Skip to main content
Top
Published in: Journal of Sol-Gel Science and Technology 3/2016

01-06-2016 | Original Paper: Sol-gel and hybrid materials for biological and health (medical) applications

Influence of strontium on the structure and biological properties of sol–gel-derived mesoporous bioactive glass (MBG) powder

Authors: Safa Taherkhani, Fathollah Moztarzadeh

Published in: Journal of Sol-Gel Science and Technology | Issue 3/2016

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In the recent years, considerable attention has been paid to strontium (Sr) for its therapeutic effects on bone diseases such as osteoporosis. In this study, a series of sol–gel-derived bioactive glasses based on SiO2–CaO–SrO–P2O5 quaternary system was synthesized, in which 0–100 % of the calcium was substituted by strontium. The influence of strontium on structural and biological behavior of the bioactive glasses was evaluated. The XRD analysis showed Sr-free sample to be amorphous without any significant crystalline phases. As the Sr content increased in the glasses, the tendency toward crystallization enhanced. Results of BET analysis confirmed the mesoporous texture (mean pore diameter: 9.16 nm) with a high specific surface area (39.7 m2 g−1) for the glass powders. Bioactivity of the system was studied by immersing the glass powders in simulated body fluid for 3, 7, and 14 days. The presence of strontium significantly accelerated the formation of hydroxyapatite layer onto the surface of glass particles. Besides hydroxyapatite, strontium apatite (Sr10 (PO4)6OH2) was formed onto the surface of Sr-containing bioactive glasses. The present study also investigated the osteoblast response to the Sr-containing bioactive glasses in vitro. Results indicated increased metabolic activity of osteoblasts in the Sr-containing bioactive glasses.

