Skip to main content
Top
Published in: Acta Mechanica Sinica 3/2015

01-06-2015 | research paper

Recent progress in compressible turbulence

Authors: Shiyi Chen, Zhenhua Xia, Jianchun Wang, Yantao Yang

Published in: Acta Mechanica Sinica | Issue 3/2015

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this paper, we review some recent studies on compressible turbulence conducted by the authors’ group, which include fundamental studies on compressible isotropic turbulence (CIT) and applied studies on developing a constrained large eddy simulation (CLES) for wall-bounded turbulence. In the first part, we begin with a newly proposed hybrid compact–weighted essentially nonoscillatory (WENO) scheme for a CIT simulation that has been used to construct a systematic database of CIT. Using this database various fundamental properties of compressible turbulence have been examined, including the statistics and scaling of compressible modes, the shocklet–turbulence interaction, the effect of local compressibility on small scales, the kinetic energy cascade, and some preliminary results from a Lagrangian point of view. In the second part, the idea and formulas of the CLES are reviewed, followed by the validations of CLES and some applications in compressible engineering problems.

Graphical Abstract

This paper reviews some recent research on compressible turbulence from the authors’ group, including fundamental studies on compressible isotropic turbulence (left) and applied studies on developing a constrained large eddy simulation method for wall-bounded turbulence (right). These topics are two of the main directions in current turbulence research, and our results, which are new and important, fill gaps in the relevant area.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
2.
go back to reference Wang, J., Wang, L.P., Xiao, Z., et al.: A hybrid approach for direct numerical simulation of isotropic compressible turbulence. J. Comp. Phys. 229, 5257–5279 (2010)MATHCrossRef Wang, J., Wang, L.P., Xiao, Z., et al.: A hybrid approach for direct numerical simulation of isotropic compressible turbulence. J. Comp. Phys. 229, 5257–5279 (2010)MATHCrossRef
3.
go back to reference Wang, J., Shi, Y., Wang, L.P., et al.: Scaling and statistics in three-dimensional compressible turbulence. Phys. Rev. Lett. 108, 214505 (2012)CrossRef Wang, J., Shi, Y., Wang, L.P., et al.: Scaling and statistics in three-dimensional compressible turbulence. Phys. Rev. Lett. 108, 214505 (2012)CrossRef
4.
go back to reference Wang, J., Shi, Y., Wang, L.P., et al.: Effect of shocklets on the velocity gradients in highly-compressible isotropic turbulence. Phys. Fluids 23, 125103 (2011)CrossRef Wang, J., Shi, Y., Wang, L.P., et al.: Effect of shocklets on the velocity gradients in highly-compressible isotropic turbulence. Phys. Fluids 23, 125103 (2011)CrossRef
5.
go back to reference Wang, J., Shi, Y., Wang, L.P., et al.: Effect of compressibility on the small scale structures in isotropic turbulence. J. Fluid Mech. 713, 588–631 (2012)MATHMathSciNetCrossRef Wang, J., Shi, Y., Wang, L.P., et al.: Effect of compressibility on the small scale structures in isotropic turbulence. J. Fluid Mech. 713, 588–631 (2012)MATHMathSciNetCrossRef
6.
go back to reference Wang, J.C., Yang, Y.T., Shi, Y.P., et al.: Cascade of kinetic energy in three-dimensional compressible turbulence. Phys. Rev. Lett. 110, 214505 (2013)CrossRef Wang, J.C., Yang, Y.T., Shi, Y.P., et al.: Cascade of kinetic energy in three-dimensional compressible turbulence. Phys. Rev. Lett. 110, 214505 (2013)CrossRef
7.
go back to reference Yang, Y.T., Wang, J.C., Shi, Y.P., et al.: Acceleration of passive tracers in compressible turbulent flow. Phys. Rev. Lett. 110, 064503 (2013)CrossRef Yang, Y.T., Wang, J.C., Shi, Y.P., et al.: Acceleration of passive tracers in compressible turbulent flow. Phys. Rev. Lett. 110, 064503 (2013)CrossRef
8.
