Skip to main content
Top
Published in: Acta Mechanica Sinica 3/2015

01-06-2015 | Research Paper

Active elastic metamaterials for subwavelength wave propagation control

Authors: Y. Y. Chen, G. L. Huang

Published in: Acta Mechanica Sinica | Issue 3/2015

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Recent research activities in elastic metamaterials demonstrate a significant potential for subwavelength wave propagation control owing to their interior locally resonant mechanism. The growing technological developments in electro/magnetomechanical couplings of smart materials have introduced a controlling degree of freedom for passive elastic metamaterials. Active elastic metamaterials could allow for a fine control of material physical behavior and thereby induce new functional properties that cannot be produced by passive approaches. In this paper, two types of active elastic metamaterials with shunted piezoelectric materials and electrorheological elastomers are proposed. Theoretical analyses and numerical validations of the active elastic metamaterials with detailed microstructures are presented for designing adaptive applications in band gap structures and extraordinary waveguides. The active elastic metamaterial could provide a new design methodology for adaptive wave filters, high signal-to-noise sensors, and structural health monitoring applications.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Pendry, J.B., Holden, A.J., Robbins, D.J., et al.: Magnetism from conductors and enhanced nonlinear phenomena. IEEE Trans. Microw. Theory Tech. 47, 2075–2084 (1999)CrossRef Pendry, J.B., Holden, A.J., Robbins, D.J., et al.: Magnetism from conductors and enhanced nonlinear phenomena. IEEE Trans. Microw. Theory Tech. 47, 2075–2084 (1999)CrossRef
2.
go back to reference Smith, D.R., Padilla, W.J., Vier, D.C., et al.: Composite medium with simultaneously negative permeability and permittivity. Phys. Rev. Lett. 84, 4184–4187 (2000)CrossRef Smith, D.R., Padilla, W.J., Vier, D.C., et al.: Composite medium with simultaneously negative permeability and permittivity. Phys. Rev. Lett. 84, 4184–4187 (2000)CrossRef
3.
go back to reference Liu, Z., Zhang, X., Mao, Y., et al.: Locally resonant sonic materials. Science 289, 1734–1736 (2000)CrossRef Liu, Z., Zhang, X., Mao, Y., et al.: Locally resonant sonic materials. Science 289, 1734–1736 (2000)CrossRef
4.
go back to reference Fang, N., Xi, D., Xu, J., et al.: Ultrasonic metamaterials with negative modulus. Nat. Mater. 5, 452–456 (2006)CrossRef Fang, N., Xi, D., Xu, J., et al.: Ultrasonic metamaterials with negative modulus. Nat. Mater. 5, 452–456 (2006)CrossRef
5.
go back to reference Huang, H.H., Sun, C.T., Huang, G.L.: On the negative effective mass density in acoustic metamaterials. Int. J. Eng. Sci. 47, 610–617 (2009)MathSciNetCrossRef Huang, H.H., Sun, C.T., Huang, G.L.: On the negative effective mass density in acoustic metamaterials. Int. J. Eng. Sci. 47, 610–617 (2009)MathSciNetCrossRef
6.
go back to reference Yang, Z., Mei, J., Yang, M., et al.: Membrane-type acoustic metamaterial with negative dynamic mass. Phys. Rev. Lett. 101, 204301 (2008)CrossRef Yang, Z., Mei, J., Yang, M., et al.: Membrane-type acoustic metamaterial with negative dynamic mass. Phys. Rev. Lett. 101, 204301 (2008)CrossRef
7.
go back to reference Mei, J., Ma, G., Yang, M., et al.: Dark acoustic metamaterials as super absorbers for low-frequency sound. Nat. Commun. 3, 756 (2012)CrossRef Mei, J., Ma, G., Yang, M., et al.: Dark acoustic metamaterials as super absorbers for low-frequency sound. Nat. Commun. 3, 756 (2012)CrossRef
8.
go back to reference Liu, X.N., Hu, G.K., Huang, G.L., et al.: An elastic metamaterial with simultaneously negative mass density and bulk modulus. Appl. Phys. Lett. 98, 251907 (2011)CrossRef Liu, X.N., Hu, G.K., Huang, G.L., et al.: An elastic metamaterial with simultaneously negative mass density and bulk modulus. Appl. Phys. Lett. 98, 251907 (2011)CrossRef
9.
