Skip to main content
Top

2016 | OriginalPaper | Chapter

5. Advanced Application of Natural Polysaccharides

Author : Saurabh Bhatia

Published in: Systems for Drug Delivery

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

One of major contributing factor in the development of biomedical research are the number of researches carried out for the advancement of polymeric materials with their advance drug delivery systems to explore their potential applications in the similar area. This chapter has covered some of the recent hot topics of polymeric science directing its prospects towards biomedical sector.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Shalaby SW, Burg KJL, editors. Absorbable and biodegradable polymers (advances in polymeric materials). Boca Raton: CRC press; 2003. Shalaby SW, Burg KJL, editors. Absorbable and biodegradable polymers (advances in polymeric materials). Boca Raton: CRC press; 2003.
2.
go back to reference Domb AJ, Wiseman DM, editors. Handbook of biodegradable polymers. Boca Raton: CRC Press; 1998. Domb AJ, Wiseman DM, editors. Handbook of biodegradable polymers. Boca Raton: CRC Press; 1998.
3.
go back to reference Piskin E. Biodegradable polymers as biomaterials. J Biomat Sci Polym Ed. 1995;6:775–95.CrossRef Piskin E. Biodegradable polymers as biomaterials. J Biomat Sci Polym Ed. 1995;6:775–95.CrossRef
4.
go back to reference Barbucci R, editor. Integrated biomaterial science. New York: Kluwer Academic/Plenum; 2002. Barbucci R, editor. Integrated biomaterial science. New York: Kluwer Academic/Plenum; 2002.
5.
go back to reference Williams DF. The Williams dictionary of biomaterials. Liverpool: Liverpool University Press; 1999. Williams DF. The Williams dictionary of biomaterials. Liverpool: Liverpool University Press; 1999.
6.
go back to reference Lloyd AW. Interfacial bioengineering to enhance surface biocompatibility. Med Device Technol. 2002;13:18–21. Lloyd AW. Interfacial bioengineering to enhance surface biocompatibility. Med Device Technol. 2002;13:18–21.
7.
go back to reference Vert M. Aliphatic polyesters: great degradable polymers that cannot do everything. Biomacromolecules. 2005;6:538–46.CrossRef Vert M. Aliphatic polyesters: great degradable polymers that cannot do everything. Biomacromolecules. 2005;6:538–46.CrossRef
8.
go back to reference Katti DS, Lakshmi S, Langer R, Laurencin CT. Toxicity, biodegradation and elimination of poly anhydrides. Adv Drug Deliv Rev. 2002;54:933–61.CrossRef Katti DS, Lakshmi S, Langer R, Laurencin CT. Toxicity, biodegradation and elimination of poly anhydrides. Adv Drug Deliv Rev. 2002;54:933–61.CrossRef
9.
go back to reference Li S. Hydrolytic degradation characteristics of aliphatic polyesters derived from lactic and glycolic acids. J Biomed Mater Res. 1999;48:342–53.CrossRef Li S. Hydrolytic degradation characteristics of aliphatic polyesters derived from lactic and glycolic acids. J Biomed Mater Res. 1999;48:342–53.CrossRef
10.
go back to reference Yu L, Dean K, Li L. Polymer blends and composites from renewable resources. Prog Polym Sci. 2006;31:576–602.CrossRef Yu L, Dean K, Li L. Polymer blends and composites from renewable resources. Prog Polym Sci. 2006;31:576–602.CrossRef
11.
go back to reference Rodriguez-Cabello JC, Reguera J, Girotti A, Alonso M, Testera AM. Developing functionality in elastin-like polymers by increasing their molecular complexity: the power of the genetic engineering approach. Prog Polym Sci. 2005;30:1119–45.CrossRef Rodriguez-Cabello JC, Reguera J, Girotti A, Alonso M, Testera AM. Developing functionality in elastin-like polymers by increasing their molecular complexity: the power of the genetic engineering approach. Prog Polym Sci. 2005;30:1119–45.CrossRef
12.
go back to reference Guo XD, Zheng QX, Du JY, Yang SH, Wang H, Shao ZW, Sun EJ. Molecular tissue engineering: concepts, status and challenge. J Wuhan Univ Technol. 2002;17:30–4. Guo XD, Zheng QX, Du JY, Yang SH, Wang H, Shao ZW, Sun EJ. Molecular tissue engineering: concepts, status and challenge. J Wuhan Univ Technol. 2002;17:30–4.
