Skip to main content
Top
Published in: Acta Mechanica Sinica 3/2015

01-06-2015 | Review Paper

The mechanical behavior of nanoscale metallic multilayers: A survey

Authors: Q. Zhou, J. Y. Xie, F. Wang, P. Huang, K. W. Xu, T. J. Lu

Published in: Acta Mechanica Sinica | Issue 3/2015

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The mechanical behavior of nanoscale metallic multilayers (NMMs) has attracted much attention from both scientific and practical views. Compared with their monolithic counterparts, the large number of interfaces existing in the NMMs dictates the unique behavior of this special class of structural composite materials. While there have been a number of reviews on the mechanical mechanism of microlaminates, the rapid development of nanotechnology brought a pressing need for an overview focusing exclusively on a property-based definition of the NMMs, especially their size-dependent microstructure and mechanical performance. This article attempts to provide a comprehensive and up-to-date review on the microstructure, mechanical property and plastic deformation physics of NMMs. We hope this review could accomplish two purposes: (1) introducing the basic concepts of scaling and dimensional analysis to scientists and engineers working on NMM systems, and (2) providing a better understanding of interface behavior and the exceptional qualities the interfaces in NMMs display at atomic scale.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Misra, A., Verdier, M., Lu, Y., et al.: Structure and mechanical properties of Cu–X (\(X = \text{ Nb }\), Cr, Ni) nanolayered composites. Scripta Materialia 39, 555–560 (1998)CrossRef Misra, A., Verdier, M., Lu, Y., et al.: Structure and mechanical properties of Cu–X (\(X = \text{ Nb }\), Cr, Ni) nanolayered composites. Scripta Materialia 39, 555–560 (1998)CrossRef
2.
go back to reference Clemens, B.M., Kung, H., Barnett, S.A.: Structure and strength of multilayers. MRS Bull. 24, 20–26 (1999) Clemens, B.M., Kung, H., Barnett, S.A.: Structure and strength of multilayers. MRS Bull. 24, 20–26 (1999)
3.
go back to reference Misra, A., Kung, H., Embury, J.D.: Preface to the viewpoint set on: deformation and stability of nanoscale metallic multilayers. Scripta Materialia 50, 707–710 (2004)CrossRef Misra, A., Kung, H., Embury, J.D.: Preface to the viewpoint set on: deformation and stability of nanoscale metallic multilayers. Scripta Materialia 50, 707–710 (2004)CrossRef
4.
go back to reference Bufford, D., Bi, Z., Jia, Q.X., et al.: Nanotwins and stacking faults in high-strength epitaxial Ag/Al multilayer films. Appl. Phys. Lett. 101, 223112 (2012)CrossRef Bufford, D., Bi, Z., Jia, Q.X., et al.: Nanotwins and stacking faults in high-strength epitaxial Ag/Al multilayer films. Appl. Phys. Lett. 101, 223112 (2012)CrossRef
5.
go back to reference Mara, N.A., Bhattacharyya, D., Dickerson, P., et al.: Deformability of ultrahigh strength 5 nm Cu/Nb nanolayered composites. Appl. Phys. Lett. 92, 231901 (2008)CrossRef Mara, N.A., Bhattacharyya, D., Dickerson, P., et al.: Deformability of ultrahigh strength 5 nm Cu/Nb nanolayered composites. Appl. Phys. Lett. 92, 231901 (2008)CrossRef
6.
go back to reference Mara, N.A., Bhattacharyya, D., Dickerson, P., et al.: Ultrahigh strength and ductility of Cu–Nb nanolayered composites. Mater. Sci. Forum 633–634, 647–653 (2009)CrossRef Mara, N.A., Bhattacharyya, D., Dickerson, P., et al.: Ultrahigh strength and ductility of Cu–Nb nanolayered composites. Mater. Sci. Forum 633–634, 647–653 (2009)CrossRef
7.
go back to reference Misra, A., Zhang, X., Hammon, D., et al.: Work hardening in rolled nanolayered metallic composites. Acta Materialia 53, 221–226 (2005)CrossRef Misra, A., Zhang, X., Hammon, D., et al.: Work hardening in rolled nanolayered metallic composites. Acta Materialia 53, 221–226 (2005)CrossRef
8.
go back to reference Zhang, J.Y., Zhang, X., Wang, R.H., et al.: Length-scale-dependent deformation and fracture behavior of Cu/X (\(X = \text{ Nb }\), Zr) multilayers: the constraining effects of the ductile phase on the brittle phase. Acta Materialia 59, 7368–7379 (2011)CrossRef Zhang, J.Y., Zhang, X., Wang, R.H., et al.: Length-scale-dependent deformation and fracture behavior of Cu/X (\(X = \text{ Nb }\), Zr) multilayers: the constraining effects of the ductile phase on the brittle phase. Acta Materialia 59, 7368–7379 (2011)CrossRef
9.
go back to reference Demkowicz, M.J., Hoagland, R.G., Hirth, J.P.: Interface structure and radiation damage resistance in Cu–Nb multilayer nanocomposites. Phys. Rev. Lett. 100, 136102 (2008)CrossRef Demkowicz, M.J., Hoagland, R.G., Hirth, J.P.: Interface structure and radiation damage resistance in Cu–Nb multilayer nanocomposites. Phys. Rev. Lett. 100, 136102 (2008)CrossRef
10.
go back to reference Han, W.Z., Demkowicz, M.J., Mara, N.A., et al.: Design of radiation tolerant materials via interface engineering. Adv. Mater. 25, 6975–6979 (2013)CrossRef Han, W.Z., Demkowicz, M.J., Mara, N.A., et al.: Design of radiation tolerant materials via interface engineering. Adv. Mater. 25, 6975–6979 (2013)CrossRef
11.
go back to reference Hattar, K., Demkowicz, M.J., Misra, A., et al.: Arrest of He bubble growth in Cu–Nb multilayer nanocomposite. Scripta Materialia 58, 541–544 (2008)CrossRef Hattar, K., Demkowicz, M.J., Misra, A., et al.: Arrest of He bubble growth in Cu–Nb multilayer nanocomposite. Scripta Materialia 58, 541–544 (2008)CrossRef
12.
go back to reference Li, N., Nastasi, M., Misra, A.: Defect structures and hardening mechanisms in high dose helium ion implanted Cu and Cu/Nb multilayer thin films. Int. J. Plast. 32–33, 1–16 (2012)CrossRef Li, N., Nastasi, M., Misra, A.: Defect structures and hardening mechanisms in high dose helium ion implanted Cu and Cu/Nb multilayer thin films. Int. J. Plast. 32–33, 1–16 (2012)CrossRef
13.
go back to reference Han, W.Z., Misra, A., Mara, N.A., et al.: Role of interfaces in shock-induced plasticity in Cu/Nb nanolaminates. Philos. Mag. 91, 4172–4185 (2011)CrossRef Han, W.Z., Misra, A., Mara, N.A., et al.: Role of interfaces in shock-induced plasticity in Cu/Nb nanolaminates. Philos. Mag. 91, 4172–4185 (2011)CrossRef
14.
go back to reference Han, W.Z., Cerreta, E.K., Mara, N.A., et al.: Deformation and failure of shocked bulk Cu–Nb nanolaminates. Acta Materialia 63, 150–161 (2014)CrossRef Han, W.Z., Cerreta, E.K., Mara, N.A., et al.: Deformation and failure of shocked bulk Cu–Nb nanolaminates. Acta Materialia 63, 150–161 (2014)CrossRef
15.
