Skip to main content
Top
Published in: Journal of Sol-Gel Science and Technology 3/2016

01-06-2016 | Original Paper: Nano-structured materials (particles, fibers, colloids, composites, etc.)

Agglomeration-free silica NPs in dry storage for PBT nanocomposite

Authors: Brigida Silvestri, Aniello Costantini, Vincenzo Speranza, Giuseppina Luciani, Francesco Branda, Pietro Russo

Published in: Journal of Sol-Gel Science and Technology | Issue 3/2016

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Dispersion of nanoparticles actually plays a key role in preparing high-performance nanocomposites. Within sol–gel procedures, the Stöber method is widely used to produce monodisperse systems of silica particles with controlled size and morphology. However, if stored as dried, the Stöber silica nanoparticles form stable agglomerates that no longer resuspend. Herein, we propose a novel straightforward methodology that overcomes the irreversible aggregation of particles, ultimately leading to a very good dispersion of the filler within the polymeric matrix without any coupling agent, even long time after their preparation. This synthesis approach has been exploited to produce PBT/SiO2 nanocomposites, as a model system. The produced nanocomposites have been analyzed and characterized by multiple techniques proving a fine dispersion of the filler within the matrix, as well as a significant increase in both thermal and dynamic mechanical properties. The proposed strategy ensures high compatibility with current industrial compounding facilities and far-reaching implementation in the preparation of polymer nanocomposites.

