on Cavitation – CAV2006 (Paper 75), Wageningen (The Netherlands), pp. 125–129. Mettin, R., Koch, P., Lauterborn, W., and Krefting, D. (11-15 September 2006). Modeling acoustic cavitation with bubble redistribution. Sixth International Symposium on Cavitation – CAV2006 (Paper 75), Wageningen (The Netherlands), pp. 125–129.
go back to reference Mettin, R., Luther, S., and Lauterborn, W. (1999a). Bubble size distribution and structures in acoustic cavitation. Proceedings of 2nd conference on Applications of Power Ultrasound in Physical and Chemical Processing, Toulouse, France, pp. 125–129. Mettin, R., Luther, S., and Lauterborn, W. (1999a). Bubble size distribution and structures in acoustic cavitation. Proceedings of 2nd conference on Applications of Power Ultrasound in Physical and Chemical Processing, Toulouse, France, pp. 125–129.
go back to reference Mettin, R., Luther, S., Ohl, C. D., and Lauterborn, W. (1999b). Acoustic cavitation structures and simulations by a particle model. Ultrasonics Sonochemistry, 6, 25–29.CrossRef Mettin, R., Luther, S., Ohl, C. D., and Lauterborn, W. (1999b). Acoustic cavitation structures and simulations by a particle model. Ultrasonics Sonochemistry, 6, 25–29.CrossRef
go back to reference Miksis, M. J., and Ting, L. (1984). Nonlinear radial oscillations of a gas bubble including thermal effects. Journal of the Acoustical Society of America, 76(3), 897–905.CrossRef Miksis, M. J., and Ting, L. (1984). Nonlinear radial oscillations of a gas bubble including thermal effects. Journal of the Acoustical Society of America, 76(3), 897–905.CrossRef
go back to reference Moussatov, A., Granger, C., and Dubus, B. (2003a). Cone-like bubble formation in ultrasonic cavitation field. Ultrasonics Sonochemistry, 10, 191–195.CrossRef Moussatov, A., Granger, C., and Dubus, B. (2003a). Cone-like bubble formation in ultrasonic cavitation field. Ultrasonics Sonochemistry, 10, 191–195.CrossRef
go back to reference Moussatov, A., Mettin, R., Granger, C., Tervo, T., Dubus, B., and Lauterborn, W. (2003b, 7-10 September). Evolution of acoustic cavitation structures near larger emitting surface. Proceedings of the World Congress on Ultrasonics, Paris (France), pp. 955–958. Moussatov, A., Mettin, R., Granger, C., Tervo, T., Dubus, B., and Lauterborn, W. (2003b, 7-10 September). Evolution of acoustic cavitation structures near larger emitting surface. Proceedings of the World Congress on Ultrasonics, Paris (France), pp. 955–958.
go back to reference Neppiras, E. A. (1969). Subharmonic and other low-frequency emission from bubbles in sound-irradiated liquids. Journal of the Acoustical Society of America, 46, 587–601.CrossRef Neppiras, E. A. (1969). Subharmonic and other low-frequency emission from bubbles in sound-irradiated liquids. Journal of the Acoustical Society of America, 46, 587–601.CrossRef
go back to reference Neppiras, E. A. (1980). Acoustic cavitation. Physics Report, 61, 159–251.CrossRef Neppiras, E. A. (1980). Acoustic cavitation. Physics Report, 61, 159–251.CrossRef
go back to reference Noltingk, B. E., and Neppiras, E. A. (1950). Cavitation produced by ultrasonics. Proceedings of the Physical Society, B63, 674–685. Noltingk, B. E., and Neppiras, E. A. (1950). Cavitation produced by ultrasonics. Proceedings of the Physical Society, B63, 674–685.
go back to reference Nyborg, W. L., and Hughes, D. E. (1967). Bubble annihilation in cavitation streamers. Journal of the Acoustical Society of America, 42(4), 891–894. Nyborg, W. L., and Hughes, D. E. (1967). Bubble annihilation in cavitation streamers. Journal of the Acoustical Society of America, 42(4), 891–894.