Graphical Abstract

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Gerhardt LC, Boccaccini AR (2010) Bioactive glass and glass-ceramic scaffolds for bone tissue engineering. Materials 3:3867–3910CrossRef Gerhardt LC, Boccaccini AR (2010) Bioactive glass and glass-ceramic scaffolds for bone tissue engineering. Materials 3:3867–3910CrossRef
2.
go back to reference Kaur G, Pandey OP, Singh K, Homa D, Scott PC (2014) A review of bioactive glasses: their structure, properties, fabrication and apatite formation. J. Biomed Mat Res Part A 102:254–274CrossRef Kaur G, Pandey OP, Singh K, Homa D, Scott PC (2014) A review of bioactive glasses: their structure, properties, fabrication and apatite formation. J. Biomed Mat Res Part A 102:254–274CrossRef
3.
go back to reference Abbasi Z, Bahrololoom ME, Shariat MH, Bagheri R (2015) Bioactive glasses in dentistry: a review. J Dent Biomater 2:1–9 Abbasi Z, Bahrololoom ME, Shariat MH, Bagheri R (2015) Bioactive glasses in dentistry: a review. J Dent Biomater 2:1–9
4.
go back to reference Moazafari M, Moztarzadeh F, Rabiee M, Azami M, Nezafati N, Moztarzadeh Z et al (2010) Development of 3D bioactive nanocomposite scaffolds made from gelatin and nano bioactive glass for biomedical applications. Adv Compos Lett 19:91–96 Moazafari M, Moztarzadeh F, Rabiee M, Azami M, Nezafati N, Moztarzadeh Z et al (2010) Development of 3D bioactive nanocomposite scaffolds made from gelatin and nano bioactive glass for biomedical applications. Adv Compos Lett 19:91–96
5.
go back to reference Nezafati N, Moztarzadeh F, Hesaraki S (2010) Evaluation of a prepared sol-gel bioactive glass fiber-reinforced calcium phosphate cement. J Ceram Process Res 11:367–371 Nezafati N, Moztarzadeh F, Hesaraki S (2010) Evaluation of a prepared sol-gel bioactive glass fiber-reinforced calcium phosphate cement. J Ceram Process Res 11:367–371
6.
go back to reference Kamalian R, Yazdanpanah A, Moztarzadeh F, Ravarian R, Moztarzadeh Z, Tahmasbi M et al (2012) Synthesis and characterization of bioactive glass/forsterite nanocomposites for bone and dental implants. Ceram Silikaty 56:331–340 Kamalian R, Yazdanpanah A, Moztarzadeh F, Ravarian R, Moztarzadeh Z, Tahmasbi M et al (2012) Synthesis and characterization of bioactive glass/forsterite nanocomposites for bone and dental implants. Ceram Silikaty 56:331–340
7.
go back to reference Yi J, Wei G, Huang X, Zhao L, Zhang Q, Yu C (2008) Sol–gel derived mesoporous bioactive glass fibers as tissue-engineering scaffolds. J Sol-Gel Sci Technol 45:115–119CrossRef Yi J, Wei G, Huang X, Zhao L, Zhang Q, Yu C (2008) Sol–gel derived mesoporous bioactive glass fibers as tissue-engineering scaffolds. J Sol-Gel Sci Technol 45:115–119CrossRef
8.
go back to reference Rahaman MN, Day DE, Bal BS, Fu Q, Jung SB, Bonewald LF, Tomsia AP (2011) Bioactive glass in tissue engineering. Acta Biomater 7:2355–2373CrossRef Rahaman MN, Day DE, Bal BS, Fu Q, Jung SB, Bonewald LF, Tomsia AP (2011) Bioactive glass in tissue engineering. Acta Biomater 7:2355–2373CrossRef
9.
go back to reference Gorustovich AA, Steimetz T, Cabrini RL, Porto López JM (2010) Osteoconductivity of strontium-doped bioactive glass particles: a histomorphometric study in rats. J Biomed Mater Res, Part A 92:232–237CrossRef Gorustovich AA, Steimetz T, Cabrini RL, Porto López JM (2010) Osteoconductivity of strontium-doped bioactive glass particles: a histomorphometric study in rats. J Biomed Mater Res, Part A 92:232–237CrossRef
10.
go back to reference Watts SJ, Hill RG, O’Donnell MD, Law RV (2010) Influence of magnesia on the structure and properties of bioactive glasses. J Non-Cryst Solids 356:517–524CrossRef Watts SJ, Hill RG, O’Donnell MD, Law RV (2010) Influence of magnesia on the structure and properties of bioactive glasses. J Non-Cryst Solids 356:517–524CrossRef
11.
go back to reference Haimi S, Gorianc G, Moimas L, Lindroos B, Huhtala H, Räty S, Kuokkanen H et al (2009) Characterization of zinc-releasing three-dimensional bioactive glass scaffolds and their effect on human adipose stem cell proliferation and osteogenic differentiation. Acta Biomater 5:3122–3131CrossRef Haimi S, Gorianc G, Moimas L, Lindroos B, Huhtala H, Räty S, Kuokkanen H et al (2009) Characterization of zinc-releasing three-dimensional bioactive glass scaffolds and their effect on human adipose stem cell proliferation and osteogenic differentiation. Acta Biomater 5:3122–3131CrossRef