go back to reference Yang, Y.T., Wang, J.C., Shi, Y.P., et al.: Interactions between inertial particles and shocklets in compressible turbulent flow. Phys. Fluids. 26, 091702 (2014)CrossRef Yang, Y.T., Wang, J.C., Shi, Y.P., et al.: Interactions between inertial particles and shocklets in compressible turbulent flow. Phys. Fluids. 26, 091702 (2014)CrossRef
9.
go back to reference Shi, Y.P., Xiao, Z.L., Chen, S.Y.: Constrained subgrid-scale stress model for large eddy simulation. Phys. Fluids 20, 011701 (2008)CrossRef Shi, Y.P., Xiao, Z.L., Chen, S.Y.: Constrained subgrid-scale stress model for large eddy simulation. Phys. Fluids 20, 011701 (2008)CrossRef
10.
go back to reference Chen, S.Y., Xia, Z.H., Pei, S.Y., et al.: Reynolds-stress-constrained large eddy simulation of wall bounded turbulent flows. J. Fluid Mech. 703, 1–28 (2012)MATHMathSciNetCrossRef Chen, S.Y., Xia, Z.H., Pei, S.Y., et al.: Reynolds-stress-constrained large eddy simulation of wall bounded turbulent flows. J. Fluid Mech. 703, 1–28 (2012)MATHMathSciNetCrossRef
11.
go back to reference Chen, S.Y., Shi, Y.P., Xiao, Z.L., et al.: Constrained large eddy simulation of wall-bounded turbulent flows. In: Fu, S. et al. eds. Progress in Hybrid RANS-LES Modelling, NNFM 117, 121–130 (2012) Chen, S.Y., Shi, Y.P., Xiao, Z.L., et al.: Constrained large eddy simulation of wall-bounded turbulent flows. In: Fu, S. et al. eds. Progress in Hybrid RANS-LES Modelling, NNFM 117, 121–130 (2012)
12.
go back to reference Xia, Z.H., Shi, Y.P., Hong, R.K., et al.: Constrained large-eddy simulation of separated flows in a channel with streamwise-periodic constrictions. J. Turbul. 14, 1–21 (2013)MATHMathSciNetCrossRef Xia, Z.H., Shi, Y.P., Hong, R.K., et al.: Constrained large-eddy simulation of separated flows in a channel with streamwise-periodic constrictions. J. Turbul. 14, 1–21 (2013)MATHMathSciNetCrossRef
13.
go back to reference Chen, S.Y., Wang, M.R., Xia, Z.H.: Multiscale fluid mechanics and modeling. Procedia IUTAM. (in Press) (2013) Chen, S.Y., Wang, M.R., Xia, Z.H.: Multiscale fluid mechanics and modeling. Procedia IUTAM. (in Press) (2013)
14.
go back to reference Chen, S.Y., Chen, Y.C., Xia, Z.H., et al.: Constrained large-eddy simulation and detached eddy simulation of flow past a commercial aircraft at 14 degrees angle of attack. Sci. China Ser. G 56, 270–276 (2013)MathSciNetCrossRef Chen, S.Y., Chen, Y.C., Xia, Z.H., et al.: Constrained large-eddy simulation and detached eddy simulation of flow past a commercial aircraft at 14 degrees angle of attack. Sci. China Ser. G 56, 270–276 (2013)MathSciNetCrossRef
15.
go back to reference Jiang, Z., Xiao, Z.L., Shi, Y.P., et al.: Constrained large-eddy simulation of wall-bounded compressible turbulent flows. Phys. Fluids 25, 106102 (2013)CrossRef Jiang, Z., Xiao, Z.L., Shi, Y.P., et al.: Constrained large-eddy simulation of wall-bounded compressible turbulent flows. Phys. Fluids 25, 106102 (2013)CrossRef
16.