go back to reference Oguz, H. N., and Prosperetti, A. (1990). A generalization of the impulse and virial theorems with an application to bubble oscillations. Journal of Fluid Mechanics, 218, 143–162.CrossRef Oguz, H. N., and Prosperetti, A. (1990). A generalization of the impulse and virial theorems with an application to bubble oscillations. Journal of Fluid Mechanics, 218, 143–162.CrossRef
go back to reference Ohl, C. D., Lindau, O., and Lauterborn, W. (1998). Luminescence from spherically and aspherically collapsing laser bubbles. Physics Review Letters, 80, 393–396.CrossRef Ohl, C. D., Lindau, O., and Lauterborn, W. (1998). Luminescence from spherically and aspherically collapsing laser bubbles. Physics Review Letters, 80, 393–396.CrossRef
go back to reference Parlitz, U., Mettin, R., Luther, S., Akhatov, I., Voss, M., and Lauterborn, W. (1999). Spatio temporal dynamics of acoustic cavitation bubble clouds. Philosophical Transactions of the Royal Society London A, 357, 313–334.CrossRef Parlitz, U., Mettin, R., Luther, S., Akhatov, I., Voss, M., and Lauterborn, W. (1999). Spatio temporal dynamics of acoustic cavitation bubble clouds. Philosophical Transactions of the Royal Society London A, 357, 313–334.CrossRef
go back to reference Pecha, R., and Gompf, B. (2000). Microimplosions: cavitation collapse and shock wave emission on a nanosecond time scale. Physics Review Letters, 84(6), 1328–1330.CrossRef Pecha, R., and Gompf, B. (2000). Microimplosions: cavitation collapse and shock wave emission on a nanosecond time scale. Physics Review Letters, 84(6), 1328–1330.CrossRef
go back to reference Pelekasis, N. A., and Tsamopoulos, J. A. (1993). Bjerknes forces between two bubbles. Part 2. Response to an oscillatory pressure field. Journal of Fluid Mechanics, 254, 501–527.CrossRef Pelekasis, N. A., and Tsamopoulos, J. A. (1993). Bjerknes forces between two bubbles. Part 2. Response to an oscillatory pressure field. Journal of Fluid Mechanics, 254, 501–527.CrossRef
go back to reference Pétrier, C., and Francony, A. (1997). Ultrasonic waste-water treatment: incidence of ultrasonic frequency on the rate of phenol and carbon tetrachloride degradation. Ultrasonics Sonochemistry, 4, 295–300.CrossRef Pétrier, C., and Francony, A. (1997). Ultrasonic waste-water treatment: incidence of ultrasonic frequency on the rate of phenol and carbon tetrachloride degradation. Ultrasonics Sonochemistry, 4, 295–300.CrossRef
go back to reference Philipp, A., and Lauterborn, W. (1998). Cavitation erosion by single laser-produced bubbles. Journal of Fluid Mechanics, 361, 75–116.CrossRef Philipp, A., and Lauterborn, W. (1998). Cavitation erosion by single laser-produced bubbles. Journal of Fluid Mechanics, 361, 75–116.CrossRef
go back to reference Plesset, M. S. (1949). The dynamics of cavitation bubbles. Journal of Applied Mechanics, 16, 277–282. Plesset, M. S. (1949). The dynamics of cavitation bubbles. Journal of Applied Mechanics, 16, 277–282.
go back to reference Plesset, M. S., and Mitchell, T. P. (1956). On the stability of the spherical shape of a vapor cavity in a liquid. Quarterly of Applied Mathematics, 13(4), 419–430. Plesset, M. S., and Mitchell, T. P. (1956). On the stability of the spherical shape of a vapor cavity in a liquid. Quarterly of Applied Mathematics, 13(4), 419–430.