12.
go back to reference Phetnin R, Rattanachan ST (2015) Preparation and antibacterial property on silver incorporated mesoporous bioactive glass microspheres. J Sol-Gel Sci Technol 75:279–290CrossRef Phetnin R, Rattanachan ST (2015) Preparation and antibacterial property on silver incorporated mesoporous bioactive glass microspheres. J Sol-Gel Sci Technol 75:279–290CrossRef
13.
go back to reference Hoppe A, Güldal NS, Boccaccini AR (2011) A review of the biological response to ionic dissolution products from bioactive glasses and glass-ceramics. Biomat 32:2757–2774CrossRef Hoppe A, Güldal NS, Boccaccini AR (2011) A review of the biological response to ionic dissolution products from bioactive glasses and glass-ceramics. Biomat 32:2757–2774CrossRef
14.
go back to reference Hoppe A, Boccaccini AR (2015) Biological impact of bioactive glasses and their dissolution products. Front Oral Biol 17:22–32 Hoppe A, Boccaccini AR (2015) Biological impact of bioactive glasses and their dissolution products. Front Oral Biol 17:22–32
15.
go back to reference Mozafari M, Moztarzadeh F (2014) Synthesis, characterization and biocompatibility evaluation of sol-gel derived bioactive glass scaffolds prepared by freeze casting method. Ceram Int 40:5349–5355CrossRef Mozafari M, Moztarzadeh F (2014) Synthesis, characterization and biocompatibility evaluation of sol-gel derived bioactive glass scaffolds prepared by freeze casting method. Ceram Int 40:5349–5355CrossRef
16.
go back to reference Yazdanpanah A, Kamalian R, Moztarzadeh F, Mozafari M, Ravarian R, Tayebi L (2012) Enhancement of fracture toughness in bioactive glass-based nanocomposites with nanocrystalline forsterite as advanced biomaterials for bone tissue engineering applications. Ceram Int 38:5007–5014CrossRef Yazdanpanah A, Kamalian R, Moztarzadeh F, Mozafari M, Ravarian R, Tayebi L (2012) Enhancement of fracture toughness in bioactive glass-based nanocomposites with nanocrystalline forsterite as advanced biomaterials for bone tissue engineering applications. Ceram Int 38:5007–5014CrossRef
17.
go back to reference Haro Durand LA, Vargas GE, Romero NM, Vera-Mesones R, Porto-López JM, Boccaccini AR, Zago MP, Baldib A, Gorustovich A (2015) Angiogenic effects of ionic dissolution products released from a boron-doped 45S5 bioactive glass. J Mater Chem B 3:1142–1148CrossRef Haro Durand LA, Vargas GE, Romero NM, Vera-Mesones R, Porto-López JM, Boccaccini AR, Zago MP, Baldib A, Gorustovich A (2015) Angiogenic effects of ionic dissolution products released from a boron-doped 45S5 bioactive glass. J Mater Chem B 3:1142–1148CrossRef
18.
go back to reference Hersel U, Dahmen C, Kessler H (2003) RGD modified polymers: biomaterials for stimulated cell adhesion and beyond. Biomaterials 24:4385–4415CrossRef Hersel U, Dahmen C, Kessler H (2003) RGD modified polymers: biomaterials for stimulated cell adhesion and beyond. Biomaterials 24:4385–4415CrossRef
19.
go back to reference Zhang J, Zhao S, Zhu Y, Huang Y, Zhu M, Tao C et al (2014) Three-dimensional printing of strontium-containing mesoporous bioactive glass scaffolds for bone regeneration. Acta Biomater 10:2269–2281CrossRef Zhang J, Zhao S, Zhu Y, Huang Y, Zhu M, Tao C et al (2014) Three-dimensional printing of strontium-containing mesoporous bioactive glass scaffolds for bone regeneration. Acta Biomater 10:2269–2281CrossRef
20.
go back to reference Goel A, Rajagopal RR, Ferreira JMF (2011) Influence of strontium on structure, sintering and biodegradation behaviour of CaO–MgO–SrO–SiO2–P2O5–CaF2 glasses. Acta Biomater 7:4071–4080CrossRef Goel A, Rajagopal RR, Ferreira JMF (2011) Influence of strontium on structure, sintering and biodegradation behaviour of CaO–MgO–SrO–SiO2–P2O5–CaF2 glasses. Acta Biomater 7:4071–4080CrossRef
21.
go back to reference Taherkhani S, Moztarzadeh F, Mozafari M, Lotfibakhshaiesh N (2012) Sol-gel synthesis and characterization of unexpected rod-like crystal fibers based on SiO2–(1–x)CaO–xSrO–P2O5 dried-gel. J Non Cryst Solids 358:342–348CrossRef Taherkhani S, Moztarzadeh F, Mozafari M, Lotfibakhshaiesh N (2012) Sol-gel synthesis and characterization of unexpected rod-like crystal fibers based on SiO2–(1–x)CaO–xSrO–P2O5 dried-gel. J Non Cryst Solids 358:342–348CrossRef
22.