go back to reference Misra, A., Hoagland, R.G.: Effects of elevated temperature annealing on the structure and hardness of copper/niobium nanolayered films. J. Mater. Res. 20, 2046–2054 (2005)CrossRef Misra, A., Hoagland, R.G.: Effects of elevated temperature annealing on the structure and hardness of copper/niobium nanolayered films. J. Mater. Res. 20, 2046–2054 (2005)CrossRef
16.
go back to reference Zheng, S., Beyerlein, I.J., Carpenter, J.S., et al.: High-strength and thermally stable bulk nanolayered composites due to twin-induced interfaces. Nat. Commun. 4, 1696 (2013)CrossRef Zheng, S., Beyerlein, I.J., Carpenter, J.S., et al.: High-strength and thermally stable bulk nanolayered composites due to twin-induced interfaces. Nat. Commun. 4, 1696 (2013)CrossRef
17.
go back to reference Wen, S.P., Zong, R.L., Zeng, F., et al.: Thermal stability of microstructure and mechanical properties of Ni/Ru multilayers. Surf. Coat. Technol. 202, 2040–2046 (2008)CrossRef Wen, S.P., Zong, R.L., Zeng, F., et al.: Thermal stability of microstructure and mechanical properties of Ni/Ru multilayers. Surf. Coat. Technol. 202, 2040–2046 (2008)CrossRef
18.
go back to reference Dew-Hughes, D.: High strength conductor for pulsed magnets. Mater. Sci. Eng. A 168, 35–40 (1993)CrossRef Dew-Hughes, D.: High strength conductor for pulsed magnets. Mater. Sci. Eng. A 168, 35–40 (1993)CrossRef
19.
go back to reference Freudenberger, J., Grunberger, W., Botcharova, E., et al.: Mechanical properties of Cu-based micro- and macrocomposites. Adv. Eng. Mater. 4, 677–681 (2002)CrossRef Freudenberger, J., Grunberger, W., Botcharova, E., et al.: Mechanical properties of Cu-based micro- and macrocomposites. Adv. Eng. Mater. 4, 677–681 (2002)CrossRef
20.
go back to reference Sandim, M.J.R., Stamopoulos, D., Ghivelder, L., et al.: Paramagnetic meissner effect and AC magnetization in roll-bonded Cu–Nb layered composites. J. Superconduct. Novel Magn. 23, 1533–1541 (2010)CrossRef Sandim, M.J.R., Stamopoulos, D., Ghivelder, L., et al.: Paramagnetic meissner effect and AC magnetization in roll-bonded Cu–Nb layered composites. J. Superconduct. Novel Magn. 23, 1533–1541 (2010)CrossRef
21.
go back to reference Beyerlein, I.J., Wang, J., Zhang, R.: Mapping dislocation nucleation behavior from bimetal interfaces. Acta Materialia 61, 7488–7499 (2013)CrossRef Beyerlein, I.J., Wang, J., Zhang, R.: Mapping dislocation nucleation behavior from bimetal interfaces. Acta Materialia 61, 7488–7499 (2013)CrossRef
22.
go back to reference Mara, N.A., Beyerlein, I.J.: Review: effect of bimetal interface structure on the mechanical behavior of Cu–Nb fcc–bcc nanolayered composites. J. Mater. Sci. 49, 6497–6516 (2014)CrossRef Mara, N.A., Beyerlein, I.J.: Review: effect of bimetal interface structure on the mechanical behavior of Cu–Nb fcc–bcc nanolayered composites. J. Mater. Sci. 49, 6497–6516 (2014)CrossRef
23.
go back to reference Zhou, Q., Wang, F., Huang, P., et al.: Strain rate sensitivity and related plastic deformation mechanism transition in nanoscale Ag/W multilayers. Thin Solid Films 571, 253–259 (2014) Zhou, Q., Wang, F., Huang, P., et al.: Strain rate sensitivity and related plastic deformation mechanism transition in nanoscale Ag/W multilayers. Thin Solid Films 571, 253–259 (2014)
24.
go back to reference Geng, H.: Semiconductor Manufacturing Handbook, 1st edn. McGraw-Hill Professional, Blacklick (2005) Geng, H.: Semiconductor Manufacturing Handbook, 1st edn. McGraw-Hill Professional, Blacklick (2005)
25.
go back to reference Thompson, C.V.: Grain-growth in thin-films. Annu. Rev. Mater. Sci. 20, 245–268 (1990)CrossRef Thompson, C.V.: Grain-growth in thin-films. Annu. Rev. Mater. Sci. 20, 245–268 (1990)CrossRef
26.
go back to reference Thompson, C.V.: Structure evolution during processing of polycrystalline films. Annu. Rev. Mater. Sci. 30, 159–190 (2000)CrossRef Thompson, C.V.: Structure evolution during processing of polycrystalline films. Annu. Rev. Mater. Sci. 30, 159–190 (2000)CrossRef
27.
go back to reference Wei, Q., Misra, A.: Transmission electron microscopy study of the microstructure and crystallographic orientation relationships in V/Ag multilayers. Acta Materialia 58, 4871–4882 (2010) Wei, Q., Misra, A.: Transmission electron microscopy study of the microstructure and crystallographic orientation relationships in V/Ag multilayers. Acta Materialia 58, 4871–4882 (2010)
28.
go back to reference Chirranjeevi, B.G., Abinandanan, T.A., Gururajan, M.P.: A phase field study of morphological instabilities in multilayer thin films. Acta Materialia 57, 1060–1067 (2009)CrossRef Chirranjeevi, B.G., Abinandanan, T.A., Gururajan, M.P.: A phase field study of morphological instabilities in multilayer thin films. Acta Materialia 57, 1060–1067 (2009)CrossRef
29.
go back to reference Bakonyi, I., Peter, L.: Electrodeposited multilayer films with giant magnetoresistance (GMR): progress and problems. Prog. Mater. Sci. 55, 107–245 (2010)CrossRef Bakonyi, I., Peter, L.: Electrodeposited multilayer films with giant magnetoresistance (GMR): progress and problems. Prog. Mater. Sci. 55, 107–245 (2010)CrossRef
30.
go back to reference Yahalom, J., Tessier, D.F., Timsit, R.S., et al.: Structure of composition-modulated Cu/Ni thin-films prepared by electrodeposition. J. Mater. Res. 4, 755–758 (1989)CrossRef Yahalom, J., Tessier, D.F., Timsit, R.S., et al.: Structure of composition-modulated Cu/Ni thin-films prepared by electrodeposition. J. Mater. Res. 4, 755–758 (1989)CrossRef
31.
go back to reference Haseeb, A.S.M.A., Celis, J.P., Roos, J.R.: Dual-bath electrodeposition of Cu/Ni compositionally modulated multilayers. J. Electrochem. Soc. 141, 230–237 (1994)CrossRef Haseeb, A.S.M.A., Celis, J.P., Roos, J.R.: Dual-bath electrodeposition of Cu/Ni compositionally modulated multilayers. J. Electrochem. Soc. 141, 230–237 (1994)CrossRef
32.
go back to reference Toth-Kadar, E., Peter, L., Becsei, T., et al.: Preparation and magnetoresistance characteristics of electrodeposited Ni–Cu alloys and Ni–Cu/Cu multilayers. J. Electrochem. Soc. 147, 3311–3318 (2000)CrossRef Toth-Kadar, E., Peter, L., Becsei, T., et al.: Preparation and magnetoresistance characteristics of electrodeposited Ni–Cu alloys and Ni–Cu/Cu multilayers. J. Electrochem. Soc. 147, 3311–3318 (2000)CrossRef
33.