go back to reference Plesset, M. S., and Prosperetti, A. (1977). Bubble dynamics and cavitation. Annual Review of Fluid Mechanics, 9, 145–185.CrossRef Plesset, M. S., and Prosperetti, A. (1977). Bubble dynamics and cavitation. Annual Review of Fluid Mechanics, 9, 145–185.CrossRef
go back to reference Prosperetti, A. (1977a). Thermal effects and damping mechanisms in the forced radial oscillations of gas bubbles in liquids. Journal of the Acoustical Society of America, 61(1), 17–27.CrossRef Prosperetti, A. (1977a). Thermal effects and damping mechanisms in the forced radial oscillations of gas bubbles in liquids. Journal of the Acoustical Society of America, 61(1), 17–27.CrossRef
go back to reference Prosperetti, A. (1977b). Viscous effects on perturbed spherical flows. Quarterly of Applied Mathematics, 34, 339–352. Prosperetti, A. (1977b). Viscous effects on perturbed spherical flows. Quarterly of Applied Mathematics, 34, 339–352.
go back to reference Prosperetti, A. (1991). The thermal behaviour of oscillating gas bubbles. Journal of Fluid Mechanics, 222, 587–616.CrossRef Prosperetti, A. (1991). The thermal behaviour of oscillating gas bubbles. Journal of Fluid Mechanics, 222, 587–616.CrossRef
go back to reference Prosperetti, A. (1997). A new mechanism for sonoluminescence. Journal of the Acoustical Society of America, 101(4), 2003–2007.CrossRef Prosperetti, A. (1997). A new mechanism for sonoluminescence. Journal of the Acoustical Society of America, 101(4), 2003–2007.CrossRef
go back to reference Prosperetti, A. (1999). Old-fashioned bubble dynamics. In: Crum, L. A., Mason, T. J., Reisse, J. L., and Suslick, K. S. (eds.), Sonochemistry and sonoluminescence, pp. 39–62. Dordrecht, Kluwer. Proceedings of the NATO Advanced Study Institute on Sonoluminescence and Sonoluminescence, Leavenworth, Washington, DC, 18–29 August 1997. Prosperetti, A. (1999). Old-fashioned bubble dynamics. In: Crum, L. A., Mason, T. J., Reisse, J. L., and Suslick, K. S. (eds.), Sonochemistry and sonoluminescence, pp. 39–62. Dordrecht, Kluwer. Proceedings of the NATO Advanced Study Institute on Sonoluminescence and Sonoluminescence, Leavenworth, Washington, DC, 18–29 August 1997.
go back to reference Prosperetti, A., and Hao, Y. (1999). Modelling of spherical gas bubble oscillations and sonoluminescence. Philosophical Transactions of the Royal Society London A, 357, 203–223.CrossRef Prosperetti, A., and Hao, Y. (1999). Modelling of spherical gas bubble oscillations and sonoluminescence. Philosophical Transactions of the Royal Society London A, 357, 203–223.CrossRef
go back to reference Prosperetti, A., and Lezzi, A. (1986). Bubble dynamics in a compressible liquid. Part 1. First-order theory. Journal of Fluid Mechanics, 168, 457–478.CrossRef Prosperetti, A., and Lezzi, A. (1986). Bubble dynamics in a compressible liquid. Part 1. First-order theory. Journal of Fluid Mechanics, 168, 457–478.CrossRef
go back to reference Prosperetti, A., and Seminara, G. (1978). Linear stability of a growing or collapsing bubble in a slightly viscous liquid. Physics of Fluids, 21(9), 1465–1470.CrossRef Prosperetti, A., and Seminara, G. (1978). Linear stability of a growing or collapsing bubble in a slightly viscous liquid. Physics of Fluids, 21(9), 1465–1470.CrossRef
go back to reference Prosperetti, A., Crum, L. A., and Commander, K. W. (1988). Nonlinear bubble dynamics. Journal of the Acoustical Society of America, 83, 502–514.CrossRef Prosperetti, A., Crum, L. A., and Commander, K. W. (1988). Nonlinear bubble dynamics. Journal of the Acoustical Society of America, 83, 502–514.CrossRef
go back to reference Putterman, S. J., and Weninger, K. R. (2000). Sonoluminescence: How bubbles turn into light. Annual Review of Fluid Mechanics, 32, 445–476.CrossRef Putterman, S. J., and Weninger, K. R. (2000). Sonoluminescence: How bubbles turn into light. Annual Review of Fluid Mechanics, 32, 445–476.CrossRef
go back to reference Ratoarinoro, Contamine, F., Wilhelm, A. M., Berlan, J., and Delmas, H. (1995). Power measurement in sonochemistry. Ultrasonics Sonochemistry, 2(1), S43–S47.CrossRef Ratoarinoro, Contamine, F., Wilhelm, A. M., Berlan, J., and Delmas, H. (1995). Power measurement in sonochemistry. Ultrasonics Sonochemistry, 2(1), S43–S47.CrossRef
go back to reference Rayleigh, Lord. (1917). On the pressure developed in a liquid during the collapse of a spherical cavity. Philosophical Magazine, 34, 94–98. Rayleigh, Lord. (1917). On the pressure developed in a liquid during the collapse of a spherical cavity. Philosophical Magazine, 34, 94–98.
