Skip to main content
Top

2021 | OriginalPaper | Chapter

10. Adsorption of Metals Using Activated Carbon Derived from Coal

Authors : Parag Girhe, Divya Barai, Bharat Bhanvase

Published in: Clean Coal Technologies

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Many industrial activities adversely affect the human health and environmental system. Wastewater containing high levels of pollutants such as metals is one of them. Nowadays metal pollution is the most concerned environmental problem. Various metals mainly mercury, cadmium, chromium, lead, copper, and arsenic present in wastewater are toxic and carcinogenic in nature. Coal-based activated carbon is favourable candidate for removing of toxic metals because of its high adsorption capacity compared to activated carbon (AC) derived from other sources. In this chapter, adsorption of metals present in wastewater using activated carbon is discussed. Furthermore, adsorption isotherm models, i.e. Langmuir or Freundlich, and adsorption kinetics model, i.e. pseudo-first order or pseudo-second order that commonly describe adsorption behaviour, are discussed. Further, the various factors affecting performance of AC to adsorb metals like the pH of solution, activated carbon impregnation, oxidation state, and temperature are discussed.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Abdulsalam, J., Mulopo, J., Oboirien, B., Bada, S., & Falcon, R. (2019). Experimental evaluation of activated carbon derived from South Africa discard coal for natural gas storage. International Journal of Coal Science and Technology, 6, 459–477.CrossRef Abdulsalam, J., Mulopo, J., Oboirien, B., Bada, S., & Falcon, R. (2019). Experimental evaluation of activated carbon derived from South Africa discard coal for natural gas storage. International Journal of Coal Science and Technology, 6, 459–477.CrossRef
go back to reference Ahmadpour, A., & Do, D. D. (1996). The preparation of active carbons from coal by chemical and physical activation. Carbon, 34, 471–479.CrossRef Ahmadpour, A., & Do, D. D. (1996). The preparation of active carbons from coal by chemical and physical activation. Carbon, 34, 471–479.CrossRef
go back to reference Ajmal, M., Rao, R. A. K., Ahmad, R., & Ahmad, J. (2000). Adsorption studies on Citrus reticulata (fruit peel of orange): Removal and recovery of Ni(II) from electroplating wastewater. Journal of Hazardous Materials, 79, 117–131.CrossRef Ajmal, M., Rao, R. A. K., Ahmad, R., & Ahmad, J. (2000). Adsorption studies on Citrus reticulata (fruit peel of orange): Removal and recovery of Ni(II) from electroplating wastewater. Journal of Hazardous Materials, 79, 117–131.CrossRef
go back to reference Ali Atieh, M. (2011). Removal of chromium (VI) from polluted water using carbon nanotubes supported with activated carbon. Procedia Environmental Sciences, 4, 281–293.CrossRef Ali Atieh, M. (2011). Removal of chromium (VI) from polluted water using carbon nanotubes supported with activated carbon. Procedia Environmental Sciences, 4, 281–293.CrossRef
go back to reference Ansari, R., & Sadegh, M. (2007). Application of activated carbon for removal of arsenic ions from aqueous solutions. E-Journal of Chemistry, 4, 103–108.CrossRef Ansari, R., & Sadegh, M. (2007). Application of activated carbon for removal of arsenic ions from aqueous solutions. E-Journal of Chemistry, 4, 103–108.CrossRef
go back to reference Anwar, J., Shafique, U., Salman, M., Waheed-uz-Zaman, Anwar, S., & Anzano, J. M. (2009). Removal of chromium (III) by using coal as adsorbent. Journal of Hazardous Materials, 171, 797–801.CrossRef Anwar, J., Shafique, U., Salman, M., Waheed-uz-Zaman, Anwar, S., & Anzano, J. M. (2009). Removal of chromium (III) by using coal as adsorbent. Journal of Hazardous Materials, 171, 797–801.CrossRef
go back to reference Arasteh, R., Masoumi, M., Rashidi, A. M., Moradi, L., Samimi, V., & Mostafavi, S. T. (2010). Adsorption of 2-nitrophenol by multi-wall carbon nanotubes from aqueous solutions. Applied Surface Science, 256, 4447–4455.CrossRef Arasteh, R., Masoumi, M., Rashidi, A. M., Moradi, L., Samimi, V., & Mostafavi, S. T. (2010). Adsorption of 2-nitrophenol by multi-wall carbon nanotubes from aqueous solutions. Applied Surface Science, 256, 4447–4455.CrossRef
go back to reference Arpa, Ç., Başyilmaz, E., Bektaş, S., Genç, Ö., & Yürüm, Y. (2000). Cation exchange properties of low rank Turkish coals: Removal of Hg, Cd and Pb from waste water. Fuel Processing Technology, 68, 111–120.CrossRef Arpa, Ç., Başyilmaz, E., Bektaş, S., Genç, Ö., & Yürüm, Y. (2000). Cation exchange properties of low rank Turkish coals: Removal of Hg, Cd and Pb from waste water. Fuel Processing Technology, 68, 111–120.CrossRef
go back to reference Arslan, G., & Pehlivan, E. (2007). Batch removal of chromium(VI) from aqueous solution by Turkish brown coals. Bioresource Technology, 98, 2836–2845.CrossRef Arslan, G., & Pehlivan, E. (2007). Batch removal of chromium(VI) from aqueous solution by Turkish brown coals. Bioresource Technology, 98, 2836–2845.CrossRef
go back to reference Asuquo, E., Martin, A., Nzerem, P., Siperstein, F., & Fan, X. (2017). Adsorption of Cd(II) and Pb(II) ions from aqueous solutions using mesoporous activated carbon adsorbent: Equilibrium, kinetics and characterisation studies. Journal of Environmental Chemical Engineering, 5, 679–698.CrossRef Asuquo, E., Martin, A., Nzerem, P., Siperstein, F., & Fan, X. (2017). Adsorption of Cd(II) and Pb(II) ions from aqueous solutions using mesoporous activated carbon adsorbent: Equilibrium, kinetics and characterisation studies. Journal of Environmental Chemical Engineering, 5, 679–698.CrossRef
go back to reference Attari, M., Bukhari, S. S., Kazemian, H., & Rohani, S. (2017). A low-cost adsorbent from coal fly ash for mercury removal from industrial wastewater. Journal of Environmental Chemical Engineering, 5, 391–399.CrossRef Attari, M., Bukhari, S. S., Kazemian, H., & Rohani, S. (2017). A low-cost adsorbent from coal fly ash for mercury removal from industrial wastewater. Journal of Environmental Chemical Engineering, 5, 391–399.CrossRef
go back to reference Bandosz, T. J., & Ania, C. O. (2006). Surface chemistry of activated carbons and its characterization. In T. J. Bandosz (Ed.), Interface science and technology (pp. 159–229). Elsevier. Bandosz, T. J., & Ania, C. O. (2006). Surface chemistry of activated carbons and its characterization. In T. J. Bandosz (Ed.), Interface science and technology (pp. 159–229). Elsevier.