Graphical Abstract

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Sinha Ray S, Okamoto M (2003) Polymer/layered silicate nanocomposites: a review from preparation to processing. Prog Polym Sci 28:1539–1641CrossRef Sinha Ray S, Okamoto M (2003) Polymer/layered silicate nanocomposites: a review from preparation to processing. Prog Polym Sci 28:1539–1641CrossRef
2.
go back to reference Leszczyńska A, Njuguna J, Pielichowski K, Banerjee J (2007) Polymer/montmorillonite nanocomposites with improved thermal properties: part I. Factors influencing thermal stability and mechanisms of thermal stability improvement. Thermochim Acta 453:75–96CrossRef Leszczyńska A, Njuguna J, Pielichowski K, Banerjee J (2007) Polymer/montmorillonite nanocomposites with improved thermal properties: part I. Factors influencing thermal stability and mechanisms of thermal stability improvement. Thermochim Acta 453:75–96CrossRef
3.
go back to reference Leszczyńska A, Njuguna J, Pielichowski K, Banerjee JR (2007) Polymer/montmorillonite nanocomposites with improved thermal properties: part II. Thermal stability of montmorillonite nanocomposites based on different polymeric matrixes. Thermochim Acta 454:1–22CrossRef Leszczyńska A, Njuguna J, Pielichowski K, Banerjee JR (2007) Polymer/montmorillonite nanocomposites with improved thermal properties: part II. Thermal stability of montmorillonite nanocomposites based on different polymeric matrixes. Thermochim Acta 454:1–22CrossRef
4.
go back to reference Pesetskii SS, Bogdanovich SP, Myshkin NK, Fric J (2007) Tribological behavior of nanocomposites produced by the dispersion of nanofillers in polymer melts. J Frict Wear 28:457–475CrossRef Pesetskii SS, Bogdanovich SP, Myshkin NK, Fric J (2007) Tribological behavior of nanocomposites produced by the dispersion of nanofillers in polymer melts. J Frict Wear 28:457–475CrossRef
5.
go back to reference Bhat G, Hegde RR, Kamath MG, Deshpande B (2008) Nanoclay reinforced fibers and nonwovens. J Eng Fiber Fabric 3:22–34 Bhat G, Hegde RR, Kamath MG, Deshpande B (2008) Nanoclay reinforced fibers and nonwovens. J Eng Fiber Fabric 3:22–34
6.
go back to reference Njuguna J, Pielichowski K, Desai S (2008) Nanofiller fibre-reinforced polymer nanocomposites. Polym Adv Technol 19:947–959CrossRef Njuguna J, Pielichowski K, Desai S (2008) Nanofiller fibre-reinforced polymer nanocomposites. Polym Adv Technol 19:947–959CrossRef
7.
go back to reference Hajiraissi R, Parvinzadeh M (2011) Preparation of polybutylene terephthalate/silica nanocomposites by melt compounding: evaluation of surface properties. Appl Surf Sci 257:8443–8450CrossRef Hajiraissi R, Parvinzadeh M (2011) Preparation of polybutylene terephthalate/silica nanocomposites by melt compounding: evaluation of surface properties. Appl Surf Sci 257:8443–8450CrossRef
8.
go back to reference Hong JS, Namkung H, Ahn KH, Lee SJ, Kim C (2006) The role of organically modified layered silicate in the breakup and coalescence of droplets in PBT/PE blends. Polymer 47:3967–3975CrossRef Hong JS, Namkung H, Ahn KH, Lee SJ, Kim C (2006) The role of organically modified layered silicate in the breakup and coalescence of droplets in PBT/PE blends. Polymer 47:3967–3975CrossRef
9.
go back to reference Xiao JF, Hu Y, Wang ZZ, Tang Y, Chen ZY, Fan WC (2005) Preparation and characterization of poly(butylene terephthalate) nanocomposites from thermally stable organic-modified montmorillonite. Eur Polym J 41:1030–1035CrossRef Xiao JF, Hu Y, Wang ZZ, Tang Y, Chen ZY, Fan WC (2005) Preparation and characterization of poly(butylene terephthalate) nanocomposites from thermally stable organic-modified montmorillonite. Eur Polym J 41:1030–1035CrossRef
10.
go back to reference Li XC, Kang TK, Cho WJ, Lee JK, Ha CS (2001) Preparation and characterization of poly(butyleneterephthalate)/organoclay nanocomposites. Macromol Rapid Commun 22:1306–1312CrossRef Li XC, Kang TK, Cho WJ, Lee JK, Ha CS (2001) Preparation and characterization of poly(butyleneterephthalate)/organoclay nanocomposites. Macromol Rapid Commun 22:1306–1312CrossRef
11.
go back to reference Nogales A, Broza G, Roslaniec Z, Schulte K, Sics I, Hsiao BS, Sanz A, Garcia-Gutierrez MC, Rueda DR, Domingo C, Ezquerra TA (2004) Low percolation threshold in nanocomposites based on oxidized single wall carbon nanotubes and poly(butylene terephthalate). Macromolecules 37:7669–7672CrossRef Nogales A, Broza G, Roslaniec Z, Schulte K, Sics I, Hsiao BS, Sanz A, Garcia-Gutierrez MC, Rueda DR, Domingo C, Ezquerra TA (2004) Low percolation threshold in nanocomposites based on oxidized single wall carbon nanotubes and poly(butylene terephthalate). Macromolecules 37:7669–7672CrossRef