13.
go back to reference Uludag H, Vos PD, Tresco PA. Technology of mammalian cell encapsulation. Adv Drug Deliv Rev. 2000;42:29–64.CrossRef Uludag H, Vos PD, Tresco PA. Technology of mammalian cell encapsulation. Adv Drug Deliv Rev. 2000;42:29–64.CrossRef
14.
go back to reference Mogos GD, Grumezescu AM. Natural and synthetic polymers for wounds and burns dressing. Int J Pharmaceutics. 2014;463:127–36.CrossRef Mogos GD, Grumezescu AM. Natural and synthetic polymers for wounds and burns dressing. Int J Pharmaceutics. 2014;463:127–36.CrossRef
15.
go back to reference Giusti P, Lazzeri L, Lelli L. Bioartificial polymeric materials: a new method to design biomaterials by using both biological and synthetic polymers. TRIP. 1993;1:261–7. Giusti P, Lazzeri L, Lelli L. Bioartificial polymeric materials: a new method to design biomaterials by using both biological and synthetic polymers. TRIP. 1993;1:261–7.
16.
go back to reference Giusti P, Lazzeri L, Petris S, Palla M, Cascone MG. Collagen based new bioartificial polymeric materials. Biomaterials. 1994;15:1229–33.CrossRef Giusti P, Lazzeri L, Petris S, Palla M, Cascone MG. Collagen based new bioartificial polymeric materials. Biomaterials. 1994;15:1229–33.CrossRef
17.
go back to reference Cascone MG. Dynamic–mechanical properties of bioartificial polymeric materials. Polym Int. 1997;43:55–69.CrossRef Cascone MG. Dynamic–mechanical properties of bioartificial polymeric materials. Polym Int. 1997;43:55–69.CrossRef
18.
go back to reference Werkmeister JA, Edwards GA, Casagranda F, White JF, Ramshaw JAM. Evaluation of a collagen-based biosynthetic materials for the repair of abdominal wall defects. J Biomed Mater Res. 1998;39:429–36.CrossRef Werkmeister JA, Edwards GA, Casagranda F, White JF, Ramshaw JAM. Evaluation of a collagen-based biosynthetic materials for the repair of abdominal wall defects. J Biomed Mater Res. 1998;39:429–36.CrossRef
19.
go back to reference Suh JKF, Matthew HWT. Application of chitosan-based polysaccharide biomaterials in cartilage tissue engineering: a review. Biomater. 2000;21:2589–98.CrossRef Suh JKF, Matthew HWT. Application of chitosan-based polysaccharide biomaterials in cartilage tissue engineering: a review. Biomater. 2000;21:2589–98.CrossRef
20.
go back to reference Leclerc E, Furukawa KS, Miyata F, Sakai Y, Ushida T, Fujii T. Fabrication of microstructures in photosensitive biodegradable polymers for tissue engineering applications. Biomaterials. 2004;25:4683–90.CrossRef Leclerc E, Furukawa KS, Miyata F, Sakai Y, Ushida T, Fujii T. Fabrication of microstructures in photosensitive biodegradable polymers for tissue engineering applications. Biomaterials. 2004;25:4683–90.CrossRef
21.
go back to reference Sionkowska A. Interaction of collagen and poly(vinyl pyrrolidone)in blends. Eur Polym J. 2003;39:2135–40.CrossRef Sionkowska A. Interaction of collagen and poly(vinyl pyrrolidone)in blends. Eur Polym J. 2003;39:2135–40.CrossRef
22.
go back to reference Sionkowska A, Wisniewski M, Skopinska J, Kennedy CJ, Wess TJ. Molecular interactions in collagen and chitosan blends. Biomaterials. 2004;25:795–801.CrossRef Sionkowska A, Wisniewski M, Skopinska J, Kennedy CJ, Wess TJ. Molecular interactions in collagen and chitosan blends. Biomaterials. 2004;25:795–801.CrossRef
23.
go back to reference Sionkowska A, Wisniewski M, Skopinska J, Kennedy CJ, Wess TJ. The photochemical stability of collagen–chitosan blends. J Photochem Photobiol A. 2004;162:545–54.CrossRef Sionkowska A, Wisniewski M, Skopinska J, Kennedy CJ, Wess TJ. The photochemical stability of collagen–chitosan blends. J Photochem Photobiol A. 2004;162:545–54.CrossRef
24.