go back to reference Bedia, J., Peñas-Garzón, M., Gómez-Avilés, A., Rodriguez, J., & Belver, C. (2018). A review on the synthesis and characterization of biomass-derived carbons for adsorption of emerging contaminants from water. C, 4, 63. Bedia, J., Peñas-Garzón, M., Gómez-Avilés, A., Rodriguez, J., & Belver, C. (2018). A review on the synthesis and characterization of biomass-derived carbons for adsorption of emerging contaminants from water. C, 4, 63.
go back to reference Bedia, J., Peñas-Garzón, M., Gómez-Avilés, A., Rodriguez, J. J., & Belver, C. (2020). Review on activated carbons by chemical activation with FeCl3. C Journal of Carbon Research, 6, 21.CrossRef Bedia, J., Peñas-Garzón, M., Gómez-Avilés, A., Rodriguez, J. J., & Belver, C. (2020). Review on activated carbons by chemical activation with FeCl3. C Journal of Carbon Research, 6, 21.CrossRef
go back to reference Bergna, D., Varila, T., Romar, H., & Lassi, U. (2018). Comparison of the properties of activated carbons produced in one-stage and two-stage processes. C, 4, 41. Bergna, D., Varila, T., Romar, H., & Lassi, U. (2018). Comparison of the properties of activated carbons produced in one-stage and two-stage processes. C, 4, 41.
go back to reference Blander, M., Sinha, S., Pelton, A. D., Eriksson, G. (1989). Calculations of the Influence of Additives on Coal Combustion Deposits. TMS Annual Meeting, 340–346. Blander, M., Sinha, S., Pelton, A. D., Eriksson, G. (1989). Calculations of the Influence of Additives on Coal Combustion Deposits. TMS Annual Meeting, 340–346.
go back to reference Boparai, H. K., Joseph, M., & O’Carroll, D. M. (2011). Kinetics and thermodynamics of cadmium ion removal by adsorption onto nano zerovalent iron particles. Journal of Hazardous Materials, 186, 458–465.CrossRef Boparai, H. K., Joseph, M., & O’Carroll, D. M. (2011). Kinetics and thermodynamics of cadmium ion removal by adsorption onto nano zerovalent iron particles. Journal of Hazardous Materials, 186, 458–465.CrossRef
go back to reference Chen, H., Huo, Q., Wang, Y., Han, L., Lei, Z., Wang, J., Bao, W., & Chang, L. (2020). Upcycling coal liquefaction residue into sulfur-rich activated carbon for efficient Hg0 removal from coal-fired flue gas. Fuel Processing Technology, 206. Chen, H., Huo, Q., Wang, Y., Han, L., Lei, Z., Wang, J., Bao, W., & Chang, L. (2020). Upcycling coal liquefaction residue into sulfur-rich activated carbon for efficient Hg0 removal from coal-fired flue gas. Fuel Processing Technology, 206.
go back to reference Chen, K., Zhang, Z., Xia, K., Zhou, X., Guo, Y., & Huang, T. (2019). Facile synthesis of thiol-functionalized magnetic activated carbon and application for the removal of mercury(II) from aqueous solution. ACS Omega, 4, 8568–8579.CrossRef Chen, K., Zhang, Z., Xia, K., Zhou, X., Guo, Y., & Huang, T. (2019). Facile synthesis of thiol-functionalized magnetic activated carbon and application for the removal of mercury(II) from aqueous solution. ACS Omega, 4, 8568–8579.CrossRef
go back to reference Chunlan, L., Shaoping, X., Yixiong, G., Shuqin, L., & Changhou, L. (2005). Effect of pre-carbonization of petroleum cokes on chemical activation process with KOH. Carbon, 43, 2295–2301.CrossRef Chunlan, L., Shaoping, X., Yixiong, G., Shuqin, L., & Changhou, L. (2005). Effect of pre-carbonization of petroleum cokes on chemical activation process with KOH. Carbon, 43, 2295–2301.CrossRef
go back to reference Dash, S., Chaudhuri, H., Gupta, R., Nair, U. G., & Sarkar, A. (2017). Fabrication and application of low-cost thiol functionalized coal fly ash for selective adsorption of heavy toxic metal ions from water. Industrial and Engineering Chemistry Research, 56, 1461–1470.CrossRef Dash, S., Chaudhuri, H., Gupta, R., Nair, U. G., & Sarkar, A. (2017). Fabrication and application of low-cost thiol functionalized coal fly ash for selective adsorption of heavy toxic metal ions from water. Industrial and Engineering Chemistry Research, 56, 1461–1470.CrossRef
go back to reference Demirbas, E. (2002). Removal of Ni(II) from aqueous solution by adsorption onto hazelnut shell activated carbon: Equilibrium studies. Bioresource Technology, 84, 291–293.CrossRef Demirbas, E. (2002). Removal of Ni(II) from aqueous solution by adsorption onto hazelnut shell activated carbon: Equilibrium studies. Bioresource Technology, 84, 291–293.CrossRef
go back to reference Deng, L., Su, Y., Su, H., Wang, X., & Zhu, X. (2007). Sorption and desorption of lead (II) from wastewater by green algae Cladophora fascicularis. Journal of Hazardous Materials, 143, 220–225.CrossRef Deng, L., Su, Y., Su, H., Wang, X., & Zhu, X. (2007). Sorption and desorption of lead (II) from wastewater by green algae Cladophora fascicularis. Journal of Hazardous Materials, 143, 220–225.CrossRef
go back to reference Diamantopoulou, I., Skodras, G., & Sakellaropoulos, G. P. (2010). Sorption of mercury by activated carbon in the presence of flue gas components. Fuel Processing Technology, 91, 158–163.CrossRef Diamantopoulou, I., Skodras, G., & Sakellaropoulos, G. P. (2010). Sorption of mercury by activated carbon in the presence of flue gas components. Fuel Processing Technology, 91, 158–163.CrossRef
go back to reference Dimitrova, S. (1996). Metal sorption on blast furnace slag. Water Research, 30, 228–232.CrossRef Dimitrova, S. (1996). Metal sorption on blast furnace slag. Water Research, 30, 228–232.CrossRef
go back to reference Ding, L., Zou, B., Gao, W., Liu, Q., Wang, Z., Guo, Y., Wang, X., & Liu, Y. (2014). Adsorption of rhodamine-B from aqueous solution using treated rice husk-based activated carbon. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 446, 1–7.CrossRef Ding, L., Zou, B., Gao, W., Liu, Q., Wang, Z., Guo, Y., Wang, X., & Liu, Y. (2014). Adsorption of rhodamine-B from aqueous solution using treated rice husk-based activated carbon. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 446, 1–7.CrossRef
go back to reference Dong, L., Liu, W., Jiang, R., & Wang, Z. (2016). Study on the adsorption mechanism of activated carbon removing low concentrations of heavy metals. Desalination and Water Treatment, 57, 7812–7822.CrossRef Dong, L., Liu, W., Jiang, R., & Wang, Z. (2016). Study on the adsorption mechanism of activated carbon removing low concentrations of heavy metals. Desalination and Water Treatment, 57, 7812–7822.CrossRef
go back to reference El Qada, E. N., Allen, S. J., & Walker, G. M. (2006). Adsorption of methylene blue onto activated carbon produced from steam activated bituminous coal: A study of equilibrium adsorption isotherm. Chemical Engineering Journal, 124, 103–110.CrossRef El Qada, E. N., Allen, S. J., & Walker, G. M. (2006). Adsorption of methylene blue onto activated carbon produced from steam activated bituminous coal: A study of equilibrium adsorption isotherm. Chemical Engineering Journal, 124, 103–110.CrossRef
go back to reference Elkady, M., Shokry, H., & Hamad, H. (2020). New activated carbon from mine coal for adsorption of dye in simulated water or multiple heavy metals in real wastewater. Materials, 13, 2498.CrossRef Elkady, M., Shokry, H., & Hamad, H. (2020). New activated carbon from mine coal for adsorption of dye in simulated water or multiple heavy metals in real wastewater. Materials, 13, 2498.CrossRef
go back to reference Erto, A., Giraldo, L., Lancia, A., & Moreno-Piraján, J. C. (2013). A comparison between a low-cost sorbent and an activated carbon for the adsorption of heavy metals from water. Water, Air, and Soil Pollution, 224. Erto, A., Giraldo, L., Lancia, A., & Moreno-Piraján, J. C. (2013). A comparison between a low-cost sorbent and an activated carbon for the adsorption of heavy metals from water. Water, Air, and Soil Pollution, 224.