go back to reference Hong, R.K., Xia, Z.H., Shi, Y.P., et al.: Constrained large-eddy simulation of compressible flow past a circular cylinder. Commun. Comput. Phys. 15, 388–421 (2013)MathSciNet Hong, R.K., Xia, Z.H., Shi, Y.P., et al.: Constrained large-eddy simulation of compressible flow past a circular cylinder. Commun. Comput. Phys. 15, 388–421 (2013)MathSciNet
17.
go back to reference Zhao, Y.M., Xia, Z.H., Shi, Y.P., et al.: Constrained large-eddy simulation of laminar-turbulent transition in channel flow. Phys. Fluids 26, 095103 (2014)CrossRef Zhao, Y.M., Xia, Z.H., Shi, Y.P., et al.: Constrained large-eddy simulation of laminar-turbulent transition in channel flow. Phys. Fluids 26, 095103 (2014)CrossRef
18.
go back to reference Adams, N.A., Shariff, K.: A high-resolution hybrid compact-ENO scheme for shock-turbulence interaction problems. J. Comp. Phys. 127, 27–51 (1996)MATHMathSciNetCrossRef Adams, N.A., Shariff, K.: A high-resolution hybrid compact-ENO scheme for shock-turbulence interaction problems. J. Comp. Phys. 127, 27–51 (1996)MATHMathSciNetCrossRef
19.
20.
go back to reference Ren, Y.X., Liu, M., Zhang, H.: A characteristic-wise hybrid compact-WENO scheme for solving hyperbolic conservation laws. J. Comp. Phys. 192, 365–386 (2003)MATHMathSciNetCrossRef Ren, Y.X., Liu, M., Zhang, H.: A characteristic-wise hybrid compact-WENO scheme for solving hyperbolic conservation laws. J. Comp. Phys. 192, 365–386 (2003)MATHMathSciNetCrossRef
21.
go back to reference Zhou, Q., Yao, Z., He, F., et al.: A new family of high-order compact upwind difference schemes with good spectral resolution. J. Comp. Phys. 227, 1306–1339 (2007)MATHMathSciNetCrossRef Zhou, Q., Yao, Z., He, F., et al.: A new family of high-order compact upwind difference schemes with good spectral resolution. J. Comp. Phys. 227, 1306–1339 (2007)MATHMathSciNetCrossRef
22.
go back to reference Balsara, D.S., Shu, C.W.: Monotonicity preserving weighted essentially non-oscillatory schemes with increasingly high order of accuracy. J. Comp. Phys. 160, 405–452 (2000)MATHMathSciNetCrossRef Balsara, D.S., Shu, C.W.: Monotonicity preserving weighted essentially non-oscillatory schemes with increasingly high order of accuracy. J. Comp. Phys. 160, 405–452 (2000)MATHMathSciNetCrossRef
24.
go back to reference Sagaut, P., Cambon, C.: Homogeneous Turbulence Dynamics. Cambridge University Press, Cambridge (2008)MATHCrossRef Sagaut, P., Cambon, C.: Homogeneous Turbulence Dynamics. Cambridge University Press, Cambridge (2008)MATHCrossRef
25.
go back to reference She, Z.S., Lévêque, E.: Universal scaling laws in fully developed turbulence. Phys. Rev. Lett. 72, 336–339 (1994)CrossRef She, Z.S., Lévêque, E.: Universal scaling laws in fully developed turbulence. Phys. Rev. Lett. 72, 336–339 (1994)CrossRef
26.
go back to reference Benzi, R., Biferale, L., Fisher, R.T., et al.: Intermittency and universality in fully developed inviscid and weakly compressible turbulent flows. Phys. Rev. Lett. 100, 234503 (2008)CrossRef Benzi, R., Biferale, L., Fisher, R.T., et al.: Intermittency and universality in fully developed inviscid and weakly compressible turbulent flows. Phys. Rev. Lett. 100, 234503 (2008)CrossRef
28.