go back to reference Sionkowska A, Kaczmarek H, Kowalonek J, Wisniewski M, Skopinska J. Surface state of UV irradiated collagen/PVP blends. Surf Sci. 2004;566–568:608–12.CrossRef Sionkowska A, Kaczmarek H, Kowalonek J, Wisniewski M, Skopinska J. Surface state of UV irradiated collagen/PVP blends. Surf Sci. 2004;566–568:608–12.CrossRef
25.
go back to reference Sionkowska A, Wisniewski M, Skopinska J. Photochemical stability of collagen/poly (vinyl alcohol) blends. Polym Degrad Stab. 2004;83:117–25.CrossRef Sionkowska A, Wisniewski M, Skopinska J. Photochemical stability of collagen/poly (vinyl alcohol) blends. Polym Degrad Stab. 2004;83:117–25.CrossRef
26.
go back to reference Sionkowska A, Kaczmarek H, Wisniewski M, El-Feninat F, Mantovani D. Ultraviolet irradiation of synthetic polymer/collagen blends: preliminary results of atomic force microscopy. In: Mantovani D, editor. Advanced materials for biomedical applications. Quebec: Canadian Institute of Mining, Metallurgy and Petroleum; 2002. p. 27–40. Sionkowska A, Kaczmarek H, Wisniewski M, El-Feninat F, Mantovani D. Ultraviolet irradiation of synthetic polymer/collagen blends: preliminary results of atomic force microscopy. In: Mantovani D, editor. Advanced materials for biomedical applications. Quebec: Canadian Institute of Mining, Metallurgy and Petroleum; 2002. p. 27–40.
27.
go back to reference Deng C, Zhang P, Vulesevic B, Kuraitis D, Li F, Yang AF, Griffith M, Suuronen EJ. A collagen–chitosan hydrogel for endothelial differentiation and angiogenesis. Tissue Eng Part A. 2010;16:3099–109.CrossRef Deng C, Zhang P, Vulesevic B, Kuraitis D, Li F, Yang AF, Griffith M, Suuronen EJ. A collagen–chitosan hydrogel for endothelial differentiation and angiogenesis. Tissue Eng Part A. 2010;16:3099–109.CrossRef
28.
go back to reference Wang X, Sang L, Luo D, Li X. From collagen–chitosan blends to three-dimensional scaffolds: the influences of chitosan on collagen nanofibrillar structure and mechanical property. Colloids Surf B Biointerfaces. 2011;82:233–40.CrossRef Wang X, Sang L, Luo D, Li X. From collagen–chitosan blends to three-dimensional scaffolds: the influences of chitosan on collagen nanofibrillar structure and mechanical property. Colloids Surf B Biointerfaces. 2011;82:233–40.CrossRef
29.
go back to reference Bailey AJ, Paul RG. Collagen—is not so simple protein. J Soc Leather Technol Chem. 1998;82:104–8. Bailey AJ, Paul RG. Collagen—is not so simple protein. J Soc Leather Technol Chem. 1998;82:104–8.
30.
go back to reference Orgel JP, Miller A, Irving TC, Fischetti RF, Hammersley AP, Wess TJ. The in situ supermolecular structure of type I collagen. Structure. 2001;9:1061–9.CrossRef Orgel JP, Miller A, Irving TC, Fischetti RF, Hammersley AP, Wess TJ. The in situ supermolecular structure of type I collagen. Structure. 2001;9:1061–9.CrossRef
31.
go back to reference Orgel JP, San Antonio JD, Antipova O. Molecular and structural mapping of collagen fibril interactions. Connect Tissue Res. 2011;52:2–17.CrossRef Orgel JP, San Antonio JD, Antipova O. Molecular and structural mapping of collagen fibril interactions. Connect Tissue Res. 2011;52:2–17.CrossRef
32.
go back to reference Usha R, Ramasami T. Structure and conformation of intramolecularly cross-linked collagen. Colloids Surf B Biointerfaces. 2005;41:21–4.CrossRef Usha R, Ramasami T. Structure and conformation of intramolecularly cross-linked collagen. Colloids Surf B Biointerfaces. 2005;41:21–4.CrossRef
33.
go back to reference Nishi Y, Doi M, Doi S, Nishiuchi Y, Nakazawa T, Ohkubo T, Kobayashi Y. Stabilization mechanism of triple helical structure of collagen molecules. Int J Pept Res Ther. 2003;10:533–7.CrossRef Nishi Y, Doi M, Doi S, Nishiuchi Y, Nakazawa T, Ohkubo T, Kobayashi Y. Stabilization mechanism of triple helical structure of collagen molecules. Int J Pept Res Ther. 2003;10:533–7.CrossRef
34.