go back to reference Fan, X., Li, C., Zeng, G., Gao, Z., Chen, L., Zhang, W., & Gao, H. (2010). Removal of gas-phase element mercury by activated carbon fiber impregnated with CeO2. Energy and Fuels, 24, 4250–4254.CrossRef Fan, X., Li, C., Zeng, G., Gao, Z., Chen, L., Zhang, W., & Gao, H. (2010). Removal of gas-phase element mercury by activated carbon fiber impregnated with CeO2. Energy and Fuels, 24, 4250–4254.CrossRef
go back to reference Feng, D., Van Deventer, J. S. J., & Aldrich, C. (2004). Removal of pollutants from acid mine wastewater using metallurgical by-product slags. Separation and Purification Technology, 40, 61–67.CrossRef Feng, D., Van Deventer, J. S. J., & Aldrich, C. (2004). Removal of pollutants from acid mine wastewater using metallurgical by-product slags. Separation and Purification Technology, 40, 61–67.CrossRef
go back to reference Filho, N. L. D., Gushikem, Y., & Polito, W. L. (1995). 2-Mercaptobenzothiazole clay as matrix for sorption and preconcentration of some heavy metals from aqueous solution. Analytica Chimica Acta, 306, 167–172.CrossRef Filho, N. L. D., Gushikem, Y., & Polito, W. L. (1995). 2-Mercaptobenzothiazole clay as matrix for sorption and preconcentration of some heavy metals from aqueous solution. Analytica Chimica Acta, 306, 167–172.CrossRef
go back to reference Fowle, D. A., & Fein, J. B. (1999). Competitive adsorption of metal cations onto two gram positive bacteria: Testing the chemical equilibrium model. Geochimica et Cosmochimica Acta, 63, 3059–3067.CrossRef Fowle, D. A., & Fein, J. B. (1999). Competitive adsorption of metal cations onto two gram positive bacteria: Testing the chemical equilibrium model. Geochimica et Cosmochimica Acta, 63, 3059–3067.CrossRef
go back to reference Gao, S., Liu, L., Tang, Y., Jia, D., Zhao, Z., & Wang, Y. (2016). Coal based magnetic activated carbon as a high performance adsorbent for methylene blue. Journal of Porous Materials, 23, 877–884.CrossRef Gao, S., Liu, L., Tang, Y., Jia, D., Zhao, Z., & Wang, Y. (2016). Coal based magnetic activated carbon as a high performance adsorbent for methylene blue. Journal of Porous Materials, 23, 877–884.CrossRef
go back to reference Ghasemi, Z., Sourinejad, I., Kazemian, H., Hadavifar, M., Rohani, S., & Younesi, H. (2020). Kinetics and thermodynamic studies of Cr(VI) adsorption using environmental friendly multifunctional zeolites synthesized from coal fly ash under mild conditions. Chemical Engineering Communications, 207, 808–825.CrossRef Ghasemi, Z., Sourinejad, I., Kazemian, H., Hadavifar, M., Rohani, S., & Younesi, H. (2020). Kinetics and thermodynamic studies of Cr(VI) adsorption using environmental friendly multifunctional zeolites synthesized from coal fly ash under mild conditions. Chemical Engineering Communications, 207, 808–825.CrossRef
go back to reference Gode, F., & Pehlivan, E. (2005). Adsorption of Cr(III) ions by Turkish brown coals. Fuel Processing Technology, 86, 875–884.CrossRef Gode, F., & Pehlivan, E. (2005). Adsorption of Cr(III) ions by Turkish brown coals. Fuel Processing Technology, 86, 875–884.CrossRef
go back to reference Golovina, V. V., Eremina, A. O., Chesnokov, N. V., & Sobolev, A. A. (2018). Thermally activated Brown and Black coals as the sorbents of chromium(VI) from aqueous solutions. Solid Fuel Chemistry, 52, 240–246.CrossRef Golovina, V. V., Eremina, A. O., Chesnokov, N. V., & Sobolev, A. A. (2018). Thermally activated Brown and Black coals as the sorbents of chromium(VI) from aqueous solutions. Solid Fuel Chemistry, 52, 240–246.CrossRef
go back to reference González Vázquez, O. F., Del Rosario Moreno Virgen, M., Hernández Montoya, V., Tovar Gómez, R., Alcántara Flores, J. L., Pérez Cruz, M. A., & Montes Morán, M. A. (2016). Adsorption of heavy metals in the presence of a magnetic field on adsorbents with different magnetic properties. Industrial and Engineering Chemistry Research, 55, 9323–9331.CrossRef González Vázquez, O. F., Del Rosario Moreno Virgen, M., Hernández Montoya, V., Tovar Gómez, R., Alcántara Flores, J. L., Pérez Cruz, M. A., & Montes Morán, M. A. (2016). Adsorption of heavy metals in the presence of a magnetic field on adsorbents with different magnetic properties. Industrial and Engineering Chemistry Research, 55, 9323–9331.CrossRef
go back to reference Gopalakrishnan, A., Krishnan, R., Thangavel, S., Venugopal, G., & Kim, S. J. (2015). Removal of heavy metal ions from pharma-effluents using graphene-oxide nanosorbents and study of their adsorption kinetics. Journal of Industrial and Engineering Chemistry, 30, 14–19.CrossRef Gopalakrishnan, A., Krishnan, R., Thangavel, S., Venugopal, G., & Kim, S. J. (2015). Removal of heavy metal ions from pharma-effluents using graphene-oxide nanosorbents and study of their adsorption kinetics. Journal of Industrial and Engineering Chemistry, 30, 14–19.CrossRef
go back to reference Hsi, H. C., Chen, S., Rostam-Abadi, M., Rood, M. J., Richardson, C. F., Carey, T. R., & Chang, R. (1998). Preparation and evaluation of coal-derived activated carbons for removal of mercury vapor from simulated coal combustion flue fases. Energy and Fuels, 12, 1061–1070.CrossRef Hsi, H. C., Chen, S., Rostam-Abadi, M., Rood, M. J., Richardson, C. F., Carey, T. R., & Chang, R. (1998). Preparation and evaluation of coal-derived activated carbons for removal of mercury vapor from simulated coal combustion flue fases. Energy and Fuels, 12, 1061–1070.CrossRef
go back to reference Hsiao, H. W., Ullrich, S. M., & Tanton, T. W. (2011). Burdens of mercury in residents of Temirtau, Kazakhstan. I: Hair mercury concentrations and factors of elevated hair mercury levels. Science of the Total Environment, 409, 2272–2280.CrossRef Hsiao, H. W., Ullrich, S. M., & Tanton, T. W. (2011). Burdens of mercury in residents of Temirtau, Kazakhstan. I: Hair mercury concentrations and factors of elevated hair mercury levels. Science of the Total Environment, 409, 2272–2280.CrossRef
go back to reference Huo, Q., Wang, Y., Chen, H., Han, L., Wang, J., Bao, W., Chang, L., & Xie, K. (2019). ZnS/AC sorbent derived from the high sulfur petroleum coke for mercury removal. Fuel Processing Technology, 191, 36–43.CrossRef Huo, Q., Wang, Y., Chen, H., Han, L., Wang, J., Bao, W., Chang, L., & Xie, K. (2019). ZnS/AC sorbent derived from the high sulfur petroleum coke for mercury removal. Fuel Processing Technology, 191, 36–43.CrossRef
go back to reference IARC. (2012). Monographs on the evaluation of carcinogenic risks to humans: Radiation (p. 274). World Health Organization. IARC. (2012). Monographs on the evaluation of carcinogenic risks to humans: Radiation (p. 274). World Health Organization.