go back to reference Lee, S., Lele, S., Moin, P.: Eddy shocklets in decaying compressible turbulence. Phys. Fluids A 3, 657–664 (1991)CrossRef Lee, S., Lele, S., Moin, P.: Eddy shocklets in decaying compressible turbulence. Phys. Fluids A 3, 657–664 (1991)CrossRef
29.
go back to reference Samtaney, R., Pullin, D.I., Kosovic, B.: Direct numerical simulation of decaying compressible turbulence and shocklet statistics. Phys. Fluids 13, 1415–1430 (2001)CrossRef Samtaney, R., Pullin, D.I., Kosovic, B.: Direct numerical simulation of decaying compressible turbulence and shocklet statistics. Phys. Fluids 13, 1415–1430 (2001)CrossRef
30.
go back to reference Larsson, J., Lele, S.K.: Direct numerical simulation of canonical shock/turbulence interaction. Phys. Fluids 21, 126101 (2009)CrossRef Larsson, J., Lele, S.K.: Direct numerical simulation of canonical shock/turbulence interaction. Phys. Fluids 21, 126101 (2009)CrossRef
31.
go back to reference Meneveau, C.: Lagrangian dynamics and models of the velocity gradient tensor in turbulent flows. Annu. Rev. Fluid Mech. 43, 219–245 (2011)MathSciNetCrossRef Meneveau, C.: Lagrangian dynamics and models of the velocity gradient tensor in turbulent flows. Annu. Rev. Fluid Mech. 43, 219–245 (2011)MathSciNetCrossRef
32.
go back to reference Ashurst, W.T., Kerstein, A.R., Kerr, R.M., et al.: Alignment of vorticity and scalar gradient with strain rate in simulated Navier-Stokes turbulence. Phys. Fluids 30, 2343–2353 (1987)CrossRef Ashurst, W.T., Kerstein, A.R., Kerr, R.M., et al.: Alignment of vorticity and scalar gradient with strain rate in simulated Navier-Stokes turbulence. Phys. Fluids 30, 2343–2353 (1987)CrossRef
33.
go back to reference Chong, M.S., Perry, A.E., Cantwell, B.J.: A general classification of three-dimensional flow fields. Phys. Fluids A 2, 765–777 (1990)MathSciNetCrossRef Chong, M.S., Perry, A.E., Cantwell, B.J.: A general classification of three-dimensional flow fields. Phys. Fluids A 2, 765–777 (1990)MathSciNetCrossRef
34.
go back to reference Pirozzoli, S., Grasso, F.: Direct numerical simulations of isotropic compressible turbulence: influence of compressibility on dynamics and structures. Phys. Fluids 16, 4386–4407 (2004)CrossRef Pirozzoli, S., Grasso, F.: Direct numerical simulations of isotropic compressible turbulence: influence of compressibility on dynamics and structures. Phys. Fluids 16, 4386–4407 (2004)CrossRef
35.
go back to reference Suman, S., Girimaji, S.S.: Velocity gradient invariants and local flow-field topology in compressible turbulence. J. of Turbul. 11, 1–24 (2010)CrossRef Suman, S., Girimaji, S.S.: Velocity gradient invariants and local flow-field topology in compressible turbulence. J. of Turbul. 11, 1–24 (2010)CrossRef
36.
go back to reference Erlebacher, G., Sarkar, S.: Statistical analysis of the rate of strain tensor in compressible homogeneous turbulence. Phys. Fluids A 5, 3240–3254 (1993)MATHCrossRef Erlebacher, G., Sarkar, S.: Statistical analysis of the rate of strain tensor in compressible homogeneous turbulence. Phys. Fluids A 5, 3240–3254 (1993)MATHCrossRef
37.
go back to reference Armstrong, J.W., Rickett, B.J., Spangler, S.R.: Electron density power spectrum in the local interstellar medium. Astrophys. J. 443, 209–221 (1995)CrossRef Armstrong, J.W., Rickett, B.J., Spangler, S.R.: Electron density power spectrum in the local interstellar medium. Astrophys. J. 443, 209–221 (1995)CrossRef
38.