go back to reference Behring J, Junker R, Walboomers XF, Chessnut B, Jansen JA. Toward guided tissue and bone regeneration: morphology, attachment, proliferation, and migration of cells cultured on collagen barrier membranes. A systematic review. Odontology. 2008;96:1–11.CrossRef Behring J, Junker R, Walboomers XF, Chessnut B, Jansen JA. Toward guided tissue and bone regeneration: morphology, attachment, proliferation, and migration of cells cultured on collagen barrier membranes. A systematic review. Odontology. 2008;96:1–11.CrossRef
35.
go back to reference Fischbach C, Tessmar J, Lucke A, Schnell E, Schmeer G, Blunk T. Does UV irradiation affect polymer properties relevant to tissue engineering? Surf Sci. 2001;491:333–45.CrossRef Fischbach C, Tessmar J, Lucke A, Schnell E, Schmeer G, Blunk T. Does UV irradiation affect polymer properties relevant to tissue engineering? Surf Sci. 2001;491:333–45.CrossRef
36.
go back to reference Sionkowska A. Photochemical stability of collagen/poly(ethylene oxide) blends. J Photochem Photobiol A. 2006;177:61–7.CrossRef Sionkowska A. Photochemical stability of collagen/poly(ethylene oxide) blends. J Photochem Photobiol A. 2006;177:61–7.CrossRef
37.
go back to reference Sionkowska A. The influence of UV light on collagen/poly(ethylene glycol) blends. Polym Degrad Stab. 2006;91:305–12.CrossRef Sionkowska A. The influence of UV light on collagen/poly(ethylene glycol) blends. Polym Degrad Stab. 2006;91:305–12.CrossRef
38.
go back to reference Sionkowska A, Wisniewski M, Kaczmarek H, Skopinska J, ChevallierP MD, Lazare S, Tokarev V. The influence of UV irradiation on surface composition of collagen/PVP blended films. Appl Surf Sci. 2006;253:1970–7.CrossRef Sionkowska A, Wisniewski M, Kaczmarek H, Skopinska J, ChevallierP MD, Lazare S, Tokarev V. The influence of UV irradiation on surface composition of collagen/PVP blended films. Appl Surf Sci. 2006;253:1970–7.CrossRef
39.
go back to reference Struszczyk MH. Chitin and chitosan. Part II. Applications of chitosan. Polimery. 2002;47:396–403. Struszczyk MH. Chitin and chitosan. Part II. Applications of chitosan. Polimery. 2002;47:396–403.
40.
go back to reference Muzzarelli R, Baldassarre V, Conti F, Ferrara P, Biagini G, GazzanelliG VV. Biological activity of chitosan: ultrastructural study. Biomaterials. 1988;9:247–52.CrossRef Muzzarelli R, Baldassarre V, Conti F, Ferrara P, Biagini G, GazzanelliG VV. Biological activity of chitosan: ultrastructural study. Biomaterials. 1988;9:247–52.CrossRef
41.
go back to reference Majeti N, Kumar R. A review of chitin and chitosan applications. React Funct Polym. 2000;46:1–27.CrossRef Majeti N, Kumar R. A review of chitin and chitosan applications. React Funct Polym. 2000;46:1–27.CrossRef
42.
go back to reference Rinaudo M. Chitin and chitosan: properties and applications. Prog Polym Sci. 2006;31:603–32.CrossRef Rinaudo M. Chitin and chitosan: properties and applications. Prog Polym Sci. 2006;31:603–32.CrossRef
43.
go back to reference Terbojevich M, Cosani A, Conio G, Marsano E, Bianchi E. Chitosan: chain rigidity and mesophase formation. Carbohydr Res. 1991;209:251–60.CrossRef Terbojevich M, Cosani A, Conio G, Marsano E, Bianchi E. Chitosan: chain rigidity and mesophase formation. Carbohydr Res. 1991;209:251–60.CrossRef
44.
go back to reference Gerrit B. Chitosans for gene delivery. Adv Drug Deliv Rev. 2001;52:145–50.CrossRef Gerrit B. Chitosans for gene delivery. Adv Drug Deliv Rev. 2001;52:145–50.CrossRef
45.
