Skip to main content
Top
Published in:
Cover of the book

2011 | OriginalPaper | Chapter

1. The Physical and Chemical Effects of Ultrasound

Authors : Sandra Kentish, Muthupandian Ashokkumar

Published in: Ultrasound Technologies for Food and Bioprocessing

Publisher: Springer New York

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Ultrasound refers to sound waves above the human hearing range. The physical effects of ultrasound include the turbulence associated with cavitational bubble collapse, microjetting, and the streaming movement of cavitational microbubbles to the pressure antinodes of a standing wave field. These physical effects are strongest near to fluid/solid and fluid/fluid boundaries, which mean that ultrasound is extremely effective in enhancing heat and mass transfer within such boundary layers. Chemical effects arise from free radical production during transient cavitational collapse of bubbles.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Ashokkumar, M., and Grieser, F. (2004). Single bubble sonoluminescence-a chemist’s overview. ChemPhysChem, 5(4), 439–448.CrossRef Ashokkumar, M., and Grieser, F. (2004). Single bubble sonoluminescence-a chemist’s overview. ChemPhysChem, 5(4), 439–448.CrossRef
go back to reference Ashokkumar, M., Lee, J., Kentish, S., and Grieser, F. (2007). Bubbles in an acoustic field: An overview. Ultrasonics Sonochemistry, 14(4), 470–475.CrossRef Ashokkumar, M., Lee, J., Kentish, S., and Grieser, F. (2007). Bubbles in an acoustic field: An overview. Ultrasonics Sonochemistry, 14(4), 470–475.CrossRef
go back to reference Ashokkumar, M., and Mason, T. J. (2007). Sonochemistry. Kirk-Othmer Encyclopedia of Chemical Technology. New York, NY, Wiley. Ashokkumar, M., and Mason, T. J. (2007). Sonochemistry. Kirk-Othmer Encyclopedia of Chemical Technology. New York, NY, Wiley.
go back to reference Ashokkumar, M., Sunartio, D., Kentish, S., Mawson, R., Simons, L., Vilkhu, K., and Versteeg, C. (2008). Modification of food ingredients by ultrasound to improve functionality: A preliminary study on a model system. Innovative Food Science and Emerging Technologies, 9(2), 155–160.CrossRef Ashokkumar, M., Sunartio, D., Kentish, S., Mawson, R., Simons, L., Vilkhu, K., and Versteeg, C. (2008). Modification of food ingredients by ultrasound to improve functionality: A preliminary study on a model system. Innovative Food Science and Emerging Technologies, 9(2), 155–160.CrossRef
go back to reference Bondy, C., and Sollner, K. (1935). On the mechanism of emulsification by ultrasonic waves. Transactions of the Faraday Society, 31, 835–842.CrossRef Bondy, C., and Sollner, K. (1935). On the mechanism of emulsification by ultrasonic waves. Transactions of the Faraday Society, 31, 835–842.CrossRef
go back to reference Brennen, C. E. (1995). Cavitation and Bubble Dynamics. New York, NY, Oxford University Press. Brennen, C. E. (1995). Cavitation and Bubble Dynamics. New York, NY, Oxford University Press.