go back to reference Xu, H., Li, H., Collins, D.C., et al.: Evolution and distribution magnetic fields from active galactic nuclei in galaxy cluster. I. the effect of injection energy and redshift. Astrophys. J. 725, 2152–2165 (2010)CrossRef Xu, H., Li, H., Collins, D.C., et al.: Evolution and distribution magnetic fields from active galactic nuclei in galaxy cluster. I. the effect of injection energy and redshift. Astrophys. J. 725, 2152–2165 (2010)CrossRef
39.
go back to reference Kritsuk, A.G., Norman, M.L., Padoan, P., et al.: The statistics of supersonic isothermal turbulence. Astrophys. J. 665, 416–431 (2007)CrossRef Kritsuk, A.G., Norman, M.L., Padoan, P., et al.: The statistics of supersonic isothermal turbulence. Astrophys. J. 665, 416–431 (2007)CrossRef
40.
go back to reference Aluie, H.: Compressible turbulence: The cascade and its locality. Phys. Rev. Lett. 106, 174502 (2011)CrossRef Aluie, H.: Compressible turbulence: The cascade and its locality. Phys. Rev. Lett. 106, 174502 (2011)CrossRef
41.
go back to reference Aluie, H., Li, S., Li, H.: Conservative cascade of kinetic energy in compressible turbulence. Astrophys. J. Lett. 751, L29 (2012)CrossRef Aluie, H., Li, S., Li, H.: Conservative cascade of kinetic energy in compressible turbulence. Astrophys. J. Lett. 751, L29 (2012)CrossRef
42.
go back to reference Miura, H., Kida, S.: Acoustic energy exchange in compressible turbulence. Phys. Fluids 7, 1732–1742 (1995)MATHCrossRef Miura, H., Kida, S.: Acoustic energy exchange in compressible turbulence. Phys. Fluids 7, 1732–1742 (1995)MATHCrossRef
43.
go back to reference Chen, Q., Chen, S., Eyink, G., et al.: Intermittency in the joint cascade of energy and helicity. Phys. Rev. Lett. 90, 214503 (2003)CrossRef Chen, Q., Chen, S., Eyink, G., et al.: Intermittency in the joint cascade of energy and helicity. Phys. Rev. Lett. 90, 214503 (2003)CrossRef
45.
go back to reference Toschi, F., Bodenschatz, E.: Lagrangian properties of particles in turbulence. Annu. Rev. Fluid Mech. 41, 375–404 (2009)MathSciNetCrossRef Toschi, F., Bodenschatz, E.: Lagrangian properties of particles in turbulence. Annu. Rev. Fluid Mech. 41, 375–404 (2009)MathSciNetCrossRef
46.
go back to reference Salazar, J.P.L.C., Collins, L.R.: Two-particle dispersion in isotropic turbulent flows. Annu. Rev. Fluid Mech. 41, 405–432 (2009)MathSciNetCrossRef Salazar, J.P.L.C., Collins, L.R.: Two-particle dispersion in isotropic turbulent flows. Annu. Rev. Fluid Mech. 41, 405–432 (2009)MathSciNetCrossRef
47.
go back to reference Sreenivasan, K.R., Schumacher, J.: Lagrangian views on turbulent mixing of passive scalars. Phil. Trans. R. Soc. A 368, 1561–1577 (2010)MATHMathSciNetCrossRef Sreenivasan, K.R., Schumacher, J.: Lagrangian views on turbulent mixing of passive scalars. Phil. Trans. R. Soc. A 368, 1561–1577 (2010)MATHMathSciNetCrossRef
48.
go back to reference Parmar, M., Haselbacher, A., Balachandar, S.: Equation of motion for a sphere in non-uniform compressible flows. J. Fluid Mech. 699, 352–375 (2012)MATHMathSciNetCrossRef Parmar, M., Haselbacher, A., Balachandar, S.: Equation of motion for a sphere in non-uniform compressible flows. J. Fluid Mech. 699, 352–375 (2012)MATHMathSciNetCrossRef
49.