go back to reference Yan, X., Zhu, R., Huang, G.L., et al.: Focusing guided waves using surface bonded elastic metamaterials. Appl. Phys. Lett. 103, 121901 (2013)CrossRef Yan, X., Zhu, R., Huang, G.L., et al.: Focusing guided waves using surface bonded elastic metamaterials. Appl. Phys. Lett. 103, 121901 (2013)CrossRef
10.
go back to reference Wu, Y., Lai, Y., Zhang, Z.Q.: Elastic metamaterials with simultaneously negative effective shear modulus and mass density. Phys. Rev. Lett. 107, 105506 (2011)CrossRef Wu, Y., Lai, Y., Zhang, Z.Q.: Elastic metamaterials with simultaneously negative effective shear modulus and mass density. Phys. Rev. Lett. 107, 105506 (2011)CrossRef
11.
go back to reference Zhu, R., Huang, G.L., Huang, H.H., et al.: Experimental and numerical study of guided wave propagation in a thin metamaterial plate. Phys. Lett. A 357, 2863–2867 (2011)CrossRef Zhu, R., Huang, G.L., Huang, H.H., et al.: Experimental and numerical study of guided wave propagation in a thin metamaterial plate. Phys. Lett. A 357, 2863–2867 (2011)CrossRef
12.
go back to reference Zhu, R., Liu, X.N., Hu, G.K., et al.: An chiral elastic metamaterial beam for broadband vibration suppression. J. Sound Vib. 333, 2759–2773 (2014)CrossRef Zhu, R., Liu, X.N., Hu, G.K., et al.: An chiral elastic metamaterial beam for broadband vibration suppression. J. Sound Vib. 333, 2759–2773 (2014)CrossRef
13.
go back to reference Forward, R.L.: Electronic damping of vibrations in optical structures. J. Appl. Opt. 18, 690–697 (1979)CrossRef Forward, R.L.: Electronic damping of vibrations in optical structures. J. Appl. Opt. 18, 690–697 (1979)CrossRef
14.
go back to reference Hagood, N.W., Flotow, A.V.: Damping of structural vibrations with piezoelectric materials and passive electrical networks. J. Sound Vib. 146, 243–268 (1991)CrossRef Hagood, N.W., Flotow, A.V.: Damping of structural vibrations with piezoelectric materials and passive electrical networks. J. Sound Vib. 146, 243–268 (1991)CrossRef
15.
go back to reference Wu, S.Y.: Method for multiple-mode shunt damping of structural vibration using a single PZT transducer. In: Proceedings of SPIE smart structures and materials, smart structures and intelligent systems, Huntington Beach, CA (1998) Wu, S.Y.: Method for multiple-mode shunt damping of structural vibration using a single PZT transducer. In: Proceedings of SPIE smart structures and materials, smart structures and intelligent systems, Huntington Beach, CA (1998)
16.
go back to reference Wu, S.Y., Bicos, A.S.: Structural vibration damping experiments using improved piezoelectric shunts. In: Proceedings of SPIE smart structures and materials, San Diego, CA, 3–5 March, 40–50 (1997) Wu, S.Y., Bicos, A.S.: Structural vibration damping experiments using improved piezoelectric shunts. In: Proceedings of SPIE smart structures and materials, San Diego, CA, 3–5 March, 40–50 (1997)
17.
go back to reference Corr, L.R., Clark, W.W.: Comparison of low-frequency piezoelectric switching shunt techniques for structural damping. Smart Mater. Struct. 11, 370–376 (2002)CrossRef Corr, L.R., Clark, W.W.: Comparison of low-frequency piezoelectric switching shunt techniques for structural damping. Smart Mater. Struct. 11, 370–376 (2002)CrossRef
18.
go back to reference Fleming, A.J., Belirens, S., Moheimani, S.O.R.: Synthetic impedance for implementation of piezoelectric shunt damping circuits. Electron. Lett. 36, 1525–1526 (2000)CrossRef Fleming, A.J., Belirens, S., Moheimani, S.O.R.: Synthetic impedance for implementation of piezoelectric shunt damping circuits. Electron. Lett. 36, 1525–1526 (2000)CrossRef
19.