go back to reference Cioffi, M., and Wolfersberger, M. G. (1983). Isolation of separate apical, lateral and basal plasma membrane from cells of an insect epithelium. A procedure based on tissue organization and ultrastructure. Tissue and Cell, 15(5), 781–803.CrossRef Cioffi, M., and Wolfersberger, M. G. (1983). Isolation of separate apical, lateral and basal plasma membrane from cells of an insect epithelium. A procedure based on tissue organization and ultrastructure. Tissue and Cell, 15(5), 781–803.CrossRef
go back to reference Crum, L. A. (1980). Measurements of the growth of air bubbles by rectified diffusion. Journal of the Acoustical Society of America, 68, 203–211.CrossRef Crum, L. A. (1980). Measurements of the growth of air bubbles by rectified diffusion. Journal of the Acoustical Society of America, 68, 203–211.CrossRef
go back to reference Crum, L. A., and Eller, A. I. (1970). Motion of bubbles in a stationary sound field. Journal of the Acoustical Society of America, 48, 181–189.CrossRef Crum, L. A., and Eller, A. I. (1970). Motion of bubbles in a stationary sound field. Journal of the Acoustical Society of America, 48, 181–189.CrossRef
go back to reference Crum, L. A., and Nordling, D. A. (1972). Velocity of transient cavities in an acoustic stationary wave. Journal of the Acoustical Society of America, 52(1), 294–301.CrossRef Crum, L. A., and Nordling, D. A. (1972). Velocity of transient cavities in an acoustic stationary wave. Journal of the Acoustical Society of America, 52(1), 294–301.CrossRef
go back to reference Dibbern, E. M., Toublan, F. J., and Suslick, K. S. J. (2006). Formation and characterization of polyglutamate core-shell microspheres. Journal of the American Chemical Society, 128(20), 6540–6541.CrossRef Dibbern, E. M., Toublan, F. J., and Suslick, K. S. J. (2006). Formation and characterization of polyglutamate core-shell microspheres. Journal of the American Chemical Society, 128(20), 6540–6541.CrossRef
go back to reference Elder, S. A. (1959). Cavitation microstreaming. Journal of the Acoustical Society of America, 31, 54–64.CrossRef Elder, S. A. (1959). Cavitation microstreaming. Journal of the Acoustical Society of America, 31, 54–64.CrossRef
go back to reference Hagenson, L. C., and Doraiswamy, L. K. (1997). Comparison of the effects of ultrasound and mechanical agitation on a reacting solid-liquid system. Chemical Engineering Science, 53(1), 131–148.CrossRef Hagenson, L. C., and Doraiswamy, L. K. (1997). Comparison of the effects of ultrasound and mechanical agitation on a reacting solid-liquid system. Chemical Engineering Science, 53(1), 131–148.CrossRef
go back to reference Hyeon, T., Fang, M., and Suslick, K. S. (1996). Nanostructured molybdenum carbide: Sonochemical synthesis and catalytic properties. Journal of the American Chemical Society, 118(23), 5492–5493.CrossRef Hyeon, T., Fang, M., and Suslick, K. S. (1996). Nanostructured molybdenum carbide: Sonochemical synthesis and catalytic properties. Journal of the American Chemical Society, 118(23), 5492–5493.CrossRef
go back to reference Hacias, K.J., Cormier, G.J., Nourie, S.M., and Kubel, E.J. (1997). Guide to Acid, Alkaline, Emulsion, and Ultrasonic Cleaning. ASM International, Ohio, USA. Hacias, K.J., Cormier, G.J., Nourie, S.M., and Kubel, E.J. (1997). Guide to Acid, Alkaline, Emulsion, and Ultrasonic Cleaning. ASM International, Ohio, USA.
go back to reference Inazu, K., Nagata, Y., and Maeda, Y. (1993). Decomposition of chlorinated hydrocarbons in aqueous solutions by ultrasonic irradiation. Chemistry Letters, 1, 57–60.CrossRef Inazu, K., Nagata, Y., and Maeda, Y. (1993). Decomposition of chlorinated hydrocarbons in aqueous solutions by ultrasonic irradiation. Chemistry Letters, 1, 57–60.CrossRef
go back to reference Kimura, T., Sakamoto, T., Leveque, J.-M., Sohmiya, H., Fujita, M., and Ikeda, S. (1996). Standardization of ultrasonic power for sonochemical reaction. Ultrasonics Sonochemistry, 3(3), S157–S161.CrossRef Kimura, T., Sakamoto, T., Leveque, J.-M., Sohmiya, H., Fujita, M., and Ikeda, S. (1996). Standardization of ultrasonic power for sonochemical reaction. Ultrasonics Sonochemistry, 3(3), S157–S161.CrossRef