go back to reference Lotfibakhshaiesh N, Gentleman E, Hill R, Stevens M (2011) Strontium-substituted bioactive glass coatings for bone tissue engineering. Clin Biochem 44:S36CrossRef Lotfibakhshaiesh N, Gentleman E, Hill R, Stevens M (2011) Strontium-substituted bioactive glass coatings for bone tissue engineering. Clin Biochem 44:S36CrossRef
23.
go back to reference O’Donnell MD, Hill RG (2010) Influence of strontium and the importance of glass chemistry and structure when designing bioactive glasses for bone regeneration. Acta Biomater 6:2382–2385CrossRef O’Donnell MD, Hill RG (2010) Influence of strontium and the importance of glass chemistry and structure when designing bioactive glasses for bone regeneration. Acta Biomater 6:2382–2385CrossRef
24.
go back to reference Lakhkar NJ, Lee IH, Kim HW, Salih V, Wall IB, Knowles JC (2013) Bone formation controlled by biologically relevant inorganic ions: role and controlled delivery from phosphate-based glasses. Adv Drug Deliv Rev 65:405–420CrossRef Lakhkar NJ, Lee IH, Kim HW, Salih V, Wall IB, Knowles JC (2013) Bone formation controlled by biologically relevant inorganic ions: role and controlled delivery from phosphate-based glasses. Adv Drug Deliv Rev 65:405–420CrossRef
25.
go back to reference Pan HB, Zhao XL, Zhang X, Zhang KB, Li LC, Li ZY et al (2010) Strontium borate glass: potential biomaterial for bone regeneration. J R Soc Interface 7:1025–1031CrossRef Pan HB, Zhao XL, Zhang X, Zhang KB, Li LC, Li ZY et al (2010) Strontium borate glass: potential biomaterial for bone regeneration. J R Soc Interface 7:1025–1031CrossRef
26.
go back to reference Hao Y, Yan H, Wang X, Zhu B, Ning C, Ge S (2012) Evaluation of osteoinduction and proliferation on nano-Sr-HAP: a novel orthopedic biomaterial for bone tissue regeneration. J Nanosci Nanotech 12:207–212CrossRef Hao Y, Yan H, Wang X, Zhu B, Ning C, Ge S (2012) Evaluation of osteoinduction and proliferation on nano-Sr-HAP: a novel orthopedic biomaterial for bone tissue regeneration. J Nanosci Nanotech 12:207–212CrossRef
27.
go back to reference Fredholm YC, Karpukhina Natalia, Brauer DS, Jones JR, Law RV, Hill RG (2012) Influence of strontium for calcium substitution in bioactive glasses on degradation, ion release and apatite formation. J R Soc Interface 9(70):880–889CrossRef Fredholm YC, Karpukhina Natalia, Brauer DS, Jones JR, Law RV, Hill RG (2012) Influence of strontium for calcium substitution in bioactive glasses on degradation, ion release and apatite formation. J R Soc Interface 9(70):880–889CrossRef
28.
go back to reference Hesaraki S, Gholami M, Vazehrad S, Shahrabi S (2010) The effect of Sr concentration on bioactivity and biocompatibility of sol-gel derived glasses based on CaO–SrO–SiO2–P2O5 quaternary system. Mater Sci Eng, C 30:383–390CrossRef Hesaraki S, Gholami M, Vazehrad S, Shahrabi S (2010) The effect of Sr concentration on bioactivity and biocompatibility of sol-gel derived glasses based on CaO–SrO–SiO2–P2O5 quaternary system. Mater Sci Eng, C 30:383–390CrossRef
29.
go back to reference Arvidson K, Abdallah BM, Applegate LA, Baldini N, Cenni E et al (2011) Bone regeneration and stem cells. J Cell Mol Med 15:718–746CrossRef Arvidson K, Abdallah BM, Applegate LA, Baldini N, Cenni E et al (2011) Bone regeneration and stem cells. J Cell Mol Med 15:718–746CrossRef
30.
go back to reference Gentleman E, Fredholm YC, Jell G, Lotfibakhshaiesh N, O’Donnell MD, Hill RG et al (2010) The effects of strontium-substituted bioactive glasses on osteoblasts and osteoclasts in vitro. Biomaterials 31:3949–3956CrossRef Gentleman E, Fredholm YC, Jell G, Lotfibakhshaiesh N, O’Donnell MD, Hill RG et al (2010) The effects of strontium-substituted bioactive glasses on osteoblasts and osteoclasts in vitro. Biomaterials 31:3949–3956CrossRef
31.
go back to reference Kokubo T, Takadama H (2006) How useful is SBF in predicting in vivo bone bioactivity? Biomaterials 27:2907–2915CrossRef Kokubo T, Takadama H (2006) How useful is SBF in predicting in vivo bone bioactivity? Biomaterials 27:2907–2915CrossRef
32.
go back to reference Verné E, Ferraris S, Vitale-Brovarone C, Spriano S, Bianchi CL, Naldoni A et al (2010) Alkaline phosphatase grafting on bioactive glasses and glass ceramics. Acta Biomater 6:229–240CrossRef Verné E, Ferraris S, Vitale-Brovarone C, Spriano S, Bianchi CL, Naldoni A et al (2010) Alkaline phosphatase grafting on bioactive glasses and glass ceramics. Acta Biomater 6:229–240CrossRef
