Skip to main content
Top
Published in: Neural Computing and Applications 7-8/2014

01-12-2014 | Original Article

Active learning of Gaussian processes with manifold-preserving graph reduction

Authors: Jin Zhou, Shiliang Sun

Published in: Neural Computing and Applications | Issue 7-8/2014

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

As a recently proposed machine learning method, active learning of Gaussian processes can effectively use a small number of labeled examples to train a classifier, which in turn is used to select the most informative examples from unlabeled data for manual labeling. However, in the process of example selection, active learning usually need consider all the unlabeled data without exploiting the structural space connectivity among them. This will decrease the classification accuracy to some extent since the selected points may not be the most informative. To overcome this shortcoming, in this paper, we present a method which applies the manifold-preserving graph reduction (MPGR) algorithm to the traditional active learning method of Gaussian processes. MPGR is a simple and efficient example sparsification algorithm which can construct a subset to represent the global structure and simultaneously eliminate the influence of noisy points and outliers. Thereby, when actively selecting examples to label, we just choose from the subset constructed by MPGR instead of the whole unlabeled data. We report experimental results on multiple data sets which demonstrate that our method obtains better classification performance compared with the original active learning method of Gaussian processes.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Belkin M, Niyogi P (2003) Laplacian eigenmaps for dimensionality reduction and data representation. Neural Comput 15:1373–1396CrossRefMATH Belkin M, Niyogi P (2003) Laplacian eigenmaps for dimensionality reduction and data representation. Neural Comput 15:1373–1396CrossRefMATH
2.
go back to reference Belkin M, Niyogi P, Sindhwani V (2006) Manifold regularization: a geometric framework for learning from labeled and unlabeled examples. J Mach Learn Res 7:2399–2434MATHMathSciNet Belkin M, Niyogi P, Sindhwani V (2006) Manifold regularization: a geometric framework for learning from labeled and unlabeled examples. J Mach Learn Res 7:2399–2434MATHMathSciNet
3.
go back to reference Campbell C, Cristianini N, Smola A (2000) Query learning with large margin classifiers. In: Proceedings of the international conference on machine learning, pp 111–118 Campbell C, Cristianini N, Smola A (2000) Query learning with large margin classifiers. In: Proceedings of the international conference on machine learning, pp 111–118
4.
go back to reference Cohn D, Atlas L, Ladner R (1994) Improving generalization with active learning. Mach Learn 15:201–221 Cohn D, Atlas L, Ladner R (1994) Improving generalization with active learning. Mach Learn 15:201–221
5.
go back to reference Dagan I, Engelson SP (1995) Committee-based sampling for training probabilistic classifiers. In: Proceedings of the international conference on machine learning, pp 150–157 Dagan I, Engelson SP (1995) Committee-based sampling for training probabilistic classifiers. In: Proceedings of the international conference on machine learning, pp 150–157
6.
go back to reference Freund Y, Seung H, Shamir E, Tishby N (1997) Selective sampling using the query by committee algorithm. Mach Learn 28:133–168CrossRefMATH Freund Y, Seung H, Shamir E, Tishby N (1997) Selective sampling using the query by committee algorithm. Mach Learn 28:133–168CrossRefMATH
7.
go back to reference Hauptmann A, Lin W, Yan R, Yang J, Chen M (2006) Extreme video retrieval: joint maximization of human and computer performance. In: Proceedings of the ACM workshop on multimedia image retrieval, pp 385–394 Hauptmann A, Lin W, Yan R, Yang J, Chen M (2006) Extreme video retrieval: joint maximization of human and computer performance. In: Proceedings of the ACM workshop on multimedia image retrieval, pp 385–394
8.
go back to reference Hoi S, Jin R, Zhu J, Lyu M (2006) Batch mode active learning and its application to medical image classification. In: Proceedings of the international conference on machine learning, pp 417–424 Hoi S, Jin R, Zhu J, Lyu M (2006) Batch mode active learning and its application to medical image classification. In: Proceedings of the international conference on machine learning, pp 417–424
9.
go back to reference Kapoor A, Grauman K, Urtasun R, Darrell T (2010) Gaussian processes for object categorization. Int J Comput Vis 88:169–188CrossRef Kapoor A, Grauman K, Urtasun R, Darrell T (2010) Gaussian processes for object categorization. Int J Comput Vis 88:169–188CrossRef
10.
go back to reference Kapoor A, Grauman K, Urtasun R, Darrell T (2007) Active learning with Gaussian processed for object categorization. In: Proceedings of the international conference on computer vision, pp 1–8 Kapoor A, Grauman K, Urtasun R, Darrell T (2007) Active learning with Gaussian processed for object categorization. In: Proceedings of the international conference on computer vision, pp 1–8
11.
go back to reference Krause A, Guestrin C (2007) Nonmyopic active learning of gaussian processes: an exploration-exploitation approach. In: Proceedings of the international conference on machine learning, pp 449–456 Krause A, Guestrin C (2007) Nonmyopic active learning of gaussian processes: an exploration-exploitation approach. In: Proceedings of the international conference on machine learning, pp 449–456