go back to reference Kotronarou, A., Mills, G., and Hoffmann, M. R. (1992). Decomposition of parathion in aqueous solution by ultrasonic irradiation. Environmental Science and Technology, 26(7), 1460–1462.CrossRef Kotronarou, A., Mills, G., and Hoffmann, M. R. (1992). Decomposition of parathion in aqueous solution by ultrasonic irradiation. Environmental Science and Technology, 26(7), 1460–1462.CrossRef
go back to reference Laborde, J. L., Bouyer, C., Caltagirone, J. P., and Gerard, A. (1998). Acoustic bubble cavitation at low frequencies. Ultrasonics, 36(1–5), 589–594.CrossRef Laborde, J. L., Bouyer, C., Caltagirone, J. P., and Gerard, A. (1998). Acoustic bubble cavitation at low frequencies. Ultrasonics, 36(1–5), 589–594.CrossRef
go back to reference Lamminen, M. O., Walker, H. W., and Weavers, L. K. (2004). Mechanisms and factors influencing the ultrasonic cleaning of particle-fouled ceramic membranes. Journal of Membrane Science, 237(1–2), 213–223.CrossRef Lamminen, M. O., Walker, H. W., and Weavers, L. K. (2004). Mechanisms and factors influencing the ultrasonic cleaning of particle-fouled ceramic membranes. Journal of Membrane Science, 237(1–2), 213–223.CrossRef
go back to reference Lang, R. J. (1962). Ultrasonic atomization of liquids. Journal of the Acoustic Society of America, 34, 6–9.CrossRef Lang, R. J. (1962). Ultrasonic atomization of liquids. Journal of the Acoustic Society of America, 34, 6–9.CrossRef
go back to reference Lee, J., Kentish, S., and Ashokkumar, M. (2005a). Effect of surfactants on the rate of growth of an air bubble by rectified diffusion. Journal of Physical Chemistry B, 109(30), 14595–14598.CrossRef Lee, J., Kentish, S., and Ashokkumar, M. (2005a). Effect of surfactants on the rate of growth of an air bubble by rectified diffusion. Journal of Physical Chemistry B, 109(30), 14595–14598.CrossRef
go back to reference Lee, J., Kentish, S. E., and Ashokkumar, M. (2005b). The effect of surface-active solutes on bubble coalescence in the presence of ultrasound. Journal of Physical Chemistry B, 109(11), 5095–5099.CrossRef Lee, J., Kentish, S. E., and Ashokkumar, M. (2005b). The effect of surface-active solutes on bubble coalescence in the presence of ultrasound. Journal of Physical Chemistry B, 109(11), 5095–5099.CrossRef
go back to reference Lee, J., Tuziuti, T., Yasui, K., Kentish, S., Grieser, F., Ashokkumar, M., and Iida, Y. (2007). Influence of surface-active solutes on the coalescence, clustering, and fragmentation of acoustic bubbles confined in a microspace. Journal of Physical Chemistry C, 111(51), 19015–19023.CrossRef Lee, J., Tuziuti, T., Yasui, K., Kentish, S., Grieser, F., Ashokkumar, M., and Iida, Y. (2007). Influence of surface-active solutes on the coalescence, clustering, and fragmentation of acoustic bubbles confined in a microspace. Journal of Physical Chemistry C, 111(51), 19015–19023.CrossRef
go back to reference Leighton, T. G. (1994). The acoustic bubble. San Diego, CA, Academic. Leighton, T. G. (1994). The acoustic bubble. San Diego, CA, Academic.
go back to reference Li, M. K., and Fogler, H. S. (1978). Acoustic emulsification. Part 1. The instability of the oil-water interface to form the initial droplets. Journal of Fluid Mechanics, 88(3), 499–511.CrossRef Li, M. K., and Fogler, H. S. (1978). Acoustic emulsification. Part 1. The instability of the oil-water interface to form the initial droplets. Journal of Fluid Mechanics, 88(3), 499–511.CrossRef
go back to reference Lin, H.-Y., and Thomas James, L. (2004). Factors affecting responsivity of unilamellar liposomes to 20 kHz ultrasound. Langmuir: The ACS Journal of Surfaces and Colloids, 20(15), 6100–6106. Lin, H.-Y., and Thomas James, L. (2004). Factors affecting responsivity of unilamellar liposomes to 20 kHz ultrasound. Langmuir: The ACS Journal of Surfaces and Colloids, 20(15), 6100–6106.