go back to reference La Porta, A., Voth, G.A., Crawford, A.M., et al.: Fluid particle accelerations in fully developed turbulence. Nature 409, 1017–1019 (2001)CrossRef La Porta, A., Voth, G.A., Crawford, A.M., et al.: Fluid particle accelerations in fully developed turbulence. Nature 409, 1017–1019 (2001)CrossRef
50.
go back to reference Toschi, F., Biferale, L., Boffetta, G., et al.: Acceleration and vortex filaments in turbulence. J. Turbul. 6, N15 (2005)MathSciNetCrossRef Toschi, F., Biferale, L., Boffetta, G., et al.: Acceleration and vortex filaments in turbulence. J. Turbul. 6, N15 (2005)MathSciNetCrossRef
51.
go back to reference Reynolds, A.M., Mordant, N., Crawford, A.M., et al.: On the distribution of Lagrangian accelerations in turbulent flows. New J. Phys. 7, 58 (2005)CrossRef Reynolds, A.M., Mordant, N., Crawford, A.M., et al.: On the distribution of Lagrangian accelerations in turbulent flows. New J. Phys. 7, 58 (2005)CrossRef
52.
go back to reference Mordant, N., Crawford, A.M., Bodenschatz, E.: Three-dimensional structure of the Lagrangian acceleration in turbulent flows. Phys. Rev. Lett. 93, 214501 (2004)CrossRef Mordant, N., Crawford, A.M., Bodenschatz, E.: Three-dimensional structure of the Lagrangian acceleration in turbulent flows. Phys. Rev. Lett. 93, 214501 (2004)CrossRef
53.
go back to reference Chapman, D.A.: Computational aerodynamics development and outlook. AIAA J. 17, 1293–1313 (1979) Chapman, D.A.: Computational aerodynamics development and outlook. AIAA J. 17, 1293–1313 (1979)
54.
go back to reference Piomelli, U., Balaras, E.: Wall-layer models for large-eddy simulation. Annu. Rev. Fluid Mech. 34, 349–374 (2002) Piomelli, U., Balaras, E.: Wall-layer models for large-eddy simulation. Annu. Rev. Fluid Mech. 34, 349–374 (2002)
55.
go back to reference Piomelli, U.: Wall-layer models for large-eddy simulation. Prog. Aerosp. Sci. 44, 437–446 (2008)CrossRef Piomelli, U.: Wall-layer models for large-eddy simulation. Prog. Aerosp. Sci. 44, 437–446 (2008)CrossRef
56.
go back to reference Fröhlich, J., von Terzi, D.: Hybrid LES/RANS methods for the simulation of the turbulent flows. Prog. Aerosp. Sci. 44, 349–377 (2008)CrossRef Fröhlich, J., von Terzi, D.: Hybrid LES/RANS methods for the simulation of the turbulent flows. Prog. Aerosp. Sci. 44, 349–377 (2008)CrossRef
57.
go back to reference Spalart, P.: Detached eddy simulation. Annu. Rev. Fluid Mech. 41, 181–202 (2009)CrossRef Spalart, P.: Detached eddy simulation. Annu. Rev. Fluid Mech. 41, 181–202 (2009)CrossRef
58.
go back to reference Nikitin, N.V., Nicoud, F., Wasistho, B., et al.: An approach to wall modeling in large-eddy simulations. Phys. Fluids 12, 1629–1632 (2000)CrossRef Nikitin, N.V., Nicoud, F., Wasistho, B., et al.: An approach to wall modeling in large-eddy simulations. Phys. Fluids 12, 1629–1632 (2000)CrossRef
59.
go back to reference Kraichnan, R.H.: Decimated amplitude equations in turbulence dynamics. In: Dwoyer, D.L., Hussaini, M.Y., Vogit, R.G. (eds.) Theoretical approaches to turbulence, pp. 91–135. Springer, New York (1985)CrossRef Kraichnan, R.H.: Decimated amplitude equations in turbulence dynamics. In: Dwoyer, D.L., Hussaini, M.Y., Vogit, R.G. (eds.) Theoretical approaches to turbulence, pp. 91–135. Springer, New York (1985)CrossRef
61.