go back to reference Wen, S.P., Zeng, F., Pan, F., et al.: The influence of grain morphology on indentation deformation characteristic of metallic nano-multilayers. Mater. Sci. Eng. A 526, 166–170 (2009)CrossRef Wen, S.P., Zeng, F., Pan, F., et al.: The influence of grain morphology on indentation deformation characteristic of metallic nano-multilayers. Mater. Sci. Eng. A 526, 166–170 (2009)CrossRef
34.
go back to reference Wen, S.P., Zeng, F., Gao, Y., et al.: Indentation creep behavior of nano-scale Ag/Co multilayers. Scripta Materialia 55, 187–190 (2006)CrossRef Wen, S.P., Zeng, F., Gao, Y., et al.: Indentation creep behavior of nano-scale Ag/Co multilayers. Scripta Materialia 55, 187–190 (2006)CrossRef
35.
go back to reference Wen, S.P., Zong, R.L., Zeng, F., et al.: Nanoindentation investigation of the mechanical behaviors of nanoscale Ag/Cu multilayers. J. Mater. Res. 22, 3423–3431 (2007)CrossRef Wen, S.P., Zong, R.L., Zeng, F., et al.: Nanoindentation investigation of the mechanical behaviors of nanoscale Ag/Cu multilayers. J. Mater. Res. 22, 3423–3431 (2007)CrossRef
36.
go back to reference Wen, S.P., Zong, R.L., Zeng, F., et al.: Evaluating modulus and hardness enhancement in evaporated Cu/W multilayers. Acta Materialia 55, 345–351 (2007)CrossRef Wen, S.P., Zong, R.L., Zeng, F., et al.: Evaluating modulus and hardness enhancement in evaporated Cu/W multilayers. Acta Materialia 55, 345–351 (2007)CrossRef
37.
go back to reference Wen, S.P., Zong, R.L., Zeng, F., et al.: Nanoindentation and nanoscratch behaviors of Ag/Ni multilayers. Appl. Surf. Sci. 255, 4558–4562 (2009)CrossRef Wen, S.P., Zong, R.L., Zeng, F., et al.: Nanoindentation and nanoscratch behaviors of Ag/Ni multilayers. Appl. Surf. Sci. 255, 4558–4562 (2009)CrossRef
38.
go back to reference Zhu, X.Y., Liu, X.J., Zong, R.L., et al.: Microstructure and mechanical properties of nanoscale Cu/Ni multilayers. Mater. Sci. Eng. A 527, 1243–1248 (2010)CrossRef Zhu, X.Y., Liu, X.J., Zong, R.L., et al.: Microstructure and mechanical properties of nanoscale Cu/Ni multilayers. Mater. Sci. Eng. A 527, 1243–1248 (2010)CrossRef
39.
go back to reference Liu, Y., Bufford, D., Wang, H., et al.: Mechanical properties of highly textured Cu/Ni multilayers. Acta Materialia 59, 1924–1933 (2011)CrossRef Liu, Y., Bufford, D., Wang, H., et al.: Mechanical properties of highly textured Cu/Ni multilayers. Acta Materialia 59, 1924–1933 (2011)CrossRef
40.
go back to reference Liu, Y., Chen, Y., Yu, K.Y., et al.: Stacking fault and partial dislocation dominated strengthening mechanisms in highly textured Cu/Co multilayers. Int. J. Plast. 49, 152–163 (2013)CrossRef Liu, Y., Chen, Y., Yu, K.Y., et al.: Stacking fault and partial dislocation dominated strengthening mechanisms in highly textured Cu/Co multilayers. Int. J. Plast. 49, 152–163 (2013)CrossRef
41.
go back to reference Zhu, X.Y., Luo, J.T., Chen, G., et al.: Size dependence of creep behavior in nanoscale Cu/Co multilayer thin films. J. Alloys Compd. 506, 434–440 (2010)CrossRef Zhu, X.Y., Luo, J.T., Chen, G., et al.: Size dependence of creep behavior in nanoscale Cu/Co multilayer thin films. J. Alloys Compd. 506, 434–440 (2010)CrossRef
42.
go back to reference Zhu, X.Y., Luo, J.T., Zeng, F., et al.: Microstructure and ultrahigh strength of nanoscale Cu/Nb multilayers. Thin Solid Films 520, 818–823 (2011)CrossRef Zhu, X.Y., Luo, J.T., Zeng, F., et al.: Microstructure and ultrahigh strength of nanoscale Cu/Nb multilayers. Thin Solid Films 520, 818–823 (2011)CrossRef
43.
44.
go back to reference Bauer, E., Merwe, J.H.V.D.: Structure and growth of crystalline superlattices: from monolayer to superlattice. Phys. Rev. B 33, 3657–3671 (1986)CrossRef Bauer, E., Merwe, J.H.V.D.: Structure and growth of crystalline superlattices: from monolayer to superlattice. Phys. Rev. B 33, 3657–3671 (1986)CrossRef
45.
go back to reference Zhou, Q., Li, Y., Wang, F., et al.: Length-scale-dependent mechanical properties of Cu/Ru multilayer films: Part I. Microstructure and strengthening mechanisms. (To be submitted to Acta Mater.) Zhou, Q., Li, Y., Wang, F., et al.: Length-scale-dependent mechanical properties of Cu/Ru multilayer films: Part I. Microstructure and strengthening mechanisms. (To be submitted to Acta Mater.)
46.
go back to reference Lewis, A.C., Josell, D., Weihs, T.P.: Stability in thin film multilayers and microlaminates: the role of free energy, structure, and orientation at interfaces and grain boundaries. Scripta Materialia 48, 1079–1085 (2003)CrossRef Lewis, A.C., Josell, D., Weihs, T.P.: Stability in thin film multilayers and microlaminates: the role of free energy, structure, and orientation at interfaces and grain boundaries. Scripta Materialia 48, 1079–1085 (2003)CrossRef
47.
go back to reference Misra, A., Hoagland, R.G., Kung, H.: Thermal stability of self-supported nanolayered Cu/Nb films. Philos. Mag. 84, 1021–1028 (2004)CrossRef Misra, A., Hoagland, R.G., Kung, H.: Thermal stability of self-supported nanolayered Cu/Nb films. Philos. Mag. 84, 1021–1028 (2004)CrossRef
48.
go back to reference Wan, H., Shen, Y., Wang, J., et al.: A predictive model for microstructure evolution in metallic multilayers with immiscible constituents. Acta Materialia 60, 6869–6881 (2012)CrossRef Wan, H., Shen, Y., Wang, J., et al.: A predictive model for microstructure evolution in metallic multilayers with immiscible constituents. Acta Materialia 60, 6869–6881 (2012)CrossRef
49.
go back to reference Beyerlein, I.J., Mara, N.A., Wang, J., et al.: Structure–property–functionality of bimetal interfaces. JOM 64, 1192–1207 (2012)CrossRef Beyerlein, I.J., Mara, N.A., Wang, J., et al.: Structure–property–functionality of bimetal interfaces. JOM 64, 1192–1207 (2012)CrossRef
50.
go back to reference Kang, K., Wang, J., Beyerlein, I.J.: Atomic structure variations of mechanically stable fcc–bcc interfaces. J. Appl. Phys. 5, 053531 (2012)CrossRef Kang, K., Wang, J., Beyerlein, I.J.: Atomic structure variations of mechanically stable fcc–bcc interfaces. J. Appl. Phys. 5, 053531 (2012)CrossRef
51.