go back to reference Luche, J. L. (1998). Synthetic organic sonochemistry. New York, NY, Plenum Press. Luche, J. L. (1998). Synthetic organic sonochemistry. New York, NY, Plenum Press.
go back to reference Luther, S., Mettin, R., Koch, P., and Lauterborn, W. (2001). Observation of acoustic cavitation bubbles at 2250 frames per second. Ultrasonics Sonochemistry, 8(3), 159–162.CrossRef Luther, S., Mettin, R., Koch, P., and Lauterborn, W. (2001). Observation of acoustic cavitation bubbles at 2250 frames per second. Ultrasonics Sonochemistry, 8(3), 159–162.CrossRef
go back to reference Mason, T. J., and Lorimer, J. P. (2002). Applied sonochemistry. Weinheim, Wiley–VCH. Mason, T. J., and Lorimer, J. P. (2002). Applied sonochemistry. Weinheim, Wiley–VCH.
go back to reference Mettin, R., Luther, S., Ohl, C.-D., and Lauterborn, W. (1999). Acoustic cavitation structures and simulations by a particle model. Journal of Histochemistry and Cytochemistry, 47(5), 25–29. Mettin, R., Luther, S., Ohl, C.-D., and Lauterborn, W. (1999). Acoustic cavitation structures and simulations by a particle model. Journal of Histochemistry and Cytochemistry, 47(5), 25–29.
go back to reference Price, G. J. (1990). The use of ultrasound for the controlled degradation of polymer solutions. Advances in Sonochemistry, 1, 231–287. Price, G. J. (1990). The use of ultrasound for the controlled degradation of polymer solutions. Advances in Sonochemistry, 1, 231–287.
go back to reference Ratoarinoro, C. F., Wilhelm, A. M., Berlan, J., and Delmas, H. (1995). Power measurement in sonochemistry. Ultrasonics Sonochemistry, 2(1), S43–S47.CrossRef Ratoarinoro, C. F., Wilhelm, A. M., Berlan, J., and Delmas, H. (1995). Power measurement in sonochemistry. Ultrasonics Sonochemistry, 2(1), S43–S47.CrossRef
go back to reference Riener, J., Noci, F., Cronin, D. A., Morgan, D. J., and Lyng, J. G. (2009). Characterisation of volatile compounds generated in milk by high intensity ultrasound. International Dairy Journal, 19, 269–272.CrossRef Riener, J., Noci, F., Cronin, D. A., Morgan, D. J., and Lyng, J. G. (2009). Characterisation of volatile compounds generated in milk by high intensity ultrasound. International Dairy Journal, 19, 269–272.CrossRef
go back to reference Riley, N. (2001). Steady streaming. Annual Review of Fluid Mechanics, 33, 43–65.CrossRef Riley, N. (2001). Steady streaming. Annual Review of Fluid Mechanics, 33, 43–65.CrossRef
go back to reference Simon, R. D. (1974). The use of an ultrasonic bath to disrupt cells suspended in volumes of less than 100 micro liters. Analytical Biochemistry, 60(1), 51–58.CrossRef Simon, R. D. (1974). The use of an ultrasonic bath to disrupt cells suspended in volumes of less than 100 micro liters. Analytical Biochemistry, 60(1), 51–58.CrossRef
go back to reference Strasberg, M. (1959). Onset of ultrasonic cavitation in tap water. Journal of the Acoustical Society of America, 31(2), 163–176.CrossRef Strasberg, M. (1959). Onset of ultrasonic cavitation in tap water. Journal of the Acoustical Society of America, 31(2), 163–176.CrossRef
go back to reference Supeno, X., and Kruus, P. (2000). Sonochemical formation of nitrate and nitrite in water. Ultrasonics Sonochemistry, 7(3), 109–113.CrossRef Supeno, X., and Kruus, P. (2000). Sonochemical formation of nitrate and nitrite in water. Ultrasonics Sonochemistry, 7(3), 109–113.CrossRef
go back to reference Suslick, K. E. (1988a). Ultrasound. Weinheim, VCH. Suslick, K. E. (1988a). Ultrasound. Weinheim, VCH.