12.
go back to reference Broza G, Kwiatkowska M, Roslaniec Z, Schulte K (2005) Processing and assessment of poly(butylene terephthalate) nanocomposites reinforced with oxidized single wall carbon nanotubes. Polymer 46:5860–5867CrossRef Broza G, Kwiatkowska M, Roslaniec Z, Schulte K (2005) Processing and assessment of poly(butylene terephthalate) nanocomposites reinforced with oxidized single wall carbon nanotubes. Polymer 46:5860–5867CrossRef
13.
go back to reference Zhang L, Hong Y, Zhang T, Chunzhong L (2009) A novel approach to prepare PBT nanocomposites with elastomer-modified SiO2 particles. Polym Compos 30:673–679CrossRef Zhang L, Hong Y, Zhang T, Chunzhong L (2009) A novel approach to prepare PBT nanocomposites with elastomer-modified SiO2 particles. Polym Compos 30:673–679CrossRef
14.
go back to reference Zhang T, Zhang L, Li C (2011) Inhibited transesterification of poly(butylene terephthalate)/poly(ethylene terephthalate)/SiO2 nanocomposites by two processing methods. J Macromol Sci Phys 50:453–462CrossRef Zhang T, Zhang L, Li C (2011) Inhibited transesterification of poly(butylene terephthalate)/poly(ethylene terephthalate)/SiO2 nanocomposites by two processing methods. J Macromol Sci Phys 50:453–462CrossRef
15.
go back to reference Kim D, Lee JS, Barry CMF, Mead JL (2007) Effect of fill factor and validation of characterizing the degree of mixing in polymer nanocomposites. Polym Eng Sci 47:2049–2056CrossRef Kim D, Lee JS, Barry CMF, Mead JL (2007) Effect of fill factor and validation of characterizing the degree of mixing in polymer nanocomposites. Polym Eng Sci 47:2049–2056CrossRef
16.
go back to reference Rahman IA, Padavettan V (2012) Synthesis of silica nanoparticles by sol–gel: size-dependent properties, surface modification and applications in silica-polymer nanocomposites: a review. J Nanomater 2012:1–15CrossRef Rahman IA, Padavettan V (2012) Synthesis of silica nanoparticles by sol–gel: size-dependent properties, surface modification and applications in silica-polymer nanocomposites: a review. J Nanomater 2012:1–15CrossRef
17.
go back to reference Luciani G, Costantini A, Silvestri B, Tescione F, Branda F, Pezzella A (2008) Synthesis, structure and bioactivity of pHEMA/SiO2 hybrids derived through in situ sol–gel process. J Sol–Gel Sci Technol 46:166–175CrossRef Luciani G, Costantini A, Silvestri B, Tescione F, Branda F, Pezzella A (2008) Synthesis, structure and bioactivity of pHEMA/SiO2 hybrids derived through in situ sol–gel process. J Sol–Gel Sci Technol 46:166–175CrossRef
18.
go back to reference Bogush GH, Zukosky CF (1991) Uniform silica particle precipitation: an aggregative growth model. J Colloid Interface Sci 142:19–34CrossRef Bogush GH, Zukosky CF (1991) Uniform silica particle precipitation: an aggregative growth model. J Colloid Interface Sci 142:19–34CrossRef
19.
go back to reference Lee K, Sathyagal AN, McCormick AV (1998) A closer look at an aggregation model of the Stöber process. Colloids Surf A 144:115–125CrossRef Lee K, Sathyagal AN, McCormick AV (1998) A closer look at an aggregation model of the Stöber process. Colloids Surf A 144:115–125CrossRef
20.
go back to reference Branda F, Silvestri B, Costantini A, Luciani G (2015) Effect of exposure to growth media on size and surface charge of silica based Stöber nanoparticles: a DLS and ζ -potential study. J Sol–Gel Sci Technol 73:54–61CrossRef Branda F, Silvestri B, Costantini A, Luciani G (2015) Effect of exposure to growth media on size and surface charge of silica based Stöber nanoparticles: a DLS and ζ -potential study. J Sol–Gel Sci Technol 73:54–61CrossRef
21.
go back to reference Branda F, Silvestri B, Costantini A, Luciani G (2015) The fate of silica based Stöber particles soaked into growth media (RPMI and M254): a DLS and ξ-potential study. Colloids Surf B: Biointerfaces. doi:10.1016/j.colsurfb.2015.03.033 Branda F, Silvestri B, Costantini A, Luciani G (2015) The fate of silica based Stöber particles soaked into growth media (RPMI and M254): a DLS and ξ-potential study. Colloids Surf B: Biointerfaces. doi:10.​1016/​j.​colsurfb.​2015.​03.​033
22.
go back to reference Rahman IA, Vejayakumaran P, Sipaut CS, Ismail J, Chee CK (2008) Effect of the drying techniques on the morphology of silica nanoparticles synthesized via sol–gel process. Ceram Int 34:2059–2066CrossRef Rahman IA, Vejayakumaran P, Sipaut CS, Ismail J, Chee CK (2008) Effect of the drying techniques on the morphology of silica nanoparticles synthesized via sol–gel process. Ceram Int 34:2059–2066CrossRef
23.
24.