go back to reference Reddy, A. J., and Szeri, A. J. (2002). Shape stability of unsteadily translating bubbles. Physics of Fluids, 14(7), 2216–2224.CrossRef Reddy, A. J., and Szeri, A. J. (2002). Shape stability of unsteadily translating bubbles. Physics of Fluids, 14(7), 2216–2224.CrossRef
go back to reference Rozenberg, L. D. (ed.). (1971a). High-intensity ultrasonic fields. New York, NY, Plenum Press. Rozenberg, L. D. (ed.). (1971a). High-intensity ultrasonic fields. New York, NY, Plenum Press.
go back to reference Rozenberg, L. D. (1971b). The cavitation zone. In: Rozenberg, L. D. (ed.), High-intensity ultrasonic fields. New-York, NY, Plenum Press. Rozenberg, L. D. (1971b). The cavitation zone. In: Rozenberg, L. D. (ed.), High-intensity ultrasonic fields. New-York, NY, Plenum Press.
go back to reference Rozenberg, L. D. (ed.). (1973). Physical principles of ultrasonic technology. New York, NY, Plenum Press. Rozenberg, L. D. (ed.). (1973). Physical principles of ultrasonic technology. New York, NY, Plenum Press.
go back to reference Servant, G., Caltagirone, J. P., Girard, A., Laborde, J. L., and Hita, A. (2000). Numerical simulation of cavitation bubble dynamics induced by ultrasound waves in a high frequency reactor. Ultrasonics Sonochemistry, 7, 217–227.CrossRef Servant, G., Caltagirone, J. P., Girard, A., Laborde, J. L., and Hita, A. (2000). Numerical simulation of cavitation bubble dynamics induced by ultrasound waves in a high frequency reactor. Ultrasonics Sonochemistry, 7, 217–227.CrossRef
go back to reference Servant, G., Laborde, J. L., Hita, A., Caltagirone, J. P., and Girard, A. (2003). On the interaction between ultrasound waves and bubble clouds in mono- and dual-frequency sonoreactors. Ultrasonics Sonochemistry, 10(6), 347–355.CrossRef Servant, G., Laborde, J. L., Hita, A., Caltagirone, J. P., and Girard, A. (2003). On the interaction between ultrasound waves and bubble clouds in mono- and dual-frequency sonoreactors. Ultrasonics Sonochemistry, 10(6), 347–355.CrossRef
go back to reference Silberman, E. (1957). Sound velocity and attenuation in bubbly mixtures measured in standing wave tubes. Journal of the Acoustical Society of America, 29(8), 925–933.CrossRef Silberman, E. (1957). Sound velocity and attenuation in bubbly mixtures measured in standing wave tubes. Journal of the Acoustical Society of America, 29(8), 925–933.CrossRef
go back to reference Sirotyuk, M. G. (1971). Experimental investigations of ultrasonic cavitation. In: Rozenberg, L. D. (ed.), High-intensity ultrasonic fields. New-York, NY, Plenum Press. Sirotyuk, M. G. (1971). Experimental investigations of ultrasonic cavitation. In: Rozenberg, L. D. (ed.), High-intensity ultrasonic fields. New-York, NY, Plenum Press.