go back to reference Suslick, K. S. (1988b). Ultrasound: Its Chemical Physical and Biological Effects. New York, NY, VCH. Suslick, K. S. (1988b). Ultrasound: Its Chemical Physical and Biological Effects. New York, NY, VCH.
go back to reference Suslick, K. S., Fang, M., and Hyeon, T. (1996). Sonochemical synthesis of iron colloids. Journal of the American Chemical Society, 118(47), 11960–11961.CrossRef Suslick, K. S., Fang, M., and Hyeon, T. (1996). Sonochemical synthesis of iron colloids. Journal of the American Chemical Society, 118(47), 11960–11961.CrossRef
go back to reference Suslick, K. S., and Grinstaff, M. W. (1990). Protein microencapsulation of nonaqueous liquids. Journal of the American Chemical Society, 112(21), 7807–7809.CrossRef Suslick, K. S., and Grinstaff, M. W. (1990). Protein microencapsulation of nonaqueous liquids. Journal of the American Chemical Society, 112(21), 7807–7809.CrossRef
go back to reference Tho, P., Manasseh, R., and Ooi, A. (2007). Cavitation microstreaming patterns in single and multiple bubble systems. Journal of Fluid Mechanics, 576, 191–233.CrossRef Tho, P., Manasseh, R., and Ooi, A. (2007). Cavitation microstreaming patterns in single and multiple bubble systems. Journal of Fluid Mechanics, 576, 191–233.CrossRef
go back to reference Toublan, F. J.-J., Boppart, S., and Suslick, K. S. (2006). Tumor targeting by surface-modified protein microspheres. Journal of the American Chemical Society, 128(11), 3472–3473.CrossRef Toublan, F. J.-J., Boppart, S., and Suslick, K. S. (2006). Tumor targeting by surface-modified protein microspheres. Journal of the American Chemical Society, 128(11), 3472–3473.CrossRef
go back to reference Webb, A. G., Wong, M., Kolbeck, K. J., Magin, R., and Suslick, K. S. (1996). Sonochemically produced fluorocarbon microspheres: A new class of magnetic resonance imaging agent. Journal of Magnetic Resoning Imaging, 6(4), 675–683.CrossRef Webb, A. G., Wong, M., Kolbeck, K. J., Magin, R., and Suslick, K. S. (1996). Sonochemically produced fluorocarbon microspheres: A new class of magnetic resonance imaging agent. Journal of Magnetic Resoning Imaging, 6(4), 675–683.CrossRef
go back to reference Yasui, K. (2002). Influence of ultrasonic frequency on multibubble sonoluminescence. Journal of the Acoustic Society of America, 112(4), 1405–1413.CrossRef Yasui, K. (2002). Influence of ultrasonic frequency on multibubble sonoluminescence. Journal of the Acoustic Society of America, 112(4), 1405–1413.CrossRef
go back to reference Young, F. R. (1989). Cavitation. London, McGraw-Hill. Young, F. R. (1989). Cavitation. London, McGraw-Hill.
go back to reference Young, F. R. (2005). Sonoluminescence. Boca Raton, FL, CRC Press. Young, F. R. (2005). Sonoluminescence. Boca Raton, FL, CRC Press.
go back to reference Zhang, X. H., Quinn, A., and Ducker, W. A. (2008). Nanobubbles at the interface between water and a hydrophobic solid. Langmuir, 24(9), 4756–4764.CrossRef Zhang, X. H., Quinn, A., and Ducker, W. A. (2008). Nanobubbles at the interface between water and a hydrophobic solid. Langmuir, 24(9), 4756–4764.CrossRef
Metadata
Title
The Physical and Chemical Effects of Ultrasound
Authors
Sandra Kentish
Muthupandian Ashokkumar
Copyright Year
2011
Publisher
Springer New York
DOI
https://doi.org/10.1007/978-1-4419-7472-3_1