go back to reference Chunmeng S, Ying Z, Xinze R, Meng W, Yongping S, Tianmin C. Therapeuticpotentialofchitosananditsderivativesinregenerativemedicine. J Surg Res. 2006;133:185–92.CrossRef Chunmeng S, Ying Z, Xinze R, Meng W, Yongping S, Tianmin C. Therapeuticpotentialofchitosananditsderivativesinregenerativemedicine. J Surg Res. 2006;133:185–92.CrossRef
46.
go back to reference Dyksterhuis LB, Baldock C, Lammie D, Wess TJ, Weiss AS. A turning point in elastin structure. Matrix Biol. 2006;25:S17.CrossRef Dyksterhuis LB, Baldock C, Lammie D, Wess TJ, Weiss AS. A turning point in elastin structure. Matrix Biol. 2006;25:S17.CrossRef
47.
go back to reference Samouillan V, Dandurand J, Lacabanne C, Hornebeck W. Molecular mobility of elastin: effect of molecular architecture. Biomacromolecules. 2002;3:531–7.CrossRef Samouillan V, Dandurand J, Lacabanne C, Hornebeck W. Molecular mobility of elastin: effect of molecular architecture. Biomacromolecules. 2002;3:531–7.CrossRef
48.
go back to reference Bonzon N, Carrat X, Daminiere C, Daculsi G, Lefebvre F, Rabaud M. New artificial connective matrix made of fibrin monomers, elastin peptides and type I + III collagens: structural study, biocompatibility and use as tympanic membranes in rabbit. Biomaterials. 1995;16:881–5. Bonzon N, Carrat X, Daminiere C, Daculsi G, Lefebvre F, Rabaud M. New artificial connective matrix made of fibrin monomers, elastin peptides and type I + III collagens: structural study, biocompatibility and use as tympanic membranes in rabbit. Biomaterials. 1995;16:881–5.
49.
go back to reference Klein B, Schiffer R, Hafemann B, Klosterhalfen B, Zwadlo-Klarwasser G. Inflammatory response to a porcine membrane composed of fibrous collagen and elastin as dermal substitute. J Mater Sci Mater Med. 2001;12:419–24.CrossRef Klein B, Schiffer R, Hafemann B, Klosterhalfen B, Zwadlo-Klarwasser G. Inflammatory response to a porcine membrane composed of fibrous collagen and elastin as dermal substitute. J Mater Sci Mater Med. 2001;12:419–24.CrossRef
50.
go back to reference Mithieux SM, Rasko JE, Weiss AS. Synthetic elastin hydrogels derived from massive elastic assemblies of self-organized human protein monomers. Biomaterials. 2004;25:4921–7.CrossRef Mithieux SM, Rasko JE, Weiss AS. Synthetic elastin hydrogels derived from massive elastic assemblies of self-organized human protein monomers. Biomaterials. 2004;25:4921–7.CrossRef
51.
go back to reference Skopinska-Wisniewska J, Sionkowska A, Kaminska A, KaznicaA JR, Drewa T. Surface properties of collagen/elastin based biomaterials for tissue regeneration. Appl Surf Sci. 2009;225:8286–92.CrossRef Skopinska-Wisniewska J, Sionkowska A, Kaminska A, KaznicaA JR, Drewa T. Surface properties of collagen/elastin based biomaterials for tissue regeneration. Appl Surf Sci. 2009;225:8286–92.CrossRef
52.
go back to reference Debelle L, Alix AJP. The structures of elastins and their function. Biochimie. 1999;81:981–94. Debelle L, Alix AJP. The structures of elastins and their function. Biochimie. 1999;81:981–94.
53.
go back to reference Maitz MF. Applications of synthetic polymers in clinical medicine. Biosurf Biotribol. 2015;1:161–76.CrossRef Maitz MF. Applications of synthetic polymers in clinical medicine. Biosurf Biotribol. 2015;1:161–76.CrossRef
54.
go back to reference Sahoo N, Sahoo RK, Biswas N, Guha A, Kuotsu K. Recent advancement of gelatin nanoparticles in drug and vaccine delivery. Int J Biol Macromol. 2015;81:317–31.CrossRef Sahoo N, Sahoo RK, Biswas N, Guha A, Kuotsu K. Recent advancement of gelatin nanoparticles in drug and vaccine delivery. Int J Biol Macromol. 2015;81:317–31.CrossRef
55.