go back to reference Brinker CJ, Scherer GW (1990) Sol–gel science: the physics and chemistry of sol–gel processing. Academic Press, San Diego Brinker CJ, Scherer GW (1990) Sol–gel science: the physics and chemistry of sol–gel processing. Academic Press, San Diego
25.
go back to reference Stöber W, Fink A (1968) Controlled growth of monodisperse silica spheres in the micron size range. J Colloid Interface Sci 26:62–69CrossRef Stöber W, Fink A (1968) Controlled growth of monodisperse silica spheres in the micron size range. J Colloid Interface Sci 26:62–69CrossRef
26.
go back to reference Illers KH (1980) Heat of fusion and specific volume of poly(ethylene terephthalate) and poly(butylenes terephthalate. Colloid Polym Sci 258:117–123CrossRef Illers KH (1980) Heat of fusion and specific volume of poly(ethylene terephthalate) and poly(butylenes terephthalate. Colloid Polym Sci 258:117–123CrossRef
27.
go back to reference Che J, Xiao Y, Luan B, Dong X, Wang X (2007) Surface structure, grafted chain length, and dispersion analysis of PBT prepolymer grafted nano-silica. J Mater Sci 42:4967–4975CrossRef Che J, Xiao Y, Luan B, Dong X, Wang X (2007) Surface structure, grafted chain length, and dispersion analysis of PBT prepolymer grafted nano-silica. J Mater Sci 42:4967–4975CrossRef
28.
go back to reference Deshmukh GS, Peshwe DR, Pathak SU, Ekhe JD (2014) Nonisothermal crystallization kinetics and melting behavior of poly(butylene terephthalate) (PBT) composites based on different types of functional fillers. Thermochim Acta 581:41–53CrossRef Deshmukh GS, Peshwe DR, Pathak SU, Ekhe JD (2014) Nonisothermal crystallization kinetics and melting behavior of poly(butylene terephthalate) (PBT) composites based on different types of functional fillers. Thermochim Acta 581:41–53CrossRef
29.
go back to reference Ohtsuki C, Kokubo T, Yamamuro T (1992) Mechanism of apatite formation on CaO–SiO2–P2O5 glasses in a simulated body fluid. J Non-Cryst Solids 143:84–92CrossRef Ohtsuki C, Kokubo T, Yamamuro T (1992) Mechanism of apatite formation on CaO–SiO2–P2O5 glasses in a simulated body fluid. J Non-Cryst Solids 143:84–92CrossRef
30.
go back to reference Kim CY, Clark AE, Hench LL (1989) Early stages of calcium-phosphate layer formation in bioglasses. J Non-Cryst Solids 113:195–202CrossRef Kim CY, Clark AE, Hench LL (1989) Early stages of calcium-phosphate layer formation in bioglasses. J Non-Cryst Solids 113:195–202CrossRef
31.
go back to reference Costantini A, Luciani G, Annunziata G, Silvestri B, Branda F (2006) Swelling properties and bioactivity of silica gel/pHEMA nanocomposites. J Mater Sci Mater Med 17:319–325CrossRef Costantini A, Luciani G, Annunziata G, Silvestri B, Branda F (2006) Swelling properties and bioactivity of silica gel/pHEMA nanocomposites. J Mater Sci Mater Med 17:319–325CrossRef
32.
go back to reference Bourara H, Hadjout S, Benabdelghani Z, Etxeberria A (2014) Miscibility and hydrogen bonding in blends of poly(4-vinylphenol)/poly(vinyl methyl ketone). Polymers 6:2752–2763CrossRef Bourara H, Hadjout S, Benabdelghani Z, Etxeberria A (2014) Miscibility and hydrogen bonding in blends of poly(4-vinylphenol)/poly(vinyl methyl ketone). Polymers 6:2752–2763CrossRef
33.
go back to reference Kuo SW, Kao HC, Chang FC (2003) Thermal behavior and specific interaction in high glass transition temperature PMMA copolymer. Polymer 44:6873–6882CrossRef Kuo SW, Kao HC, Chang FC (2003) Thermal behavior and specific interaction in high glass transition temperature PMMA copolymer. Polymer 44:6873–6882CrossRef
34.
go back to reference Pantelidou M, Chitnis PR, Breton J (2004) FTIR spectroscopy of synechocystis 6803 mutants affected on the hydrogen bonds to the carbonyl groups of the PsaA chlorophyll of P700 supports an extensive delocalization of the charge in P700. Biochemistry 43:8380–8390CrossRef Pantelidou M, Chitnis PR, Breton J (2004) FTIR spectroscopy of synechocystis 6803 mutants affected on the hydrogen bonds to the carbonyl groups of the PsaA chlorophyll of P700 supports an extensive delocalization of the charge in P700. Biochemistry 43:8380–8390CrossRef
35.
go back to reference Hobbs SY, Pratt CF (1975) Multiple melting in poly(butylene terephthalate). Polymer 16:462–464CrossRef Hobbs SY, Pratt CF (1975) Multiple melting in poly(butylene terephthalate). Polymer 16:462–464CrossRef
36.
go back to reference Nichols ME, Robertson RE (1992) The multiple melting endotherms from poly (butylene terephthalate). J Polym Sci Pol Phys 30:755–768CrossRef Nichols ME, Robertson RE (1992) The multiple melting endotherms from poly (butylene terephthalate). J Polym Sci Pol Phys 30:755–768CrossRef
37.