go back to reference Behrens, S., Fleming, A.J., Moheimani, S.R.: A broadband controller for shunt piezoelectric damping of structural vibration. Smart Mater. Struct. 12, 18–28 (2003)CrossRef Behrens, S., Fleming, A.J., Moheimani, S.R.: A broadband controller for shunt piezoelectric damping of structural vibration. Smart Mater. Struct. 12, 18–28 (2003)CrossRef
20.
go back to reference Park, C., Park, H.: Multiple-mode structural vibration control using negative capacitive shunt damping. J. Mech. Sci. Technol. 17, 1650–1658 (2003) Park, C., Park, H.: Multiple-mode structural vibration control using negative capacitive shunt damping. J. Mech. Sci. Technol. 17, 1650–1658 (2003)
21.
go back to reference Beck, B., Cunefare, K., Ruzzene, M., et al.: Experimental analysis of a cantilever beam with a shunted piezoelectric periodic array. J. Intell. Mater. Syst. Struct. 22, 1177–1187 (2011)CrossRef Beck, B., Cunefare, K., Ruzzene, M., et al.: Experimental analysis of a cantilever beam with a shunted piezoelectric periodic array. J. Intell. Mater. Syst. Struct. 22, 1177–1187 (2011)CrossRef
22.
go back to reference Park, C.H., Baz, A.: Vibration control of beams with negative capacitive shunting of interdigital electrode piezoceramics. J. Vib. Control 11, 331–346 (2005)MATHCrossRef Park, C.H., Baz, A.: Vibration control of beams with negative capacitive shunting of interdigital electrode piezoceramics. J. Vib. Control 11, 331–346 (2005)MATHCrossRef
23.
go back to reference Date, M., Kutani, M., Sakai, S.: Electrically controlled elasticity utilizing piezoelectric coupling. J. Appl. Phys. 87, 863 (2000) Date, M., Kutani, M., Sakai, S.: Electrically controlled elasticity utilizing piezoelectric coupling. J. Appl. Phys. 87, 863 (2000)
24.
go back to reference Imoto, K., Nishiura, M., Yamamoto, K., et al.: Elasticity control of piezoelectric lead zirconate titanate (PZT) materials using negative-capacitance circuits. Jpn. J. Appl. Phys. 44, 7019–7023 (2005)CrossRef Imoto, K., Nishiura, M., Yamamoto, K., et al.: Elasticity control of piezoelectric lead zirconate titanate (PZT) materials using negative-capacitance circuits. Jpn. J. Appl. Phys. 44, 7019–7023 (2005)CrossRef
25.
go back to reference Chen, S.B., Wen, J.H., Yu, D.L., et al.: Band gap control of phononic beam with negative capacitance piezoelectric shunt. Chin. Phys. B 20, 014301 (2011)CrossRef Chen, S.B., Wen, J.H., Yu, D.L., et al.: Band gap control of phononic beam with negative capacitance piezoelectric shunt. Chin. Phys. B 20, 014301 (2011)CrossRef
26.
go back to reference Chen, S.B., Wen, J.H., Wang, G., et al.: Tunable band gaps in acoustic metamaterials with periodic arrays of resonant shunted piezos. Chin. Phys. B 22, 074301 (2013)CrossRef Chen, S.B., Wen, J.H., Wang, G., et al.: Tunable band gaps in acoustic metamaterials with periodic arrays of resonant shunted piezos. Chin. Phys. B 22, 074301 (2013)CrossRef
27.
go back to reference Chen, S.B., Wang, G., Wen, J.H., et al.: Wave propagation and attenuation in plates with periodic arrays of shunted piezo-patches. J. Sound Vib. 332, 1520–1532 (2013)CrossRef Chen, S.B., Wang, G., Wen, J.H., et al.: Wave propagation and attenuation in plates with periodic arrays of shunted piezo-patches. J. Sound Vib. 332, 1520–1532 (2013)CrossRef
28.