go back to reference Wang, J., Hoagland, R.G., Misra, A.: Mechanics of nanoscale metallic multilayers: from atomic-scale to micro-scale. Scripta Materialia 60, 1067–1072 (2009)CrossRef Wang, J., Hoagland, R.G., Misra, A.: Mechanics of nanoscale metallic multilayers: from atomic-scale to micro-scale. Scripta Materialia 60, 1067–1072 (2009)CrossRef
52.
go back to reference Wang, J., Hoagland, R.G., Hirth, J.P., et al.: Atomistic modeling of the interaction of glide dislocations with “weak” interfaces. Acta Materialia 56, 5685–5693 (2008)CrossRef Wang, J., Hoagland, R.G., Hirth, J.P., et al.: Atomistic modeling of the interaction of glide dislocations with “weak” interfaces. Acta Materialia 56, 5685–5693 (2008)CrossRef
53.
go back to reference Wang, J., Hoagland, R.G., Hirth, J.P., et al.: Atomistic simulations of the shear strength and sliding mechanisms of copper–niobium interfaces. Acta Materialia 56, 3109–3119 (2008)CrossRef Wang, J., Hoagland, R.G., Hirth, J.P., et al.: Atomistic simulations of the shear strength and sliding mechanisms of copper–niobium interfaces. Acta Materialia 56, 3109–3119 (2008)CrossRef
54.
go back to reference Hoagland, R.G., Kurtz, R.J., Henager Jr, C.H.: Slip resistance of interfaces and the strength of metallic multilayer composites. Scripta Materialia 50, 775–779 (2004)CrossRef Hoagland, R.G., Kurtz, R.J., Henager Jr, C.H.: Slip resistance of interfaces and the strength of metallic multilayer composites. Scripta Materialia 50, 775–779 (2004)CrossRef
55.
go back to reference Beyerlein, I.J., Wang, J., Zhang, R.: Interface-dependent nucleation in nanostructured layered composites. APL Mater. 1, 032112 (2013)CrossRef Beyerlein, I.J., Wang, J., Zhang, R.: Interface-dependent nucleation in nanostructured layered composites. APL Mater. 1, 032112 (2013)CrossRef
56.
go back to reference Zhang, R.F., Wang, J., Beyerlein, I.J., et al.: Atomic-scale study of nucleation of dislocations from fcc–bcc interfaces. Acta Materialia 60, 2855–2865 (2012)CrossRef Zhang, R.F., Wang, J., Beyerlein, I.J., et al.: Atomic-scale study of nucleation of dislocations from fcc–bcc interfaces. Acta Materialia 60, 2855–2865 (2012)CrossRef
57.
go back to reference Kulkarni, Y., Asaro, R.J.: Are some nanotwinned fcc metals optimal for strength, ductility and grain stability? Acta Materialia 57, 4835–4844 (2009)CrossRef Kulkarni, Y., Asaro, R.J.: Are some nanotwinned fcc metals optimal for strength, ductility and grain stability? Acta Materialia 57, 4835–4844 (2009)CrossRef
58.
go back to reference Zhang, X., Misra, A., Wang, H., et al.: Nanoscale-twinning-induced strengthening in austenitic stainless steel thin films. Appl. Phys. Lett. 84, 1096–1098 (2004)CrossRef Zhang, X., Misra, A., Wang, H., et al.: Nanoscale-twinning-induced strengthening in austenitic stainless steel thin films. Appl. Phys. Lett. 84, 1096–1098 (2004)CrossRef
59.
go back to reference Lu, L., Shen, Y.F., Chen, X.H., et al.: Ultrahigh strength and high electrical conductivity in copper. Science 304, 422–426 (2004)CrossRef Lu, L., Shen, Y.F., Chen, X.H., et al.: Ultrahigh strength and high electrical conductivity in copper. Science 304, 422–426 (2004)CrossRef
60.
go back to reference Zhang, X., Misra, A.: Superior thermal stability of coherent twin boundaries in nanotwinned metals. Scripta Materialia 66, 860–865 (2012)CrossRef Zhang, X., Misra, A.: Superior thermal stability of coherent twin boundaries in nanotwinned metals. Scripta Materialia 66, 860–865 (2012)CrossRef
61.
go back to reference Anderoglu, O., Misra, A., Wang, J., et al.: Plastic flow stability of nanotwinned Cu foils. Int. J. Plast. 26, 875–886 (2010)MATHCrossRef Anderoglu, O., Misra, A., Wang, J., et al.: Plastic flow stability of nanotwinned Cu foils. Int. J. Plast. 26, 875–886 (2010)MATHCrossRef
62.
go back to reference Li, N., Wang, J., Misra, A., et al.: Twinning dislocation multiplication at a coherent twin boundary. Acta Materialia 59, 5989–5996 (2011)CrossRef Li, N., Wang, J., Misra, A., et al.: Twinning dislocation multiplication at a coherent twin boundary. Acta Materialia 59, 5989–5996 (2011)CrossRef
63.
go back to reference Lu, L., Shen, Y.F., Dao, M., et al.: Strain rate sensitivity of Cu with nanoscale twins. Scripta Materialia 55, 319–322 (2006)CrossRef Lu, L., Shen, Y.F., Dao, M., et al.: Strain rate sensitivity of Cu with nanoscale twins. Scripta Materialia 55, 319–322 (2006)CrossRef
64.
go back to reference Liu, Y., Bufford, D., Rioset, S., et al.: A formation mechanism for ultra-thin nanotwins in highly textured Cu/Ni multilayers. J. Appl. Phys. 111, 073526 (2012)CrossRef Liu, Y., Bufford, D., Rioset, S., et al.: A formation mechanism for ultra-thin nanotwins in highly textured Cu/Ni multilayers. J. Appl. Phys. 111, 073526 (2012)CrossRef
65.
go back to reference Bufford, D., Liu, Y., Zhu, Y., et al.: Formation mechanisms of high-density growth twins in aluminum with high stacking-fault energy. Mater. Res. Lett. 1, 51–60 (2013)CrossRef Bufford, D., Liu, Y., Zhu, Y., et al.: Formation mechanisms of high-density growth twins in aluminum with high stacking-fault energy. Mater. Res. Lett. 1, 51–60 (2013)CrossRef
66.
go back to reference Freund, L.B., Suresh, S.: Thin Film Materials: Stress, Defect Formation and Surface Evolution. Cambridge University Press, Cambridge (2004)CrossRef Freund, L.B., Suresh, S.: Thin Film Materials: Stress, Defect Formation and Surface Evolution. Cambridge University Press, Cambridge (2004)CrossRef
67.
go back to reference Mata, M., Anglada, M., Alcala, J.: Contact deformation regimes around sharp indentations and the concept of the characteristic strain. J. Mater. Res. 17, 964–976 (2002)CrossRef Mata, M., Anglada, M., Alcala, J.: Contact deformation regimes around sharp indentations and the concept of the characteristic strain. J. Mater. Res. 17, 964–976 (2002)CrossRef
68.
go back to reference Blum, W.: The structure and properties of alternately deposited metals. Trans. Am. Electrochem. Soc. 40, 307–320 (1921) Blum, W.: The structure and properties of alternately deposited metals. Trans. Am. Electrochem. Soc. 40, 307–320 (1921)
69.