go back to reference Ioannidou, O., & Zabaniotou, A. (2007). Agricultural residues as precursors for activated carbon production-a review. Renewable and Sustainable Energy Reviews, 11, 1966–2005.CrossRef Ioannidou, O., & Zabaniotou, A. (2007). Agricultural residues as precursors for activated carbon production-a review. Renewable and Sustainable Energy Reviews, 11, 1966–2005.CrossRef
go back to reference Jawad, A. H., Mehdi, Z. S., Ishak, M. A. M., & Ismail, K. (2018). Large surface area activated carbon from low-rank coal via microwave-assisted KOH activation for methylene blue adsorption. Desalination and Water Treatment, 110, 239–249.CrossRef Jawad, A. H., Mehdi, Z. S., Ishak, M. A. M., & Ismail, K. (2018). Large surface area activated carbon from low-rank coal via microwave-assisted KOH activation for methylene blue adsorption. Desalination and Water Treatment, 110, 239–249.CrossRef
go back to reference Jibril, B., Houache, O., Al-Maamari, R., & Al-Rashidi, B. (2008). Effects of H3PO4 and KOH in carbonization of lignocellulosic material. Journal of Analytical and Applied Pyrolysis, 83, 151–156.CrossRef Jibril, B., Houache, O., Al-Maamari, R., & Al-Rashidi, B. (2008). Effects of H3PO4 and KOH in carbonization of lignocellulosic material. Journal of Analytical and Applied Pyrolysis, 83, 151–156.CrossRef
go back to reference Joseph, L., Jun, B. M., Flora, J. R. V., Park, C. M., & Yoon, Y. (2019). Removal of heavy metals from water sources in the developing world using low-cost materials: A review. Chemosphere, 229, 142–159.CrossRef Joseph, L., Jun, B. M., Flora, J. R. V., Park, C. M., & Yoon, Y. (2019). Removal of heavy metals from water sources in the developing world using low-cost materials: A review. Chemosphere, 229, 142–159.CrossRef
go back to reference Juang, R. S., Yei, Y. C., Liao, C. S., Lin, K. S., Lu, H. C., Wang, S. F., & Sun, A. C. (2018). Synthesis of magnetic Fe3O4/activated carbon nanocomposites with high surface area as recoverable adsorbents. Journal of the Taiwan Institute of Chemical Engineers, 90, 51–60.CrossRef Juang, R. S., Yei, Y. C., Liao, C. S., Lin, K. S., Lu, H. C., Wang, S. F., & Sun, A. C. (2018). Synthesis of magnetic Fe3O4/activated carbon nanocomposites with high surface area as recoverable adsorbents. Journal of the Taiwan Institute of Chemical Engineers, 90, 51–60.CrossRef
go back to reference Kadirvelu, K., Thamaraiselvi, K., & Namasivayam, C. (2001). Removal of heavy metals from industrial wastewaters by adsorption onto activated carbon prepared from an agricultural solid waste. Bioresource Technology, 76, 63–65.CrossRef Kadirvelu, K., Thamaraiselvi, K., & Namasivayam, C. (2001). Removal of heavy metals from industrial wastewaters by adsorption onto activated carbon prepared from an agricultural solid waste. Bioresource Technology, 76, 63–65.CrossRef
go back to reference Kadlec, O., Varhaníková, A., & Zukal, A. (1970). Structure of pores of active carbons prepared by water-vapour and zinc-dichloride activation. Carbon, 8, 321–331.CrossRef Kadlec, O., Varhaníková, A., & Zukal, A. (1970). Structure of pores of active carbons prepared by water-vapour and zinc-dichloride activation. Carbon, 8, 321–331.CrossRef
go back to reference Kalaruban, M., Loganathan, P., Nguyen, T. V., Nur, T., Hasan Johir, M. A., Nguyen, T. H., Trinh, M. V., & Vigneswaran, S. (2019). Iron-impregnated granular activated carbon for arsenic removal: Application to practical column filters. Journal of Environmental Management, 239, 235–243.CrossRef Kalaruban, M., Loganathan, P., Nguyen, T. V., Nur, T., Hasan Johir, M. A., Nguyen, T. H., Trinh, M. V., & Vigneswaran, S. (2019). Iron-impregnated granular activated carbon for arsenic removal: Application to practical column filters. Journal of Environmental Management, 239, 235–243.CrossRef
go back to reference Karabulut, S., Karabakan, A., Denizli, A., & Yürüm, Y. (2001). Cadmium (II) and mercury (II) removal from aquatic solutions with low-rank Turkish coal. Separation Science and Technology, 36, 3657–3671.CrossRef Karabulut, S., Karabakan, A., Denizli, A., & Yürüm, Y. (2001). Cadmium (II) and mercury (II) removal from aquatic solutions with low-rank Turkish coal. Separation Science and Technology, 36, 3657–3671.CrossRef
go back to reference Khulbe, K. C., & Matsuura, T. (2018). Removal of heavy metals and pollutants by membrane adsorption techniques. Applied Water Science, 8. Khulbe, K. C., & Matsuura, T. (2018). Removal of heavy metals and pollutants by membrane adsorption techniques. Applied Water Science, 8.