go back to reference Casadei, F., Delpero, T., Bergamini, A., et al.: Piezoelectric resonator arrays for tunable acoustic waveguides and metamaterials. J. Appl. Phys. 112, 064902 (2012)CrossRef Casadei, F., Delpero, T., Bergamini, A., et al.: Piezoelectric resonator arrays for tunable acoustic waveguides and metamaterials. J. Appl. Phys. 112, 064902 (2012)CrossRef
29.
go back to reference Airoldi, L., Ruzzene, M.: Design of tunable acoustic metamaterials through periodic arrays of resonant shunted piezos. New J. Phys. 13, 113010 (2011)CrossRef Airoldi, L., Ruzzene, M.: Design of tunable acoustic metamaterials through periodic arrays of resonant shunted piezos. New J. Phys. 13, 113010 (2011)CrossRef
30.
go back to reference Ginder, J.M., Nichols, M.E., Elie, L.D., et al.: Magnetorheological elastomers: properties and applications. Proc. SPIE 3675, 131–138 (1999) Ginder, J.M., Nichols, M.E., Elie, L.D., et al.: Magnetorheological elastomers: properties and applications. Proc. SPIE 3675, 131–138 (1999)
31.
go back to reference Li, W.H., Zhang, X.Z.: A study of the magnetorheological effect of bimodal particle based magnetorheological elastomers. Smart Mater. Struct. 19, 035002 (2010)CrossRef Li, W.H., Zhang, X.Z.: A study of the magnetorheological effect of bimodal particle based magnetorheological elastomers. Smart Mater. Struct. 19, 035002 (2010)CrossRef
32.
go back to reference Xu, Z.B., Gong, X.L., Liao, G.J., et al.: An active damping-compensated magnetorheological elastomer adaptive tuned vibration absorber. J. Intell. Mater. Syst. Struct. 21, 1039–1047 (2010) Xu, Z.B., Gong, X.L., Liao, G.J., et al.: An active damping-compensated magnetorheological elastomer adaptive tuned vibration absorber. J. Intell. Mater. Syst. Struct. 21, 1039–1047 (2010)
33.
go back to reference Liao, G.J., Gong, X.L., Xuan, S.H., et al.: Development of a real-time tunable stiffness and damping vibration isolator based on magnetorheological elastomer. J. Intell. Mater. Syst. Struct. 23, 25–33 (2012)CrossRef Liao, G.J., Gong, X.L., Xuan, S.H., et al.: Development of a real-time tunable stiffness and damping vibration isolator based on magnetorheological elastomer. J. Intell. Mater. Syst. Struct. 23, 25–33 (2012)CrossRef
34.
go back to reference Liao, G.J., Gong, X.L., Xuan, S.H.: Phase based stiffness tuning algorithm for a magnetorheological elastomer dynamic vibration absorber. Smart Mater. Struct. 23, 015016 (2014)CrossRef Liao, G.J., Gong, X.L., Xuan, S.H.: Phase based stiffness tuning algorithm for a magnetorheological elastomer dynamic vibration absorber. Smart Mater. Struct. 23, 015016 (2014)CrossRef
35.
go back to reference Xu, Z., Wu, F.: Elastic band gaps of magnetorheological elastomer vibration isolators. J. Intell. Mater. Syst. Struct. 10, 14535014 (2014) Xu, Z., Wu, F.: Elastic band gaps of magnetorheological elastomer vibration isolators. J. Intell. Mater. Syst. Struct. 10, 14535014 (2014)
36.
go back to reference Tang, H., Luo, C., Zhao, X.: Tunable characteristics of a flexible thin electrorheological layer for low frequency acoustic waves. J. Phys. D: Appl. Phys. 37, 2331–2336 (2004)CrossRef Tang, H., Luo, C., Zhao, X.: Tunable characteristics of a flexible thin electrorheological layer for low frequency acoustic waves. J. Phys. D: Appl. Phys. 37, 2331–2336 (2004)CrossRef
37.
go back to reference Yeh, J.Y.: Control analysis of the tunable phononic crystal with electrorheological material. Phys. B: Condens. Matter 400, 137–144 (2007)CrossRef Yeh, J.Y.: Control analysis of the tunable phononic crystal with electrorheological material. Phys. B: Condens. Matter 400, 137–144 (2007)CrossRef
38.