go back to reference Misra, A., Hirth, J.P., Kung, H.: Single-dislocation-based strengthening mechanisms in nanoscale metallic multilayers. Philos. Mag. A 82, 2935–2951 (2002)CrossRef Misra, A., Hirth, J.P., Kung, H.: Single-dislocation-based strengthening mechanisms in nanoscale metallic multilayers. Philos. Mag. A 82, 2935–2951 (2002)CrossRef
70.
go back to reference Tench, D.M., White, J.T.: Tensile properties of nanostructured Ni–Cu multilayered materials prepared by electrodeposition. J. Electrochem. Soc. 138, 3757–3758 (1991)CrossRef Tench, D.M., White, J.T.: Tensile properties of nanostructured Ni–Cu multilayered materials prepared by electrodeposition. J. Electrochem. Soc. 138, 3757–3758 (1991)CrossRef
71.
go back to reference Carpenter, J.S., Misra, A., Uchic, M.D., et al.: Strain rate sensitivity and activation volume of Cu/Ni metallic multilayer thin films measured via micropillar compression. Appl. Phys. Lett. 101, 051901 (2012)CrossRef Carpenter, J.S., Misra, A., Uchic, M.D., et al.: Strain rate sensitivity and activation volume of Cu/Ni metallic multilayer thin films measured via micropillar compression. Appl. Phys. Lett. 101, 051901 (2012)CrossRef
72.
go back to reference Carpenter, J.S., Misra, A., Anderson, P.M.: Achieving maximum hardness in semi-coherent multilayer thin films with unequal layer thickness. Acta Materialia 60, 2625–2636 (2012)CrossRef Carpenter, J.S., Misra, A., Anderson, P.M.: Achieving maximum hardness in semi-coherent multilayer thin films with unequal layer thickness. Acta Materialia 60, 2625–2636 (2012)CrossRef
73.
go back to reference Cammarata, R.C., Schlesinger, T.E., Kim, C., et al.: Nanoindentation study of the mechanical-properties of cppper–nickel multilayered thin-films. Appl. Phys. Lett. 56, 1862–1864 (1990)CrossRef Cammarata, R.C., Schlesinger, T.E., Kim, C., et al.: Nanoindentation study of the mechanical-properties of cppper–nickel multilayered thin-films. Appl. Phys. Lett. 56, 1862–1864 (1990)CrossRef
74.
go back to reference Rao, S.I., Hazzledine, P.M.: Atomistic simulations of dislocation–interface interactions in the Cu–Ni multilayer system. Philos. Mag. A 80, 2011–2040 (2000)CrossRef Rao, S.I., Hazzledine, P.M.: Atomistic simulations of dislocation–interface interactions in the Cu–Ni multilayer system. Philos. Mag. A 80, 2011–2040 (2000)CrossRef
75.
go back to reference Hoagland, R.G., Mitchell, T.E., Hirth, J.P., et al.: On the strengthening effects of interfaces in multilayer fcc metallic composites. Philos. Mag. A 82, 643–664 (2002) Hoagland, R.G., Mitchell, T.E., Hirth, J.P., et al.: On the strengthening effects of interfaces in multilayer fcc metallic composites. Philos. Mag. A 82, 643–664 (2002)
76.
go back to reference Misra, A., Hirth, J.P., Hoagland, R.G.: Length-scale-dependent deformation mechanisms in incoherent metallic multilayered composites. Acta Materialia 53, 4817–4824 (2005)CrossRef Misra, A., Hirth, J.P., Hoagland, R.G.: Length-scale-dependent deformation mechanisms in incoherent metallic multilayered composites. Acta Materialia 53, 4817–4824 (2005)CrossRef
77.
go back to reference Zhang, J.Y., Zhang, P., Zhang, X., et al.: Mechanical properties of fcc/fcc Cu/Nb nanostructured multilayers. Mater. Sci. Eng. A 545, 118–122 (2012)CrossRef Zhang, J.Y., Zhang, P., Zhang, X., et al.: Mechanical properties of fcc/fcc Cu/Nb nanostructured multilayers. Mater. Sci. Eng. A 545, 118–122 (2012)CrossRef
78.
go back to reference Mara, N.A., Bhattacharyya, D., Hoagland, R.G., et al.: Tensile behavior of 40 nm Cu/Nb nanoscale multilayers. Scripta Materialia 58, 874–877 (2008)CrossRef Mara, N.A., Bhattacharyya, D., Hoagland, R.G., et al.: Tensile behavior of 40 nm Cu/Nb nanoscale multilayers. Scripta Materialia 58, 874–877 (2008)CrossRef
79.
go back to reference Fu, E.G., Li, N., Misra, A., et al.: Mechanical properties of sputtered Cu/V and Al/Nb multilayer films. Mater. Sci. Eng. A 493, 283–287 (2008)CrossRef Fu, E.G., Li, N., Misra, A., et al.: Mechanical properties of sputtered Cu/V and Al/Nb multilayer films. Mater. Sci. Eng. A 493, 283–287 (2008)CrossRef
80.
go back to reference Koehler, J.: Attempt to design a strong solid. Phys. Rev. B 2, 547–551 (1970)CrossRef Koehler, J.: Attempt to design a strong solid. Phys. Rev. B 2, 547–551 (1970)CrossRef
81.
go back to reference Akcakaya, E., Famell, G.W., Adler, E.L.: Dynamic approach for finding effective elastic and piezoelectric constants of superlattices. J. Appl. Phys. 68, 1009 (1990)CrossRef Akcakaya, E., Famell, G.W., Adler, E.L.: Dynamic approach for finding effective elastic and piezoelectric constants of superlattices. J. Appl. Phys. 68, 1009 (1990)CrossRef
82.
go back to reference Li, Y.P., Zhu, X.F., Zhang, G.P., et al.: Investigation of deformation instability of Au/Cu multilayers by indentation. Philos. Mag. 90, 3049–3067 (2010)CrossRef Li, Y.P., Zhu, X.F., Zhang, G.P., et al.: Investigation of deformation instability of Au/Cu multilayers by indentation. Philos. Mag. 90, 3049–3067 (2010)CrossRef
83.
go back to reference Chen, Y., Liu, Y., Sun, C., et al.: Microstructure and strengthening mechanisms in Cu/Fe multilayers. Acta Materialia 60, 6312–6321 (2012)CrossRef Chen, Y., Liu, Y., Sun, C., et al.: Microstructure and strengthening mechanisms in Cu/Fe multilayers. Acta Materialia 60, 6312–6321 (2012)CrossRef
84.
go back to reference Huang, P., Wang, F., Xu, M., et al.: Strain rate sensitivity of unequal grained nano-multilayers. Mater. Sci. Eng. A 528, 5908–5913 (2011)CrossRef Huang, P., Wang, F., Xu, M., et al.: Strain rate sensitivity of unequal grained nano-multilayers. Mater. Sci. Eng. A 528, 5908–5913 (2011)CrossRef
85.
go back to reference Zhang, J.Y., Liu, Y., Chen, J., et al.: Mechanical properties of crystalline Cu/Zr and crystal–amorphous Cu/Cu–Zr multilayers. Mater. Sci. Eng. A 552, 392–398 (2012)CrossRef Zhang, J.Y., Liu, Y., Chen, J., et al.: Mechanical properties of crystalline Cu/Zr and crystal–amorphous Cu/Cu–Zr multilayers. Mater. Sci. Eng. A 552, 392–398 (2012)CrossRef
86.
go back to reference Hu, K., Xu, L.J., Cao, Y.Q., et al.: Modulating individual thickness for optimized combination of strength and ductility inCu/Ru multilayer films. Mater. Lett. 107, 303–306 (2013) Hu, K., Xu, L.J., Cao, Y.Q., et al.: Modulating individual thickness for optimized combination of strength and ductility inCu/Ru multilayer films. Mater. Lett. 107, 303–306 (2013)
87.