go back to reference Righetti MC, Di Lorenzo ML (2004) Melting process of poly (butylene terephthalate) analyzed by temperature-modulated differential scanning calorimetry. J Polym Sci Pol Phys 42:2191–2201CrossRef Righetti MC, Di Lorenzo ML (2004) Melting process of poly (butylene terephthalate) analyzed by temperature-modulated differential scanning calorimetry. J Polym Sci Pol Phys 42:2191–2201CrossRef
38.
go back to reference Bula K, Jesionowski T, Krysztafkiewicz A, Janik J (2007) The effect of filler surface modification and processing conditions on distribution behaviour of silica nanofillers in polyesters. Colloid Polym Sci 285:1267–1273CrossRef Bula K, Jesionowski T, Krysztafkiewicz A, Janik J (2007) The effect of filler surface modification and processing conditions on distribution behaviour of silica nanofillers in polyesters. Colloid Polym Sci 285:1267–1273CrossRef
39.
go back to reference Zhang X, Tian X, Zheng J, Yao X, Liu W, Cui P, Li Y (2008) Relationship between microstructure and tensile properties of PET/silica nanocomposite fibers. J Macromol Sci Phys 47:368–377CrossRef Zhang X, Tian X, Zheng J, Yao X, Liu W, Cui P, Li Y (2008) Relationship between microstructure and tensile properties of PET/silica nanocomposite fibers. J Macromol Sci Phys 47:368–377CrossRef
40.
go back to reference Gashti MP, Hajiraissi R, Gashti MP (2013) Morphological, optical and electromagnetic characterization of polybutylene terephthalate/silica nanocomposites. Fibers Polym 14:1324–1331CrossRef Gashti MP, Hajiraissi R, Gashti MP (2013) Morphological, optical and electromagnetic characterization of polybutylene terephthalate/silica nanocomposites. Fibers Polym 14:1324–1331CrossRef
41.
go back to reference Koti Reddy C, Shekharam T, Shailaja D (2012) Preparation and characterization of poly(chlorotrifluoroethylene-co-ethylvinyl ether)/poly(styrene acrylate) core-shells and SiO2 nanocomposite films via a solution mixing method. J Appl Polym Sci 126:1709–1713CrossRef Koti Reddy C, Shekharam T, Shailaja D (2012) Preparation and characterization of poly(chlorotrifluoroethylene-co-ethylvinyl ether)/poly(styrene acrylate) core-shells and SiO2 nanocomposite films via a solution mixing method. J Appl Polym Sci 126:1709–1713CrossRef
42.
go back to reference Yao X, Tian X, Zhang X, Zheng K, Zheng J, Wang R, Kang S, Cui P (2009) Preparation and characterization of poly(butyleneterephthalate)/silica nanocomposites. Polym Eng Sci 4:799–807CrossRef Yao X, Tian X, Zhang X, Zheng K, Zheng J, Wang R, Kang S, Cui P (2009) Preparation and characterization of poly(butyleneterephthalate)/silica nanocomposites. Polym Eng Sci 4:799–807CrossRef
43.
go back to reference Jiang Z, Siengchin S, Zhou LM, Steeg M, Karger-Kocsis J, Man HC (2009) Poly (butylene terephthalate)/silica nanocomposites prepared from cyclic butylene terephthalate. Compos Part A: Appl Sci Manuf 40:273–278CrossRef Jiang Z, Siengchin S, Zhou LM, Steeg M, Karger-Kocsis J, Man HC (2009) Poly (butylene terephthalate)/silica nanocomposites prepared from cyclic butylene terephthalate. Compos Part A: Appl Sci Manuf 40:273–278CrossRef
Metadata
Title
Agglomeration-free silica NPs in dry storage for PBT nanocomposite
Authors
Brigida Silvestri
Aniello Costantini
Vincenzo Speranza
Giuseppina Luciani
Francesco Branda
Pietro Russo
Publication date
01-06-2016
Publisher
Springer US
Published in
Journal of Sol-Gel Science and Technology / Issue 3/2016
Print ISSN: 0928-0707
Electronic ISSN: 1573-4846
DOI
https://doi.org/10.1007/s10971-016-3985-4

Other articles of this Issue 3/2016

Journal of Sol-Gel Science and Technology 3/2016 Go to the issue

Review Paper: Sol-gel and hybrid materials with surface modification for applications

Sol–gel technology for innovative fabric finishing—A Review

Original Paper: Sol-gel and hybrid materials with surface modification for applications

Photocatalytic activity of ascorbic acid-modified TiO2 sol prepared by the peroxo sol–gel method

Original Paper: Sol-gel and hybrid materials for biological and health (medical) applications

Influence of strontium on the structure and biological properties of sol–gel-derived mesoporous bioactive glass (MBG) powder

Original Paper: Fundamentals of sol-gel and hybrid materials processing

Developing an in situ EXAFS experiment of microwave-induced gelation

Original Paper: Sol-gel and hybrid materials for dielectric, electronic, magnetic and ferroelectric applications

Microstructure, ferroelectric and dielectric properties in Nd and Ti co-doped BiFeO3 thin film

Original Paper: Sol-gel and hybrid materials for catalytic, photoelectrochemical and sensor applications

Optimization of cerium doping of TiO2 for photocatalytic reduction of CO2 and photocatalytic decomposition of N2O

Premium Partners