12.
go back to reference Lewis D, Gale W (1994) A sequential algorithm for training text classifiers. In: Proceedings of the annual international ACM SIGIR conference on research and development in information retrieval, pp 3–12 Lewis D, Gale W (1994) A sequential algorithm for training text classifiers. In: Proceedings of the annual international ACM SIGIR conference on research and development in information retrieval, pp 3–12
13.
go back to reference Liu Y (2004) Active learning with support vector machine applied to gene expression data for cancer classification. J Chem Inf Comput Sci 44:1936–1941CrossRef Liu Y (2004) Active learning with support vector machine applied to gene expression data for cancer classification. J Chem Inf Comput Sci 44:1936–1941CrossRef
14.
go back to reference Rasmussen C, Williams C (2006) Gaussian processes for machine learning. MIT Press, CambridgeMATH Rasmussen C, Williams C (2006) Gaussian processes for machine learning. MIT Press, CambridgeMATH
15.
go back to reference Roy N, McCallum A (2001) Toward optimal active learning through sampling estimation of error reduction. In: Proceedings of the international conference on machine learning, pp 441–448 Roy N, McCallum A (2001) Toward optimal active learning through sampling estimation of error reduction. In: Proceedings of the international conference on machine learning, pp 441–448
16.
go back to reference Schohn G, Cohn D (2000) Less is more: active learning with support vectors machines. In: Proceedings of the international conference on machine learning, pp 839–846 Schohn G, Cohn D (2000) Less is more: active learning with support vectors machines. In: Proceedings of the international conference on machine learning, pp 839–846
17.
go back to reference Settles B, Craven M, Friedland L (2008) Active learning with real annotation costs. In: Proceedings of the NIPS workshop on cost-sensitive learning, pp 1–10 Settles B, Craven M, Friedland L (2008) Active learning with real annotation costs. In: Proceedings of the NIPS workshop on cost-sensitive learning, pp 1–10
18.
go back to reference Sun S (2011) Multi-view Laplacian support vector machines. Lect Notes Artif Intell 7121:209–222 Sun S (2011) Multi-view Laplacian support vector machines. Lect Notes Artif Intell 7121:209–222
19.
go back to reference Sun S, Hardoon D (2010) Active learning with extremely sparse labeled examples. Neurocomputing 73:2980–2988CrossRef Sun S, Hardoon D (2010) Active learning with extremely sparse labeled examples. Neurocomputing 73:2980–2988CrossRef
20.
go back to reference Sun S, Hussain Z, Shawe-Taylor J (2013) Manifold-preserving graph reduction for sparse semi-supervised learning. Neurocomputing 124:13–21CrossRef Sun S, Hussain Z, Shawe-Taylor J (2013) Manifold-preserving graph reduction for sparse semi-supervised learning. Neurocomputing 124:13–21CrossRef
21.
go back to reference Tong S (2001) Active learning: theory and applications. Ph.D. Thesis, Stanford University Tong S (2001) Active learning: theory and applications. Ph.D. Thesis, Stanford University
22.
go back to reference Tuia D, Ratle F, Pacifici F, Kanevski M, Emery W (2009) Active learning methods for remote sensing image classification. IEEE Trans Geosci Remote Sens 47:2218–2232CrossRef Tuia D, Ratle F, Pacifici F, Kanevski M, Emery W (2009) Active learning methods for remote sensing image classification. IEEE Trans Geosci Remote Sens 47:2218–2232CrossRef
23.
go back to reference Yeh I, Yang K, Ting T (2009) Knowledge discovery on RFM model using Bernoulli sequence. Expert Syst Appl 36:5866–5871CrossRef Yeh I, Yang K, Ting T (2009) Knowledge discovery on RFM model using Bernoulli sequence. Expert Syst Appl 36:5866–5871CrossRef
24.
go back to reference Zhang Q, Sun S (2010) Multiple-view multiple-learner active learning. Pattern Recognit 43:3113–3119CrossRefMATH Zhang Q, Sun S (2010) Multiple-view multiple-learner active learning. Pattern Recognit 43:3113–3119CrossRefMATH
25.
go back to reference Zhang C, Chen T (2002) An active learning framework for content based information retrieval. IEEE Trans Multimed 4:260–268CrossRef Zhang C, Chen T (2002) An active learning framework for content based information retrieval. IEEE Trans Multimed 4:260–268CrossRef
26.
go back to reference Zhou Y, Goldman S (2004) Democratic co-learning. In: Proceedings of the IEEE international conference on tools with artificial intelligence, pp 594–602 Zhou Y, Goldman S (2004) Democratic co-learning. In: Proceedings of the IEEE international conference on tools with artificial intelligence, pp 594–602
27.
go back to reference Zhu J, Sun S (2013) Single-task and multitask sparse Gaussian processes. In: Proceedings of the international conference on machine learning and cybernetics, pp 1033–1038 Zhu J, Sun S (2013) Single-task and multitask sparse Gaussian processes. In: Proceedings of the international conference on machine learning and cybernetics, pp 1033–1038
Metadata
Title
Active learning of Gaussian processes with manifold-preserving graph reduction
Authors
Jin Zhou
Shiliang Sun
Publication date
01-12-2014
Publisher
Springer London
Published in
Neural Computing and Applications / Issue 7-8/2014
Print ISSN: 0941-0643
Electronic ISSN: 1433-3058
DOI
https://doi.org/10.1007/s00521-014-1643-8

Other articles of this Issue 7-8/2014

Neural Computing and Applications 7-8/2014 Go to the issue

Premium Partner