go back to reference Lai, W.S., Yang, M.J.: Observation of largely enhanced hardness in nanomultilayers of the Ag–Nb system with positive enthalpy of formation. Appl. Phys. Lett. 90, 181917 (2007) Lai, W.S., Yang, M.J.: Observation of largely enhanced hardness in nanomultilayers of the Ag–Nb system with positive enthalpy of formation. Appl. Phys. Lett. 90, 181917 (2007)
88.
go back to reference Wen, S.P., Zeng, F., Gao, Y., et al.: Microstructure and nanoindentation investigation of magnetron sputtering Ag/Co multilayers. Surf. Coat. Technol. 201, 1262–1266 (2006)CrossRef Wen, S.P., Zeng, F., Gao, Y., et al.: Microstructure and nanoindentation investigation of magnetron sputtering Ag/Co multilayers. Surf. Coat. Technol. 201, 1262–1266 (2006)CrossRef
89.
go back to reference Wen, S.P., Zong, R.L., Zeng, F., et al.: Influence of plasticity mismatch and porosity on mechanical behavior of nanoscale Ag/W multilayers. Mater. Sci. Eng. A 457, 38–43 (2007)CrossRef Wen, S.P., Zong, R.L., Zeng, F., et al.: Influence of plasticity mismatch and porosity on mechanical behavior of nanoscale Ag/W multilayers. Mater. Sci. Eng. A 457, 38–43 (2007)CrossRef
90.
go back to reference Abadias, G., Jaouen, C., Martin, F., et al.: Experimental evidence for the role of supersaturated interfacial alloys on the shear elastic softening of Ni/Mo superlattices. Phys. Rev. B 65, 212105 (2002)CrossRef Abadias, G., Jaouen, C., Martin, F., et al.: Experimental evidence for the role of supersaturated interfacial alloys on the shear elastic softening of Ni/Mo superlattices. Phys. Rev. B 65, 212105 (2002)CrossRef
91.
go back to reference Zhang, J.Y., Niu, J.J., Zhang, X., et al.: Tailoring nanostructured Cu/Cr multilayer films with enhanced hardness and tunable modulus. Mater. Sci. Eng. A 543, 139–144 (2012)CrossRef Zhang, J.Y., Niu, J.J., Zhang, X., et al.: Tailoring nanostructured Cu/Cr multilayer films with enhanced hardness and tunable modulus. Mater. Sci. Eng. A 543, 139–144 (2012)CrossRef
92.
go back to reference Huang, H., Spaepen, F.: Tensile testing of free-standing Cu, Ag and Al thin films and Ag/Cu multilayers. Acta Materialia 48, 3261–3269 (2000)CrossRef Huang, H., Spaepen, F.: Tensile testing of free-standing Cu, Ag and Al thin films and Ag/Cu multilayers. Acta Materialia 48, 3261–3269 (2000)CrossRef
93.
go back to reference Zhang, J.Y., Lei, S., Liu, Y., et al.: Length scale-dependent deformation behavior of nanolayered Cu/Zr micropillars. Acta Materialia 60, 1610–1622 (2012)CrossRef Zhang, J.Y., Lei, S., Liu, Y., et al.: Length scale-dependent deformation behavior of nanolayered Cu/Zr micropillars. Acta Materialia 60, 1610–1622 (2012)CrossRef
94.
go back to reference Mara, N.A., Bhattacharyya, D., Hirth, J.P., et al.: Mechanism for shear banding in nanolayered composites. Appl. Phys. Lett. 97, 021909 (2010)CrossRef Mara, N.A., Bhattacharyya, D., Hirth, J.P., et al.: Mechanism for shear banding in nanolayered composites. Appl. Phys. Lett. 97, 021909 (2010)CrossRef
95.
go back to reference Carpenter, J.S., Vogel, S.C., LeDonne, J.E., et al.: Bulk texture evolution of Cu–Nb nanolamellar composites during accumulative roll bonding. Acta Materialia 60, 1576–1586 (2012)CrossRef Carpenter, J.S., Vogel, S.C., LeDonne, J.E., et al.: Bulk texture evolution of Cu–Nb nanolamellar composites during accumulative roll bonding. Acta Materialia 60, 1576–1586 (2012)CrossRef
96.
go back to reference Anderson, P.M., Bingert, J.F., Misra, A., et al.: Rolling textures in nanoscale Cu/Nb multilayers. Acta Materialia 51, 6059–6075 (2003)CrossRef Anderson, P.M., Bingert, J.F., Misra, A., et al.: Rolling textures in nanoscale Cu/Nb multilayers. Acta Materialia 51, 6059–6075 (2003)CrossRef
97.
go back to reference Misra, A., Kung, H., Hammon, D., et al.: Damage mechanisms in nanolayered metallic composites. Int. J. Damage Mech. 12, 365–376 (2003)CrossRef Misra, A., Kung, H., Hammon, D., et al.: Damage mechanisms in nanolayered metallic composites. Int. J. Damage Mech. 12, 365–376 (2003)CrossRef
98.
go back to reference Hsia, K.J., Suo, Z., Yang, W.: Cleavage due to dislocation confinement in layered materials. J. Mech. Phys. Solids 42, 877–896 (1994)CrossRef Hsia, K.J., Suo, Z., Yang, W.: Cleavage due to dislocation confinement in layered materials. J. Mech. Phys. Solids 42, 877–896 (1994)CrossRef
99.
go back to reference Was, G.S., Foecke, T.: Deformation and fracture in microlaminates. Thin Solid Films 286, 1–31 (1996)CrossRef Was, G.S., Foecke, T.: Deformation and fracture in microlaminates. Thin Solid Films 286, 1–31 (1996)CrossRef
100.
go back to reference Hertzberg, R.W.: Deformation and Fracture Mechanics of Engineering Materials. Wiley, New York (1989) Hertzberg, R.W.: Deformation and Fracture Mechanics of Engineering Materials. Wiley, New York (1989)
101.
go back to reference Zhang, J.Y., Liu, G., Sun, J., et al.: Dominant factor controlling the fracture mode in nanostructured Cu/Cr multilayer films. Mater. Sci. Eng. A 528, 2982–2987 (2011)CrossRef Zhang, J.Y., Liu, G., Sun, J., et al.: Dominant factor controlling the fracture mode in nanostructured Cu/Cr multilayer films. Mater. Sci. Eng. A 528, 2982–2987 (2011)CrossRef
102.
go back to reference Zhou, Q., Zhao, J., Xie, J.Y., et al.: Grain size dependent strain rate sensitivity in nanocrystalline body-centered cubic metal thin films. Mater. Sci. Eng. A 608, 184–189 (2014)CrossRef Zhou, Q., Zhao, J., Xie, J.Y., et al.: Grain size dependent strain rate sensitivity in nanocrystalline body-centered cubic metal thin films. Mater. Sci. Eng. A 608, 184–189 (2014)CrossRef
103.
go back to reference Lu, L., Schwaiger, R., Shan, Z.W., et al.: Nano-sized twins induce high rate sensitivity of flow stress in pure copper. Acta Materialia 53, 2169–2179 (2005)CrossRef Lu, L., Schwaiger, R., Shan, Z.W., et al.: Nano-sized twins induce high rate sensitivity of flow stress in pure copper. Acta Materialia 53, 2169–2179 (2005)CrossRef
104.