go back to reference Storey, B. D., and Szeri, A.J. (2000). Water vapour, sonoluminescence and sonochemistry. Proceedings of the Royal Society of London, Series A, 456, 1685–1709.CrossRef Storey, B. D., and Szeri, A.J. (2000). Water vapour, sonoluminescence and sonochemistry. Proceedings of the Royal Society of London, Series A, 456, 1685–1709.CrossRef
go back to reference Storey, B. D., and Szeri, A.J. (2001). A reduced model of cavitation physics for use in sonochemistry. Proceedings of the Royal Society of London, Series A, 457, 1685–1700.CrossRef Storey, B. D., and Szeri, A.J. (2001). A reduced model of cavitation physics for use in sonochemistry. Proceedings of the Royal Society of London, Series A, 457, 1685–1700.CrossRef
go back to reference Storey, B. D., and Szeri, A. J. (2002). Argon rectification and the cause of light emission in single-bubble sonoluminescence. Physics Review Letters, 88(7), 074301-1–074301-3.CrossRef Storey, B. D., and Szeri, A. J. (2002). Argon rectification and the cause of light emission in single-bubble sonoluminescence. Physics Review Letters, 88(7), 074301-1–074301-3.CrossRef
go back to reference Storey, B. D., Lin, H., and Szeri, A. J. (2001). Physically realistic models of catastrophic bubble collapses. In: Fourth International Symposium on Cavitation. California Institute of Technology, Pasadena, CA, June 20–23. Storey, B. D., Lin, H., and Szeri, A. J. (2001). Physically realistic models of catastrophic bubble collapses. In: Fourth International Symposium on Cavitation. California Institute of Technology, Pasadena, CA, June 20–23.
go back to reference Strasberg, A. (1961). Rectified diffusion: Comments on a paper of Hsieh and Plesset. Journal of the Acoustical Society of America – Letters to the Editor, 33, 359.CrossRef Strasberg, A. (1961). Rectified diffusion: Comments on a paper of Hsieh and Plesset. Journal of the Acoustical Society of America – Letters to the Editor, 33, 359.CrossRef
go back to reference Strasberg, M., and Benjamin, T. B. (1958). Excitation of oscillations in the shape of pulsating gas bubbles. Journal of the Acoustical Society of America (Abstract), 30, 697.CrossRef Strasberg, M., and Benjamin, T. B. (1958). Excitation of oscillations in the shape of pulsating gas bubbles. Journal of the Acoustical Society of America (Abstract), 30, 697.CrossRef
go back to reference Suslick, K. S., McNamara, W. B., and Didenko, Y. (1999). Hot spot conditions during multi-bubble cavitation. In: Crum, L. A., Mason, T. J., Reisse, J. L., and Suslick, K. S. (eds.), Sonochemistry and sonoluminescence, pp. 191–204. Dordrecht, Kluwer. Proceedings of the NATO Advanced Study Institute on Sonoluminescence and Sonoluminescence, Leavenworth, Washington, DC, 18–29 August 1997. Suslick, K. S., McNamara, W. B., and Didenko, Y. (1999). Hot spot conditions during multi-bubble cavitation. In: Crum, L. A., Mason, T. J., Reisse, J. L., and Suslick, K. S. (eds.), Sonochemistry and sonoluminescence, pp. 191–204. Dordrecht, Kluwer. Proceedings of the NATO Advanced Study Institute on Sonoluminescence and Sonoluminescence, Leavenworth, Washington, DC, 18–29 August 1997.