go back to reference Kobya, M. (2004). Removal of Cr(VI) from aqueous solutions by adsorption onto hazelnut shell activated carbon: Kinetic and equilibrium studies. Bioresource Technology, 91, 317–321.CrossRef Kobya, M. (2004). Removal of Cr(VI) from aqueous solutions by adsorption onto hazelnut shell activated carbon: Kinetic and equilibrium studies. Bioresource Technology, 91, 317–321.CrossRef
go back to reference Kuroki, A., Hiroto, M., Urushihara, Y., Horikawa, T., Sotowa, K. I., & Alcántara Avila, J. R. (2019). Adsorption mechanism of metal ions on activated carbon. Adsorption, 25, 1251–1258.CrossRef Kuroki, A., Hiroto, M., Urushihara, Y., Horikawa, T., Sotowa, K. I., & Alcántara Avila, J. R. (2019). Adsorption mechanism of metal ions on activated carbon. Adsorption, 25, 1251–1258.CrossRef
go back to reference Lafferty, C., & Hobday, M. (1990). The use of low rank brown coal as an ion exchange material. 1. Basic parameters and the ion exchange mechanism. Fuel, 69, 78–83.CrossRef Lafferty, C., & Hobday, M. (1990). The use of low rank brown coal as an ion exchange material. 1. Basic parameters and the ion exchange mechanism. Fuel, 69, 78–83.CrossRef
go back to reference Lakatos, J., Brown, S. D., & Snape, C. E. (2002). Coals as sorbents for the removal and reduction of hexavalent chromium from aqueous waste streams. Fuel, 81, 691–698.CrossRef Lakatos, J., Brown, S. D., & Snape, C. E. (2002). Coals as sorbents for the removal and reduction of hexavalent chromium from aqueous waste streams. Fuel, 81, 691–698.CrossRef
go back to reference Li, J., Xing, X., Li, J., Shi, M., Lin, A., Xu, C., Zheng, J., & Li, R. (2018a). Preparation of thiol-functionalized activated carbon from sewage sludge with coal blending for heavy metal removal from contaminated water. Environmental Pollution, 234, 677–683.CrossRef Li, J., Xing, X., Li, J., Shi, M., Lin, A., Xu, C., Zheng, J., & Li, R. (2018a). Preparation of thiol-functionalized activated carbon from sewage sludge with coal blending for heavy metal removal from contaminated water. Environmental Pollution, 234, 677–683.CrossRef
go back to reference Li, L., Sun, F., Gao, J., Wang, L., Pi, X., & Zhao, G. (2018b). Broadening the pore size of coal-based activated carbon: Via a washing-free chem-physical activation method for high-capacity dye adsorption. RSC Advances, 8, 14488–14499.CrossRef Li, L., Sun, F., Gao, J., Wang, L., Pi, X., & Zhao, G. (2018b). Broadening the pore size of coal-based activated carbon: Via a washing-free chem-physical activation method for high-capacity dye adsorption. RSC Advances, 8, 14488–14499.CrossRef
go back to reference Li, Q., Zhai, J., Zhang, W., Wang, M., & Zhou, J. (2007). Kinetic studies of adsorption of Pb(II), Cr(III) and cu(II) from aqueous solution by sawdust and modified peanut husk. Journal of Hazardous Materials, 141, 163–167.CrossRef Li, Q., Zhai, J., Zhang, W., Wang, M., & Zhou, J. (2007). Kinetic studies of adsorption of Pb(II), Cr(III) and cu(II) from aqueous solution by sawdust and modified peanut husk. Journal of Hazardous Materials, 141, 163–167.CrossRef
go back to reference Li, W. G., Gong, X. J., Wang, K., Zhang, X. R., & Fan, W. B. (2014). Adsorption characteristics of arsenic from micro-polluted water by an innovative coal-based mesoporous activated carbon. Bioresource Technology, 165, 166–173.CrossRef Li, W. G., Gong, X. J., Wang, K., Zhang, X. R., & Fan, W. B. (2014). Adsorption characteristics of arsenic from micro-polluted water by an innovative coal-based mesoporous activated carbon. Bioresource Technology, 165, 166–173.CrossRef
go back to reference Lillo-Ródenas, M. A., Cazorla-Amorós, D., & Linares-Solano, A. (2003). Understanding chemical reactions between carbons and NaOH and KOH: An insight into the chemical activation mechanism. Carbon, 41, 267–275.CrossRef Lillo-Ródenas, M. A., Cazorla-Amorós, D., & Linares-Solano, A. (2003). Understanding chemical reactions between carbons and NaOH and KOH: An insight into the chemical activation mechanism. Carbon, 41, 267–275.CrossRef
go back to reference Linares-Solano, A., Lillo-Ródenas, M. A., Marco-Lozar, J. P., Kunowsky, M., & Romero-Anaya, A. J. (2014). NaOH and KOH for preparing activated carbons used in energy and environmental applications. Research and Applications for Energy, the Environment, and Economics, 20, 59–92. Linares-Solano, A., Lillo-Ródenas, M. A., Marco-Lozar, J. P., Kunowsky, M., & Romero-Anaya, A. J. (2014). NaOH and KOH for preparing activated carbons used in energy and environmental applications. Research and Applications for Energy, the Environment, and Economics, 20, 59–92.