go back to reference Schwaiger, R., Moser, B., Dao, M., et al.: Some critical experiments on the strain-rate sensitivity of nanocrystalline nickel. Acta Materialia 51, 5159–5172 (2003)CrossRef Schwaiger, R., Moser, B., Dao, M., et al.: Some critical experiments on the strain-rate sensitivity of nanocrystalline nickel. Acta Materialia 51, 5159–5172 (2003)CrossRef
105.
go back to reference Wei, Q., Cheng, S., Ramesh, K.T., et al.: Effect of nanocrystalline and ultrafine grain sizes on the strain rate sensitivity and activation volume: fcc versus bcc metals. Mater. Sci. Eng. A 381, 71–79 (2004)CrossRef Wei, Q., Cheng, S., Ramesh, K.T., et al.: Effect of nanocrystalline and ultrafine grain sizes on the strain rate sensitivity and activation volume: fcc versus bcc metals. Mater. Sci. Eng. A 381, 71–79 (2004)CrossRef
106.
go back to reference Wang, F., Li, B., Gao, T.T., et al.: Activation volume and strain rate sensitivity in plastic deformation of nanocrystalline Ti. Surf. Coat. Technol. 228, S254–S256 (2012)CrossRef Wang, F., Li, B., Gao, T.T., et al.: Activation volume and strain rate sensitivity in plastic deformation of nanocrystalline Ti. Surf. Coat. Technol. 228, S254–S256 (2012)CrossRef
107.
go back to reference Niu, J.J., Zhang, J.Y., Liu, G., et al.: Size-dependent deformation mechanisms and strain-rate sensitivity in nanostructured Cu/X (\(X=\text{ Cr }\), Zr) multilayer films. Acta Materialia 60, 3677–3689 (2012)CrossRef Niu, J.J., Zhang, J.Y., Liu, G., et al.: Size-dependent deformation mechanisms and strain-rate sensitivity in nanostructured Cu/X (\(X=\text{ Cr }\), Zr) multilayer films. Acta Materialia 60, 3677–3689 (2012)CrossRef
108.
go back to reference Zhu, X.Y., Liu, X.J., Zeng, F., et al.: Room temperature nanoindentation creep of nanoscale Ag/Fe multilayers. Mater. Lett. 64, 53–56 (2010)CrossRef Zhu, X.Y., Liu, X.J., Zeng, F., et al.: Room temperature nanoindentation creep of nanoscale Ag/Fe multilayers. Mater. Lett. 64, 53–56 (2010)CrossRef
109.
go back to reference Shen, B.L., Itoi, T., Yamasaki, T., et al.: Indentation creep of nanocrystalline Cu–TiC alloys prepared by mechanical alloying. Scripta Materialia 42, 893–898 (2000)CrossRef Shen, B.L., Itoi, T., Yamasaki, T., et al.: Indentation creep of nanocrystalline Cu–TiC alloys prepared by mechanical alloying. Scripta Materialia 42, 893–898 (2000)CrossRef
110.
go back to reference Wang, J., Hoagland, R.G., Misra, A.: Room-temperature dislocation climb in metallic interfaces. Appl. Phys. Lett. 94, 131910 (2009)CrossRef Wang, J., Hoagland, R.G., Misra, A.: Room-temperature dislocation climb in metallic interfaces. Appl. Phys. Lett. 94, 131910 (2009)CrossRef
111.
go back to reference Kang, B.C., Kim, H.Y., Kwon, O.Y., et al.: Bilayer thickness effects on nanoindentation behavior of Ag/Ni multilayers. Scripta Materialia 57, 703–706 (2007)CrossRef Kang, B.C., Kim, H.Y., Kwon, O.Y., et al.: Bilayer thickness effects on nanoindentation behavior of Ag/Ni multilayers. Scripta Materialia 57, 703–706 (2007)CrossRef
112.
go back to reference Zhang, J.Y., Wang, Y.Q., Wu, K., et al.: Strain rate sensitivity of nanolayered Cu/X (\(X=\text{ Cr }\), Zr) micropillars: effects of heterophase interface/twin boundary. Mater. Sci. Eng. A 61, 228–240 (2014) Zhang, J.Y., Wang, Y.Q., Wu, K., et al.: Strain rate sensitivity of nanolayered Cu/X (\(X=\text{ Cr }\), Zr) micropillars: effects of heterophase interface/twin boundary. Mater. Sci. Eng. A 61, 228–240 (2014)
113.
go back to reference Friedman, L.H., Chrzan, D.C.: Scaling theory of the Hall–Petch relation for multilayers. Phys. Rev. Lett. 81, 2715–2718 (1998)CrossRef Friedman, L.H., Chrzan, D.C.: Scaling theory of the Hall–Petch relation for multilayers. Phys. Rev. Lett. 81, 2715–2718 (1998)CrossRef
114.
go back to reference Embury, J.D., Hirth, J.P.: On dislocation storage and the mechanical response of fine scale microstructures. Acta Metallurgica et Materialia 42, 2051–2056 (1994)CrossRef Embury, J.D., Hirth, J.P.: On dislocation storage and the mechanical response of fine scale microstructures. Acta Metallurgica et Materialia 42, 2051–2056 (1994)CrossRef
115.
go back to reference Anderson, P.M., Foecke, T., Hazzledine, P.M.: Dislocation-based deformation mechanisms in metallic nanolaminates. MRS Bull. 24, 27–33 (1999) Anderson, P.M., Foecke, T., Hazzledine, P.M.: Dislocation-based deformation mechanisms in metallic nanolaminates. MRS Bull. 24, 27–33 (1999)
116.
go back to reference Wang, J., Misra, A.: Strain hardening in nanolayered thin films. Curr. Opin. Solid State Mater. Sci. 18, 19–28 (2014)CrossRef Wang, J., Misra, A.: Strain hardening in nanolayered thin films. Curr. Opin. Solid State Mater. Sci. 18, 19–28 (2014)CrossRef
117.
go back to reference Kramer, D.E., Foecke, T.: Transmission electron microscopy observations of deformation and fracture in nanolaminated Cu–Ni thin films. Philos. Mag. A 82, 3375–3381 (2002)CrossRef Kramer, D.E., Foecke, T.: Transmission electron microscopy observations of deformation and fracture in nanolaminated Cu–Ni thin films. Philos. Mag. A 82, 3375–3381 (2002)CrossRef
118.
go back to reference Tu, K., Mayer, J.W., Feldman, L.C.: Electronic Thin Film Science: for Electrical Engineers and Materials Scientists. Macmillan, New York (1992) Tu, K., Mayer, J.W., Feldman, L.C.: Electronic Thin Film Science: for Electrical Engineers and Materials Scientists. Macmillan, New York (1992)
119.
go back to reference Misra, A., Verdier, M., Kung, H., et al.: Deformation mechanism maps for polycrystalline metallic multiplayers. Scripta Materialia 41, 973–979 (1999)CrossRef Misra, A., Verdier, M., Kung, H., et al.: Deformation mechanism maps for polycrystalline metallic multiplayers. Scripta Materialia 41, 973–979 (1999)CrossRef
120.
go back to reference Yan, J.W., Zhu, X.F., Zhang, G.P., et al.: Evaluation of plastic deformation ability of Cu/Ni/W metallic multilayers. Thin Solid Films 527, 227–231 (2013)CrossRef Yan, J.W., Zhu, X.F., Zhang, G.P., et al.: Evaluation of plastic deformation ability of Cu/Ni/W metallic multilayers. Thin Solid Films 527, 227–231 (2013)CrossRef
121.