go back to reference Choi C, Nam JP, Nah JW, Luo Y, Wang Q. Recent development of chitosan-based polyelectrolyte complexes with natural polysaccharides for drug delivery. Int J Biol Macromol. 2014;64:353–67.CrossRef Choi C, Nam JP, Nah JW, Luo Y, Wang Q. Recent development of chitosan-based polyelectrolyte complexes with natural polysaccharides for drug delivery. Int J Biol Macromol. 2014;64:353–67.CrossRef
56.
go back to reference Choi C, Nam J-P, Nah J-W. Application of chitosan and chitosan derivatives as biomaterials. J Ind Eng Chem. 2016;33:1–10.CrossRef Choi C, Nam J-P, Nah J-W. Application of chitosan and chitosan derivatives as biomaterials. J Ind Eng Chem. 2016;33:1–10.CrossRef
57.
go back to reference Reed RK, Lilja K, Laurent TC. Hyaluronan in the rat with special reference to the skin. Acta Physiol Scand. 1988;134:405–11.CrossRef Reed RK, Lilja K, Laurent TC. Hyaluronan in the rat with special reference to the skin. Acta Physiol Scand. 1988;134:405–11.CrossRef
58.
go back to reference Neuman MG, Nanau RM, Oruna-Sanchez L, Coto G. Hyaluronic acid and wound healing. J Pharm Pharm Sci. 2015;18:53–60.CrossRef Neuman MG, Nanau RM, Oruna-Sanchez L, Coto G. Hyaluronic acid and wound healing. J Pharm Pharm Sci. 2015;18:53–60.CrossRef
59.
go back to reference Toole BP. Hyaluronan in morphogenesis. Semin Cell Dev Biol. 2001;12:79–87.CrossRef Toole BP. Hyaluronan in morphogenesis. Semin Cell Dev Biol. 2001;12:79–87.CrossRef
60.
go back to reference Stern R, Asari AA, Sugahara KN. Hyaluronan fragments: an information-rich system. Eur J Cell Biol. 2006;85:699–715.CrossRef Stern R, Asari AA, Sugahara KN. Hyaluronan fragments: an information-rich system. Eur J Cell Biol. 2006;85:699–715.CrossRef
61.
go back to reference Stern R. Association between cancer and “acid mucopolysaccharides”: an old concept comes of age, finally. Semin Cancer Biol. 2008;18:238–43.CrossRef Stern R. Association between cancer and “acid mucopolysaccharides”: an old concept comes of age, finally. Semin Cancer Biol. 2008;18:238–43.CrossRef
62.
go back to reference Laurent TC. The chemistry, biology and medical applications of hyaluronan and its derivatives. London: Portland Press; 1998. Laurent TC. The chemistry, biology and medical applications of hyaluronan and its derivatives. London: Portland Press; 1998.
63.
go back to reference Laurent TC, Fraser JRE. Hyaluronan. FASEB J. 1992;6:2397–404. Laurent TC, Fraser JRE. Hyaluronan. FASEB J. 1992;6:2397–404.
64.
go back to reference Underhill C. CD44: the hyaluronan receptor. J Cell Sci. 1992;103:293–8. Underhill C. CD44: the hyaluronan receptor. J Cell Sci. 1992;103:293–8.
65.
go back to reference SneathRJS MDC. The normal structure and function of CD44 and its role in neoplasia. Mol Pathol. 1998;51:191–200. SneathRJS MDC. The normal structure and function of CD44 and its role in neoplasia. Mol Pathol. 1998;51:191–200.
67.
go back to reference Zhao L, Liu M, Wang J, Zhai G. Chondroitin sulfate-based nanocarriers for drug/gene delivery. Carbohydr Polym. 2015;133:391–9.CrossRef Zhao L, Liu M, Wang J, Zhai G. Chondroitin sulfate-based nanocarriers for drug/gene delivery. Carbohydr Polym. 2015;133:391–9.CrossRef
68.
go back to reference Cordeiro AS, Alonso MJ, Fuente M. Nanoengineering of vaccines using natural polysaccharides. Biotechnol Adv. 2015;33:1279–93.CrossRef Cordeiro AS, Alonso MJ, Fuente M. Nanoengineering of vaccines using natural polysaccharides. Biotechnol Adv. 2015;33:1279–93.CrossRef
Metadata
Title
Advanced Application of Natural Polysaccharides
Author
Saurabh Bhatia
Copyright Year
2016
DOI
https://doi.org/10.1007/978-3-319-41926-8_5

Premium Partners