go back to reference Liu, D., Gao, J., Cao, Q., Wu, S., & Qin, Y. (2017). Improvement of activated carbon from Jixi bituminous coal by air preoxidation. Energy and Fuels, 31, 1406–1415.CrossRef Liu, D., Gao, J., Cao, Q., Wu, S., & Qin, Y. (2017). Improvement of activated carbon from Jixi bituminous coal by air preoxidation. Energy and Fuels, 31, 1406–1415.CrossRef
go back to reference Liu, D. D., Jia, B. Y., Li, S., Dong, L. J., Gao, J. H., & Qin, Y. K. (2019). Effect of pyrolysis conditions on the improvement of the physicochemical structure of activated carbon obtained from Jixi bituminous coal. Asia-Pacific Journal of Chemical Engineering, 14, 1–12.CrossRef Liu, D. D., Jia, B. Y., Li, S., Dong, L. J., Gao, J. H., & Qin, Y. K. (2019). Effect of pyrolysis conditions on the improvement of the physicochemical structure of activated carbon obtained from Jixi bituminous coal. Asia-Pacific Journal of Chemical Engineering, 14, 1–12.CrossRef
go back to reference Lopez, F. A., Perez, C., Sainz, E., & Alonso, M. (1995). Adsorption of Pb2+ on blast furnace sludge. Journal of Chemical Technology & Biotechnology, 62, 200–206.CrossRef Lopez, F. A., Perez, C., Sainz, E., & Alonso, M. (1995). Adsorption of Pb2+ on blast furnace sludge. Journal of Chemical Technology & Biotechnology, 62, 200–206.CrossRef
go back to reference Lv, X., Zhang, T., Luo, Y., Zhang, Y., Wang, Y., & Zhang, G. (2020). Study on carbon nanotubes and activated carbon hybrids by pyrolysis of coal. Journal of Analytical and Applied Pyrolysis, 146, 104717.CrossRef Lv, X., Zhang, T., Luo, Y., Zhang, Y., Wang, Y., & Zhang, G. (2020). Study on carbon nanotubes and activated carbon hybrids by pyrolysis of coal. Journal of Analytical and Applied Pyrolysis, 146, 104717.CrossRef
go back to reference Malamis, S., & Katsou, E. (2013). A review on zinc and nickel adsorption on natural and modified zeolite, bentonite and vermiculite: Examination of process parameters, kinetics and isotherms. Journal of Hazardous Materials, 252–253, 428–461.CrossRef Malamis, S., & Katsou, E. (2013). A review on zinc and nickel adsorption on natural and modified zeolite, bentonite and vermiculite: Examination of process parameters, kinetics and isotherms. Journal of Hazardous Materials, 252–253, 428–461.CrossRef
go back to reference Malik, R., Ramteke, D. S., & Wate, S. R. (2007). Adsorption of malachite green on groundnut shell waste based powdered activated carbon. Waste Management, 27, 1129–1138.CrossRef Malik, R., Ramteke, D. S., & Wate, S. R. (2007). Adsorption of malachite green on groundnut shell waste based powdered activated carbon. Waste Management, 27, 1129–1138.CrossRef
go back to reference Malkoc, E., & Nuhoglu, Y. (2005). Investigations of nickel(II) removal from aqueous solutions using tea factory waste. Journal of Hazardous Materials, 127, 120–128.CrossRef Malkoc, E., & Nuhoglu, Y. (2005). Investigations of nickel(II) removal from aqueous solutions using tea factory waste. Journal of Hazardous Materials, 127, 120–128.CrossRef
go back to reference Min, H., Ahmad, T., & Lee, S. S. (2017). Mercury adsorption characteristics as dependent upon the physical properties of activated carbon. Energy and Fuels, 31, 724–729.CrossRef Min, H., Ahmad, T., & Lee, S. S. (2017). Mercury adsorption characteristics as dependent upon the physical properties of activated carbon. Energy and Fuels, 31, 724–729.CrossRef
go back to reference Mnasri-Ghnimi, S., & Frini-Srasra, N. (2019). Removal of heavy metals from aqueous solutions by adsorption using single and mixed pillared clays. Applied Clay Science, 179. Mnasri-Ghnimi, S., & Frini-Srasra, N. (2019). Removal of heavy metals from aqueous solutions by adsorption using single and mixed pillared clays. Applied Clay Science, 179.
go back to reference Mouni, L., Merabet, D., Bouzaza, A., & Belkhiri, L. (2011). Adsorption of Pb(II) from aqueous solutions using activated carbon developed from apricot stone. Desalination, 276, 148–153.CrossRef Mouni, L., Merabet, D., Bouzaza, A., & Belkhiri, L. (2011). Adsorption of Pb(II) from aqueous solutions using activated carbon developed from apricot stone. Desalination, 276, 148–153.CrossRef
go back to reference Musyoka, N. M., Wdowin, M., Rambau, K. M., Franus, W., Panek, R., Madej, J., & Czarna-Juszkiewicz, D. (2020). Synthesis of activated carbon from high-carbon coal fly ash and its hydrogen storage application. Renewable Energy, 155, 1264–1271.CrossRef Musyoka, N. M., Wdowin, M., Rambau, K. M., Franus, W., Panek, R., Madej, J., & Czarna-Juszkiewicz, D. (2020). Synthesis of activated carbon from high-carbon coal fly ash and its hydrogen storage application. Renewable Energy, 155, 1264–1271.CrossRef
go back to reference Niu, T., Zhou, J., Zhang, C., & Li, S. (2018). Fast removal of methylene blue from aqueous solution using coal-based activated carbon. RSC Advances, 8, 26978–26986.CrossRef Niu, T., Zhou, J., Zhang, C., & Li, S. (2018). Fast removal of methylene blue from aqueous solution using coal-based activated carbon. RSC Advances, 8, 26978–26986.CrossRef
go back to reference Orumwense, F. F. O. (1996). Removal of lead from water by adsorption on a kaolinitic clay. Journal of Chemical Technology and Biotechnology, 65, 363–369.CrossRef Orumwense, F. F. O. (1996). Removal of lead from water by adsorption on a kaolinitic clay. Journal of Chemical Technology and Biotechnology, 65, 363–369.CrossRef
go back to reference Papandreou, A., Stournaras, C. J., & Panias, D. (2007). Copper and cadmium adsorption on pellets made from fired coal fly ash. Journal of Hazardous Materials, 148, 538–547.CrossRef Papandreou, A., Stournaras, C. J., & Panias, D. (2007). Copper and cadmium adsorption on pellets made from fired coal fly ash. Journal of Hazardous Materials, 148, 538–547.CrossRef
go back to reference Patnukao, P., Kongsuwan, A., & Pavasant, P. (2008). Batch studies of adsorption of copper and lead on activated carbon from Eucalyptus camaldulensis Dehn. Bark. Journal of Environmental Sciences, 20, 1028–1034.CrossRef Patnukao, P., Kongsuwan, A., & Pavasant, P. (2008). Batch studies of adsorption of copper and lead on activated carbon from Eucalyptus camaldulensis Dehn. Bark. Journal of Environmental Sciences, 20, 1028–1034.CrossRef
go back to reference Rajakovic, L. V. (1992). Sorption of arsenic onto activated carbon impregnated with metallic silver and copper. Separation Science and Technology, 27, 1423–1433.CrossRef Rajakovic, L. V. (1992). Sorption of arsenic onto activated carbon impregnated with metallic silver and copper. Separation Science and Technology, 27, 1423–1433.CrossRef
go back to reference Rao, K., Mohapatra, M., Anand, S., & Venkateswarlu, P. (2011). Review on cadmium removal from aqueous solutions. International Journal of Engineering, Science and Technology, 2, 81–103.CrossRef Rao, K., Mohapatra, M., Anand, S., & Venkateswarlu, P. (2011). Review on cadmium removal from aqueous solutions. International Journal of Engineering, Science and Technology, 2, 81–103.CrossRef