go back to reference Toegel, R., Gompf, B., Pecha, R., and Lohse, D. (2000a). Does water vapor prevent upscaling sonoluminescence? Physics Review Letters, 85(15), 3165–3168.CrossRef Toegel, R., Gompf, B., Pecha, R., and Lohse, D. (2000a). Does water vapor prevent upscaling sonoluminescence? Physics Review Letters, 85(15), 3165–3168.CrossRef
go back to reference Toegel, R., Hilgenfeldt, S., and Lohse, D. (2000b). Squeezing alcohols into sonoluminescing bubbles: the universal role of surfactants. Physics Review Letters, 84(11), 2509–2512.CrossRef Toegel, R., Hilgenfeldt, S., and Lohse, D. (2000b). Squeezing alcohols into sonoluminescing bubbles: the universal role of surfactants. Physics Review Letters, 84(11), 2509–2512.CrossRef
go back to reference Tomita, Y., and Shima, A. (1977). On the behaviour of a spherical bubble and the impulse pressure in a viscous compressible liquid. Bulletin of the JSME, 20(149), 1453–1460. Tomita, Y., and Shima, A. (1977). On the behaviour of a spherical bubble and the impulse pressure in a viscous compressible liquid. Bulletin of the JSME, 20(149), 1453–1460.
go back to reference Vazquez, G. E., and Putterman, S. J. (2000). Tempurature and pressure dependence of sonoluminescence. Physics Review Letters, 85(14), 3037–3040.CrossRef Vazquez, G. E., and Putterman, S. J. (2000). Tempurature and pressure dependence of sonoluminescence. Physics Review Letters, 85(14), 3037–3040.CrossRef
go back to reference Walton, A. J., and Reynolds, G. T. (1984). Sonoluminescence. Advances in Physics, 33(6), 595–660.CrossRef Walton, A. J., and Reynolds, G. T. (1984). Sonoluminescence. Advances in Physics, 33(6), 595–660.CrossRef
go back to reference Wijngaarden, V. L. (1968). On the equations of motion for mixtures of liquid and gas bubbles. Journal of Fluid Mechanics, 33(3), 465–474.CrossRef Wijngaarden, V. L. (1968). On the equations of motion for mixtures of liquid and gas bubbles. Journal of Fluid Mechanics, 33(3), 465–474.CrossRef
go back to reference Yasui, K. (1997). Alternative model of single-bubble sonoluminescence. Physical Review E, 56, 6750–6760.CrossRef Yasui, K. (1997). Alternative model of single-bubble sonoluminescence. Physical Review E, 56, 6750–6760.CrossRef
go back to reference Yasui, K. (2001). Effect of liquid temperature on sonoluminescence. Physical Review E, 64(016310), 1–10. Yasui, K. (2001). Effect of liquid temperature on sonoluminescence. Physical Review E, 64(016310), 1–10.
go back to reference Yasui, K., Tuziuti, T., and Iida, Y. (2005). Dependence of the characteristics of bubbles on types of sonochemical reactors. Ultrasonics Sonochemistry, 12, 43–51.CrossRef Yasui, K., Tuziuti, T., and Iida, Y. (2005). Dependence of the characteristics of bubbles on types of sonochemical reactors. Ultrasonics Sonochemistry, 12, 43–51.CrossRef
go back to reference Yuan, L., Ho, C. Y., Chu, M. C., and Leung, P. T. (2001). Role of gas density in the stability of single-bubble sonoluminescence. Physical Review E, 64(016317), 1–6. Yuan, L., Ho, C. Y., Chu, M. C., and Leung, P. T. (2001). Role of gas density in the stability of single-bubble sonoluminescence. Physical Review E, 64(016317), 1–6.
go back to reference Zardi, D., and Seminara, G. (1995). Chaotic mode competition in the shape oscillations of pulsating bubbles. Journal of Fluid Mechanics, 286, 257–276.CrossRef Zardi, D., and Seminara, G. (1995). Chaotic mode competition in the shape oscillations of pulsating bubbles. Journal of Fluid Mechanics, 286, 257–276.CrossRef
Metadata
Title
Acoustic Cavitation
Authors
Olivier Louisnard
José González-García
Copyright Year
2011
Publisher
Springer New York
DOI
https://doi.org/10.1007/978-1-4419-7472-3_2