go back to reference Kamat, S.V., Hirth, J.P.: Dislocation injection in strained multilayer structures. J. Appl. Phys. 67, 6844–6850 (1990)CrossRef Kamat, S.V., Hirth, J.P.: Dislocation injection in strained multilayer structures. J. Appl. Phys. 67, 6844–6850 (1990)CrossRef
122.
go back to reference Mastorakos, I.N., Zbib, H.M., Bahr, D.F.: Deformation mechanisms and strength in nanoscale multilayer metallic composites with coherent and incoherent interfaces. Appl. Phys. Lett. 94, 173114 (2009)CrossRef Mastorakos, I.N., Zbib, H.M., Bahr, D.F.: Deformation mechanisms and strength in nanoscale multilayer metallic composites with coherent and incoherent interfaces. Appl. Phys. Lett. 94, 173114 (2009)CrossRef
123.
go back to reference Lehoczky, S.L.: Strength enhancement in thin-layered Al–Cu laminates. J. Appl. Phys. 49, 5479–5485 (1978)CrossRef Lehoczky, S.L.: Strength enhancement in thin-layered Al–Cu laminates. J. Appl. Phys. 49, 5479–5485 (1978)CrossRef
124.
go back to reference Shinn, M., Hultman, L., Barnett, S.A.: Growth, structure, and microhardness of epitaxial TIN/NBN superlattices. J. Mater. Res. 7, 901–911 (1992)CrossRef Shinn, M., Hultman, L., Barnett, S.A.: Growth, structure, and microhardness of epitaxial TIN/NBN superlattices. J. Mater. Res. 7, 901–911 (1992)CrossRef
125.
go back to reference Xu, J.H., Kamiko, M., Sawada, H., et al.: Structure, hardness, and elastic modulus of Pd/Ti nanostructured multilayer films. J. Vac. Sci. Technol. B 21, 2584–2589 (2003)CrossRef Xu, J.H., Kamiko, M., Sawada, H., et al.: Structure, hardness, and elastic modulus of Pd/Ti nanostructured multilayer films. J. Vac. Sci. Technol. B 21, 2584–2589 (2003)CrossRef
126.
go back to reference Li, Y.P., Zhang, G.P., Wang, W.: On interface strengthening ability in metallic multilayers. Scripta Materialia 57, 117–120 (2007)CrossRef Li, Y.P., Zhang, G.P., Wang, W.: On interface strengthening ability in metallic multilayers. Scripta Materialia 57, 117–120 (2007)CrossRef
127.
go back to reference Kim, C., Qadri, S.B., Scanlon, M.R., et al.: Low-dimension structural properties and microindentation studies of ion-beam-sputtered multilayers of Ag/Al films. Thin Solid Films 240, 52–55 (1994)CrossRef Kim, C., Qadri, S.B., Scanlon, M.R., et al.: Low-dimension structural properties and microindentation studies of ion-beam-sputtered multilayers of Ag/Al films. Thin Solid Films 240, 52–55 (1994)CrossRef
128.
go back to reference Lu, Y.Y., Kotoka, R., Ligda, J.P., et al.: The microstructure and mechanical behavior of Mg/Ti multilayers as a function of individual layer thickness. Acta Materialia 63, 216–231 (2014) Lu, Y.Y., Kotoka, R., Ligda, J.P., et al.: The microstructure and mechanical behavior of Mg/Ti multilayers as a function of individual layer thickness. Acta Materialia 63, 216–231 (2014)
129.
go back to reference Hirth, J.P., Lothe, J.: Theory of Dislocations. Krieger, Malabar (1992) Hirth, J.P., Lothe, J.: Theory of Dislocations. Krieger, Malabar (1992)
130.
go back to reference Wang, J., Hoagland, R.G., Misra, A.: Phase transition and dislocation nucleation in Cu–Nb layered composites during physical vapor deposition. J. Mater. Res. 23, 1009–1014 (2008)CrossRef Wang, J., Hoagland, R.G., Misra, A.: Phase transition and dislocation nucleation in Cu–Nb layered composites during physical vapor deposition. J. Mater. Res. 23, 1009–1014 (2008)CrossRef
131.
go back to reference Zhang, R.F., Wang, J., Beyerlein, I.J., et al.: Dislocation nucleation mechanisms from fcc/bcc incoherent interfaces. Scripta Materialia 65, 1022–1025 (2011) Zhang, R.F., Wang, J., Beyerlein, I.J., et al.: Dislocation nucleation mechanisms from fcc/bcc incoherent interfaces. Scripta Materialia 65, 1022–1025 (2011)
132.
go back to reference Zhang, G.P., Liu, Y., Wang, W., et al.: Experimental evidence of plastic deformation instability in nanoscale Au/Cu multilayers. Appl. Phys. Lett. 88, 013105 (2006)CrossRef Zhang, G.P., Liu, Y., Wang, W., et al.: Experimental evidence of plastic deformation instability in nanoscale Au/Cu multilayers. Appl. Phys. Lett. 88, 013105 (2006)CrossRef
133.
go back to reference Li, Y.P., Tan, J., Zhang, G.P.: Interface instability within shear bands in nanoscale Au/Cu multilayers. Scripta Materialia 59, 1226–1229 (2008)CrossRef Li, Y.P., Tan, J., Zhang, G.P.: Interface instability within shear bands in nanoscale Au/Cu multilayers. Scripta Materialia 59, 1226–1229 (2008)CrossRef
134.
go back to reference Xie, J.Y., Huang, P., Wang, F., et al.: Shear banding behavior in nanoscale Al/W multilayers. Surf. Coat. Technol. 228, S593–S596 (2013)CrossRef Xie, J.Y., Huang, P., Wang, F., et al.: Shear banding behavior in nanoscale Al/W multilayers. Surf. Coat. Technol. 228, S593–S596 (2013)CrossRef
135.
go back to reference Li, Y.P., Zhu, X.F., Tan, J., et al.: Two different types of shear-deformation behaviour in Au–Cu multilayers. Philos. Mag. Lett. 89, 66–74 (2009)CrossRef Li, Y.P., Zhu, X.F., Tan, J., et al.: Two different types of shear-deformation behaviour in Au–Cu multilayers. Philos. Mag. Lett. 89, 66–74 (2009)CrossRef
136.
go back to reference Bhattacharyya, D., Mara, N.A., Dickerson, P., et al.: Transmission electron microscopy study of the deformation behavior of Cu/Nb and Cu/Ni nanoscale multilayers during nanoindentation. J. Mater. Res. 24, 1291–1302 (2009)CrossRef Bhattacharyya, D., Mara, N.A., Dickerson, P., et al.: Transmission electron microscopy study of the deformation behavior of Cu/Nb and Cu/Ni nanoscale multilayers during nanoindentation. J. Mater. Res. 24, 1291–1302 (2009)CrossRef
Metadata
Title
The mechanical behavior of nanoscale metallic multilayers: A survey
Authors
Q. Zhou
J. Y. Xie
F. Wang
P. Huang
K. W. Xu
T. J. Lu
Publication date
01-06-2015
Publisher
The Chinese Society of Theoretical and Applied Mechanics; Institute of Mechanics, Chinese Academy of Sciences
Published in
Acta Mechanica Sinica / Issue 3/2015
Print ISSN: 0567-7718
Electronic ISSN: 1614-3116
DOI
https://doi.org/10.1007/s10409-015-0401-1

Other articles of this Issue 3/2015

Acta Mechanica Sinica 3/2015 Go to the issue

Premium Partners