33.
go back to reference Kniess CT, Lima JC, Prates PB (2012) The quantification of crystalline phases in materials: applications of Rietveld method. INTECH Open Access Publisher, Rijeka Kniess CT, Lima JC, Prates PB (2012) The quantification of crystalline phases in materials: applications of Rietveld method. INTECH Open Access Publisher, Rijeka
34.
go back to reference Heindl R, Amara A, Tray G, Loriers J (1985) On the polymorphism of Sr2SiO4: a high-pressure monoclinic phase and an orthorhombic phase. Mater Sci Lett 4:1449–1450CrossRef Heindl R, Amara A, Tray G, Loriers J (1985) On the polymorphism of Sr2SiO4: a high-pressure monoclinic phase and an orthorhombic phase. Mater Sci Lett 4:1449–1450CrossRef
35.
go back to reference Solgi S, Khakbiz M, Shahrezaee M, Zamanian A, Tahriri M, Keshtkari S et al (2015) Synthesis, characterization and in vitro biological evaluation of sol-gel derived sr-containing nano bioactive glass. Silicon. doi:10.1007/s12633-015-9291-x Solgi S, Khakbiz M, Shahrezaee M, Zamanian A, Tahriri M, Keshtkari S et al (2015) Synthesis, characterization and in vitro biological evaluation of sol-gel derived sr-containing nano bioactive glass. Silicon. doi:10.​1007/​s12633-015-9291-x
36.
go back to reference Fredholm YC, Karpukhina N, Law RV, Hill RG (2010) Strontium containing bioactive glasses: glass structure and physical properties. J Non-Cryst Solids 356:2546–2551CrossRef Fredholm YC, Karpukhina N, Law RV, Hill RG (2010) Strontium containing bioactive glasses: glass structure and physical properties. J Non-Cryst Solids 356:2546–2551CrossRef
37.
go back to reference Lu WH, Li KD, Lu CH, Teoh LG, Wu WH, Shen YC (2013) Synthesis and characterization of mesoporous SiO2–CaO–P2O5 bioactive glass by sol-gel process. Mater Trans 54:791–795CrossRef Lu WH, Li KD, Lu CH, Teoh LG, Wu WH, Shen YC (2013) Synthesis and characterization of mesoporous SiO2–CaO–P2O5 bioactive glass by sol-gel process. Mater Trans 54:791–795CrossRef
39.
go back to reference Huang W, Day DE, Kittiratanapiboon K, Rahaman MN (2006) Kinetics and mechanisms of the conversion of silicate (45S5), borate, and borosilicate glasses to hydroxyapatite in dilute phosphate solution. J Mater Sci Mater Med 17:583–596CrossRef Huang W, Day DE, Kittiratanapiboon K, Rahaman MN (2006) Kinetics and mechanisms of the conversion of silicate (45S5), borate, and borosilicate glasses to hydroxyapatite in dilute phosphate solution. J Mater Sci Mater Med 17:583–596CrossRef
40.
go back to reference Huang W, Rahaman MN, Day DE, Li Y (2006) Mechanisms of converting silicate, borate, and borosilicate glasses to hydroxyapatite in dilute phosphate solution. Phys Chem Glasses Europ J Glass Sci Technol B 47:647–658 Huang W, Rahaman MN, Day DE, Li Y (2006) Mechanisms of converting silicate, borate, and borosilicate glasses to hydroxyapatite in dilute phosphate solution. Phys Chem Glasses Europ J Glass Sci Technol B 47:647–658
41.
go back to reference Chow GM, Noskova NI (1998) Nanostructured materials: science and technology. Kluwer, LondonCrossRef Chow GM, Noskova NI (1998) Nanostructured materials: science and technology. Kluwer, LondonCrossRef
Metadata
Title
Influence of strontium on the structure and biological properties of sol–gel-derived mesoporous bioactive glass (MBG) powder
Authors
Safa Taherkhani
Fathollah Moztarzadeh
Publication date
01-06-2016
Publisher
Springer US
Published in
Journal of Sol-Gel Science and Technology / Issue 3/2016
Print ISSN: 0928-0707
Electronic ISSN: 1573-4846
DOI
https://doi.org/10.1007/s10971-016-3995-2

Other articles of this Issue 3/2016

Journal of Sol-Gel Science and Technology 3/2016 Go to the issue

Original Paper: Sol-gel and hybrid materials for optical, photonic and optoelectronic applications

Structure and properties of the V-doped TiO2 thin films obtained by sol–gel and microwave-assisted sol–gel method

Original Paper: Industrial and technological applications of sol-gel and hybrid materials

Preparation of ceria-stabilized zirconia microspheres by external gelation: size control

Original Paper: Functional coatings, thin films and membranes (including deposition techniques)

Ca doping of mesoporous TiO2 films for enhanced photocatalytic efficiency under solar irradiation

Premium Partners