go back to reference Rashidi, N. A., & Yusup, S. (2016). Overview on the potential of coal-based bottom ash as low-cost adsorbents. ACS Sustainable Chemistry and Engineering, 4, 1870–1884.CrossRef Rashidi, N. A., & Yusup, S. (2016). Overview on the potential of coal-based bottom ash as low-cost adsorbents. ACS Sustainable Chemistry and Engineering, 4, 1870–1884.CrossRef
go back to reference Renu, Agarwal, M., & Singh, K. (2017). Heavy metal removal from wastewater using various adsorbents: A review. Journal of Water Reuse and Desalination, 7, 387–419.CrossRef Renu, Agarwal, M., & Singh, K. (2017). Heavy metal removal from wastewater using various adsorbents: A review. Journal of Water Reuse and Desalination, 7, 387–419.CrossRef
go back to reference Sen Gupta, S., & Bhattacharyya, K. G. (2011). Kinetics of adsorption of metal ions on inorganic materials: A review. Advances in Colloid and Interface Science, 162, 39–58.CrossRef Sen Gupta, S., & Bhattacharyya, K. G. (2011). Kinetics of adsorption of metal ions on inorganic materials: A review. Advances in Colloid and Interface Science, 162, 39–58.CrossRef
go back to reference Simate, G. S., Maledi, N., Ochieng, A., Ndlovu, S., Zhang, J., & Walubita, L. F. (2016). Coal-based adsorbents for water and wastewater treatment. Journal of Environmental Chemical Engineering, 4, 2291–2312.CrossRef Simate, G. S., Maledi, N., Ochieng, A., Ndlovu, S., Zhang, J., & Walubita, L. F. (2016). Coal-based adsorbents for water and wastewater treatment. Journal of Environmental Chemical Engineering, 4, 2291–2312.CrossRef
go back to reference Sočo, E., & Kalembkiewicz, J. (2013). Adsorption of nickel(II) and copper(II) ions from aqueous solution by coal fly ash. Journal of Environmental Chemical Engineering, 1, 581–588.CrossRef Sočo, E., & Kalembkiewicz, J. (2013). Adsorption of nickel(II) and copper(II) ions from aqueous solution by coal fly ash. Journal of Environmental Chemical Engineering, 1, 581–588.CrossRef
go back to reference Sreenivas, K. M., Inarkar, M. B., Gokhale, S. V., & Lele, S. S. (2014). Re-utilization of ash gourd (Benincasa hispida) peel waste for chromium (VI) biosorption: Equilibrium and column studies. Journal of Environmental Chemical Engineering, 2, 455–462.CrossRef Sreenivas, K. M., Inarkar, M. B., Gokhale, S. V., & Lele, S. S. (2014). Re-utilization of ash gourd (Benincasa hispida) peel waste for chromium (VI) biosorption: Equilibrium and column studies. Journal of Environmental Chemical Engineering, 2, 455–462.CrossRef
go back to reference Sulaymon, A. H., Mohammed, T. J., & Al-najar, J. (2012). Equilibrium and kinetics studies of adsorption of heavy metals onto activated carbon. Canadian Journal on Chemical Engineering & Technology, 3, 86–92. Sulaymon, A. H., Mohammed, T. J., & Al-najar, J. (2012). Equilibrium and kinetics studies of adsorption of heavy metals onto activated carbon. Canadian Journal on Chemical Engineering & Technology, 3, 86–92.
go back to reference Sun, J., Hippo, E. J., Marsh, H., O’Brien, W. S., & Crelling, J. C. (1997). Activated carbon produced from an Illinois basin coal. Carbon, 35, 341–352.CrossRef Sun, J., Hippo, E. J., Marsh, H., O’Brien, W. S., & Crelling, J. C. (1997). Activated carbon produced from an Illinois basin coal. Carbon, 35, 341–352.CrossRef
go back to reference Taraba, B., & Veselá, P. (2016). Sorption of Lead(II) ions on natural coals and activated carbon: Mechanistic, kinetic, and thermodynamic aspects. Energy and Fuels, 30, 5846–5853.CrossRef Taraba, B., & Veselá, P. (2016). Sorption of Lead(II) ions on natural coals and activated carbon: Mechanistic, kinetic, and thermodynamic aspects. Energy and Fuels, 30, 5846–5853.CrossRef
go back to reference Taşar, Ş., Kaya, F., & Özer, A. (2014). Biosorption of lead(II) ions from aqueous solution by peanut shells: Equilibrium, thermodynamic and kinetic studies. Journal of Environmental Chemical Engineering, 2, 1018–1026.CrossRef Taşar, Ş., Kaya, F., & Özer, A. (2014). Biosorption of lead(II) ions from aqueous solution by peanut shells: Equilibrium, thermodynamic and kinetic studies. Journal of Environmental Chemical Engineering, 2, 1018–1026.CrossRef
go back to reference Tian, L., Li, C., Li, Q., Zeng, G., Gao, Z., Li, S., & Fan, X. (2009). Removal of elemental mercury by activated carbon impregnated with CeO2. Fuel, 88, 1687–1691.CrossRef Tian, L., Li, C., Li, Q., Zeng, G., Gao, Z., Li, S., & Fan, X. (2009). Removal of elemental mercury by activated carbon impregnated with CeO2. Fuel, 88, 1687–1691.CrossRef
go back to reference Uddin, A., Ozaki, M., Sasaoka, E., & Wu, S. (2009). Temperature-programmed decomposition desorption of mercury species over activated Arbon sorbents for mercury removal from coal-derived fuel gas. Energy and Fuels, 23, 4710–4716.CrossRef Uddin, A., Ozaki, M., Sasaoka, E., & Wu, S. (2009). Temperature-programmed decomposition desorption of mercury species over activated Arbon sorbents for mercury removal from coal-derived fuel gas. Energy and Fuels, 23, 4710–4716.CrossRef
go back to reference Vu, D. H., Bui, H. B., Bui, X. N., An-Nguyen, D., Le, Q. T., Do, N. H., & Nguyen, H. (2020). A novel approach in adsorption of heavy metal ions from aqueous solution using synthesized MCM-41 from coal bottom ash. International Journal of Environmental Analytical Chemistry, 100, 1226–1244.CrossRef Vu, D. H., Bui, H. B., Bui, X. N., An-Nguyen, D., Le, Q. T., Do, N. H., & Nguyen, H. (2020). A novel approach in adsorption of heavy metal ions from aqueous solution using synthesized MCM-41 from coal bottom ash. International Journal of Environmental Analytical Chemistry, 100, 1226–1244.CrossRef
go back to reference Wang, L., Sun, F., Gao, J., Pi, X., Pei, T., Qie, Z., Zhao, G., & Qin, Y. (2018a). A novel melt infiltration method promoting porosity development of low-rank coal derived activated carbon as supercapacitor electrode materials. Journal of the Taiwan Institute of Chemical Engineers, 91, 588–596.CrossRef Wang, L., Sun, F., Gao, J., Pi, X., Pei, T., Qie, Z., Zhao, G., & Qin, Y. (2018a). A novel melt infiltration method promoting porosity development of low-rank coal derived activated carbon as supercapacitor electrode materials. Journal of the Taiwan Institute of Chemical Engineers, 91, 588–596.CrossRef
go back to reference Wang, L., Sun, F., Gao, J., Pi, X., Qu, Z., & Zhao, G. (2018b). Adjusting the porosity of coal-based activated carbons based on a catalytic physical activation process for gas and liquid adsorption. Energy and Fuels, 32, 1255–1264.CrossRef Wang, L., Sun, F., Gao, J., Pi, X., Qu, Z., & Zhao, G. (2018b). Adjusting the porosity of coal-based activated carbons based on a catalytic physical activation process for gas and liquid adsorption. Energy and Fuels, 32, 1255–1264.CrossRef
go back to reference Wang, X. L., Shen, J., Niu, Y. X., Wang, Y. G., Liu, G., & Sheng, Q. T. (2018c). Removal of phenol by powdered activated carbon prepared from coal gasification tar residue. Environmental Technology (United Kingdom), 39, 694–701. Wang, X. L., Shen, J., Niu, Y. X., Wang, Y. G., Liu, G., & Sheng, Q. T. (2018c). Removal of phenol by powdered activated carbon prepared from coal gasification tar residue. Environmental Technology (United Kingdom), 39, 694–701.