go back to reference Ghosal, S., Lund, T.S., Moin, P., et al.: A dynamic localization model for large-eddy simulation of turbulent flows. J. Fluids Mech. 286, 229–255 (1995)MATHMathSciNetCrossRef Ghosal, S., Lund, T.S., Moin, P., et al.: A dynamic localization model for large-eddy simulation of turbulent flows. J. Fluids Mech. 286, 229–255 (1995)MATHMathSciNetCrossRef
62.
go back to reference Coleman, G.N., Kim, J., Moser, R.D.: A numerical study of turbulent supersonic isothermal-wall channel flow. J. Fluid. Mech. 305, 159–183 (1995)MATHCrossRef Coleman, G.N., Kim, J., Moser, R.D.: A numerical study of turbulent supersonic isothermal-wall channel flow. J. Fluid. Mech. 305, 159–183 (1995)MATHCrossRef
63.
go back to reference Brun, C., Boiarciuc, M.P., Haberkorn, M., et al.: Large eddy simulation of compressible channel flow. Theor. Comput. Fluid Dyn. 22, 189–212 (2008)MATHCrossRef Brun, C., Boiarciuc, M.P., Haberkorn, M., et al.: Large eddy simulation of compressible channel flow. Theor. Comput. Fluid Dyn. 22, 189–212 (2008)MATHCrossRef
64.
go back to reference Xu, C.Y., Chen, L.W., Lu, X.Y.: Large-eddy simulation of the compressible flow past a wavy cylinder. J. Fluid Mech. 665, 238–273 (2010)MATHCrossRef Xu, C.Y., Chen, L.W., Lu, X.Y.: Large-eddy simulation of the compressible flow past a wavy cylinder. J. Fluid Mech. 665, 238–273 (2010)MATHCrossRef
65.
go back to reference Rodriguez, O.: The circular cylinder in subsonic and transonic flow. AIAA J. 22, 1713–1718 (1984)CrossRef Rodriguez, O.: The circular cylinder in subsonic and transonic flow. AIAA J. 22, 1713–1718 (1984)CrossRef
66.
go back to reference Murthy, V.S., Rose, W.C.: Detailed measurements on a circular cylinder in cross flow. AIAA J. 16, 549–550 (1978)CrossRef Murthy, V.S., Rose, W.C.: Detailed measurements on a circular cylinder in cross flow. AIAA J. 16, 549–550 (1978)CrossRef
67.
go back to reference Spalart, P.R., Allmaras, S.R.: A one-equation turbulence model for aerodynamic flows. Rech. Aerosp. 1, 5–21 (1994) Spalart, P.R., Allmaras, S.R.: A one-equation turbulence model for aerodynamic flows. Rech. Aerosp. 1, 5–21 (1994)
68.
go back to reference Breuer, M., Peller, N., Rapp, C., et al.: Flow over periodic hills-numerical and experimental study in a wide range of Reynolds numbers. Comput. Fluids 38, 433–457 (2009)MATHCrossRef Breuer, M., Peller, N., Rapp, C., et al.: Flow over periodic hills-numerical and experimental study in a wide range of Reynolds numbers. Comput. Fluids 38, 433–457 (2009)MATHCrossRef
Metadata
Title
Recent progress in compressible turbulence
Authors
Shiyi Chen
Zhenhua Xia
Jianchun Wang
Yantao Yang
Publication date
01-06-2015
Publisher
The Chinese Society of Theoretical and Applied Mechanics; Institute of Mechanics, Chinese Academy of Sciences
Published in
Acta Mechanica Sinica / Issue 3/2015
Print ISSN: 0567-7718
Electronic ISSN: 1614-3116
DOI
https://doi.org/10.1007/s10409-015-0459-9

Other articles of this Issue 3/2015

Acta Mechanica Sinica 3/2015 Go to the issue

Premium Partners