go back to reference Zhou, X.L., Chen, C.Q.: Tuning the locally resonant phononic band structures of two-dimensional periodic electroactive composites. Phys. B: Condens. Matter. 431, 23–31 (2013) Zhou, X.L., Chen, C.Q.: Tuning the locally resonant phononic band structures of two-dimensional periodic electroactive composites. Phys. B: Condens. Matter. 431, 23–31 (2013)
39.
go back to reference Chen, Y.Y., Huang, G.L., Sun, C.T.: Band gap control in an active elastic metamaterial with negative capacitance piezoelectric shunting. J. Vib. Acoust. 136, 061008 (2014)CrossRef Chen, Y.Y., Huang, G.L., Sun, C.T.: Band gap control in an active elastic metamaterial with negative capacitance piezoelectric shunting. J. Vib. Acoust. 136, 061008 (2014)CrossRef
40.
go back to reference Guo, N., Cawley, P.: The interaction of Lamb waves with delaminations in composite laminates. J. Acoust. Soc. Am. 94, 2240–2246 (1993)CrossRef Guo, N., Cawley, P.: The interaction of Lamb waves with delaminations in composite laminates. J. Acoust. Soc. Am. 94, 2240–2246 (1993)CrossRef
41.
go back to reference Lemistre, M., Balageas, D.: Structural health monitoring system based on diffracted Lamb wave analysis by multiresolution processing. Smart Mater. Struct. 10, 504–511 (2001)CrossRef Lemistre, M., Balageas, D.: Structural health monitoring system based on diffracted Lamb wave analysis by multiresolution processing. Smart Mater. Struct. 10, 504–511 (2001)CrossRef
42.
go back to reference Liu, B., Shaw, M.T.: Electrorheology of filled silicone elastomers. J. Rheol. 45, 641–657 (2001)CrossRef Liu, B., Shaw, M.T.: Electrorheology of filled silicone elastomers. J. Rheol. 45, 641–657 (2001)CrossRef
43.
go back to reference Hu, J., Chang, Z., Hu, G.K.: Approximate method for controlling solid elastic waves by transformation media. Phys. Rev. B 84, 201101(R) (2011)CrossRef Hu, J., Chang, Z., Hu, G.K.: Approximate method for controlling solid elastic waves by transformation media. Phys. Rev. B 84, 201101(R) (2011)CrossRef
44.
go back to reference Chang, Z., Hu, J., Hu, G.K., et al.: Controlling elastic waves with isotropic materials. Appl. Phys. Lett. 98, 121904 (2011)CrossRef Chang, Z., Hu, J., Hu, G.K., et al.: Controlling elastic waves with isotropic materials. Appl. Phys. Lett. 98, 121904 (2011)CrossRef
45.
go back to reference Wu, T.T., Chen, Y.T., Sun, J.H., et al.: Focusing of the lowest antisymmetric Lamb wave in a gradient-index phononic crystal plate. Appl. Phys. Lett. 98, 171911 (2011)CrossRef Wu, T.T., Chen, Y.T., Sun, J.H., et al.: Focusing of the lowest antisymmetric Lamb wave in a gradient-index phononic crystal plate. Appl. Phys. Lett. 98, 171911 (2011)CrossRef
46.
go back to reference Schiller, N.H., Lin, S.C.S., Cabell, R.H., et al.: Design of a variable thickness plate to focus bending waves. In: ASME 2012 Noise Control and Acoustics Division Conference, New York City, New York, USA (2012) Schiller, N.H., Lin, S.C.S., Cabell, R.H., et al.: Design of a variable thickness plate to focus bending waves. In: ASME 2012 Noise Control and Acoustics Division Conference, New York City, New York, USA (2012)
Metadata
Title
Active elastic metamaterials for subwavelength wave propagation control
Authors
Y. Y. Chen
G. L. Huang
Publication date
01-06-2015
Publisher
The Chinese Society of Theoretical and Applied Mechanics; Institute of Mechanics, Chinese Academy of Sciences
Published in
Acta Mechanica Sinica / Issue 3/2015
Print ISSN: 0567-7718
Electronic ISSN: 1614-3116
DOI
https://doi.org/10.1007/s10409-015-0402-0

Other articles of this Issue 3/2015

Acta Mechanica Sinica 3/2015 Go to the issue

Premium Partners