go back to reference Wasewar, K. L., Kumar, P., Chand, S., Padmini, B. N., & Teng, T. T. (2010). Adsorption of cadmium ions from aqueous solution using granular activated carbon and activated clay. Clean—Soil, Air, Water, 38, 649–656. Wasewar, K. L., Kumar, P., Chand, S., Padmini, B. N., & Teng, T. T. (2010). Adsorption of cadmium ions from aqueous solution using granular activated carbon and activated clay. Clean—Soil, Air, Water, 38, 649–656.
go back to reference Witek-Krowiak, A., Szafran, R. G., & Modelski, S. (2011). Biosorption of heavy metals from aqueous solutions onto peanut shell as a low-cost biosorbent. Desalination, 265, 126–134.CrossRef Witek-Krowiak, A., Szafran, R. G., & Modelski, S. (2011). Biosorption of heavy metals from aqueous solutions onto peanut shell as a low-cost biosorbent. Desalination, 265, 126–134.CrossRef
go back to reference Wu, F. C., Wu, P. H., Tseng, R. L., & Juang, R. S. (2010). Preparation of activated carbons from unburnt coal in bottom ash with KOH activation for liquid-phase adsorption. Journal of Environmental Management, 91, 1097–1102.CrossRef Wu, F. C., Wu, P. H., Tseng, R. L., & Juang, R. S. (2010). Preparation of activated carbons from unburnt coal in bottom ash with KOH activation for liquid-phase adsorption. Journal of Environmental Management, 91, 1097–1102.CrossRef
go back to reference Wu, J., Zhao, Z., Huang, T., Sheng, P., Zhang, J., Tian, H., Zhao, X., Zhao, L., He, P., Ren, J., & Gao, K. (2017a). Removal of elemental mercury by Ce-Mn co-modified activated carbon catalyst. Catalysis Communications, 93, 62–66.CrossRef Wu, J., Zhao, Z., Huang, T., Sheng, P., Zhang, J., Tian, H., Zhao, X., Zhao, L., He, P., Ren, J., & Gao, K. (2017a). Removal of elemental mercury by Ce-Mn co-modified activated carbon catalyst. Catalysis Communications, 93, 62–66.CrossRef
go back to reference Wu, M., Shi, L., & Mi, J. (2017b). Preparation and desulfurization kinetics of activated carbons from semi-coke of coal liquefaction residual. Journal of Thermal Analysis and Calorimetry, 129, 1593–1603.CrossRef Wu, M., Shi, L., & Mi, J. (2017b). Preparation and desulfurization kinetics of activated carbons from semi-coke of coal liquefaction residual. Journal of Thermal Analysis and Calorimetry, 129, 1593–1603.CrossRef
go back to reference Xu, Y., & Chai, X. (2018). Characterization of coal gasification slag-based activated carbon and its potential application in lead removal. Environmental Technology (United Kingdom), 39, 382–391. Xu, Y., & Chai, X. (2018). Characterization of coal gasification slag-based activated carbon and its potential application in lead removal. Environmental Technology (United Kingdom), 39, 382–391.
go back to reference Yantasee, W., Lin, Y., Fryxell, G. E., Alford, K. L., Busche, B. J., & Johnson, C. D. (2004). Selective removal of copper(II) from aqueous solutions using fine-grained activated carbon functionalized with amine. Industrial and Engineering Chemistry Research, 43, 2759–2764.CrossRef Yantasee, W., Lin, Y., Fryxell, G. E., Alford, K. L., Busche, B. J., & Johnson, C. D. (2004). Selective removal of copper(II) from aqueous solutions using fine-grained activated carbon functionalized with amine. Industrial and Engineering Chemistry Research, 43, 2759–2764.CrossRef
go back to reference Yi, Z., Yao, J., Zhu, M., Chen, H., Wang, F., & Liu, X. (2016). Kinetics, equilibrium, and thermodynamics investigation on the adsorption of lead(II) by coal-based activated carbon. Springerplus, 5. Yi, Z., Yao, J., Zhu, M., Chen, H., Wang, F., & Liu, X. (2016). Kinetics, equilibrium, and thermodynamics investigation on the adsorption of lead(II) by coal-based activated carbon. Springerplus, 5.
go back to reference Youssef, A. M., El-Wakil, A. M., El-Sharkawy, E. A., Farag, A. B., & Tollan, K. (1996). Adsorption of heavy metals on coal-based activated carbons. Adsorption Science and Technology, 13, 115–125.CrossRef Youssef, A. M., El-Wakil, A. M., El-Sharkawy, E. A., Farag, A. B., & Tollan, K. (1996). Adsorption of heavy metals on coal-based activated carbons. Adsorption Science and Technology, 13, 115–125.CrossRef
go back to reference Zhang, H., Niu, J., Yin, X., Guo, Y., & Cheng, F. (2020). Role of inherent pyrite in coal on physicochemical structure of activated carbon and adsorption capacity. Fuel, 262, 116527.CrossRef Zhang, H., Niu, J., Yin, X., Guo, Y., & Cheng, F. (2020). Role of inherent pyrite in coal on physicochemical structure of activated carbon and adsorption capacity. Fuel, 262, 116527.CrossRef
go back to reference Zhong, L., Zhang, Y., Ji, Y., Norris, P., & Pan, W. P. (2016). Synthesis of activated carbon from coal pitch for mercury removal in coal-fired power plants. Journal of Thermal Analysis and Calorimetry, 123, 851–860.CrossRef Zhong, L., Zhang, Y., Ji, Y., Norris, P., & Pan, W. P. (2016). Synthesis of activated carbon from coal pitch for mercury removal in coal-fired power plants. Journal of Thermal Analysis and Calorimetry, 123, 851–860.CrossRef
go back to reference Zou, Y., & Han, B. X. (2001). High-surface-area activated carbon from Chinese coal. Energy and Fuels, 15, 1383–1386.CrossRef Zou, Y., & Han, B. X. (2001). High-surface-area activated carbon from Chinese coal. Energy and Fuels, 15, 1383–1386.CrossRef
go back to reference Zouboulis, A. I., & Kydros, K. A. (1993). Use of red mud for toxic metals removal: The case of nickel. Journal of Chemical Technology & Biotechnology, 58, 95–101.CrossRef Zouboulis, A. I., & Kydros, K. A. (1993). Use of red mud for toxic metals removal: The case of nickel. Journal of Chemical Technology & Biotechnology, 58, 95–101.CrossRef
Metadata
Title
Adsorption of Metals Using Activated Carbon Derived from Coal
Authors
Parag Girhe
Divya Barai
Bharat Bhanvase
Copyright Year
2021
DOI
https://doi.org/10.1007/978-3-030-68502-7_10