Skip to main content
Top
Published in: Journal of Materials Science: Materials in Electronics 11/2017

07-02-2017

Ammonia gas sensor based on flexible polyaniline films for rapid detection of spoilage in protein-rich foods

Authors: Samaneh Matindoust, Ali Farzi, Majid Baghaei Nejad, Mohammad Hadi Shahrokh Abadi, Zhuo Zou, Li-Rong Zheng

Published in: Journal of Materials Science: Materials in Electronics | Issue 11/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This work details the fabrication and performance of a sensor for ammonia gas, based on conducting polymer. The fabrication procedure consists following steps; polyaniline synthesis via oxidative polymerization technique, then a sensitive polyaniline film was deposited on a printed circuit board and finally, polyaniline microdevice were assembled on an interdigitated electrode arrays to fabricate the sensor for amomonia gas detection. Response time of this chemiresistive devices and humidity impact were examined for NH3 sensitivity and compared with commercial gas sensors (Taguchi Model 826). Data export from sensor to the computer was carried out via data logger model ADC-24 and analyzed using SPSS software. The sensor was found to have a rapid (t = 40 s) and stable linear response to ammonia gas in the concentration range of interest (50–150 ppm) under room temperature operation condition. It was reviled also reliable results to the variation of environment humidity. Power consumption, sensitivity, dimension, flexibility and fabrication cost were used as most important parameters to compare the new polymer based device with those of other similar works and the results showed that small size, low cost, flexibility, low power consumption and high sensitivity are from the benefits of this innovative device. In real-time application conditions flexible polyaniline based gas sensor with polyimide substrate in thickness 0.25 mm exhibits relatively good performance and accurate evaluation of food spoilage.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference P. Lorwongtragool, A. Wisitsoraat, T. Kerdcharoen. An electronic nose for amine detection based on polymer/SWNT-COOH nanocomposites. in Nanoelectronics conference (INEC), 2010 3rd International. (IEEE, New York, 2010) P. Lorwongtragool, A. Wisitsoraat, T. Kerdcharoen. An electronic nose for amine detection based on polymer/SWNT-COOH nanocomposites. in Nanoelectronics conference (INEC), 2010 3rd International. (IEEE, New York, 2010)
2.
go back to reference G. Peiyuan et al., Detection and identifying of meat fresh degree based on NIR technique. in Intelligent human-machine systems and cybernetics (IHMSC), 5th International Conference on 2013. (IEEE, New York, 2013) G. Peiyuan et al., Detection and identifying of meat fresh degree based on NIR technique. in Intelligent human-machine systems and cybernetics (IHMSC), 5th International Conference on 2013. (IEEE, New York, 2013)
3.
go back to reference C.-M. Lin et al., Histamine production by Raoultella ornithinolytica in canned tuna meat at various storage temperatures. Food Control 25(2), 723–727 (2012)CrossRef C.-M. Lin et al., Histamine production by Raoultella ornithinolytica in canned tuna meat at various storage temperatures. Food Control 25(2), 723–727 (2012)CrossRef
4.
go back to reference G. Peiyuan et al. Research on intellectual detection and classification of pork freshness based on SOM neural network. in 2011 IEEE International Conference on Mechatronics and Automation. (IEEE, Beijing, 2011) G. Peiyuan et al. Research on intellectual detection and classification of pork freshness based on SOM neural network. in 2011 IEEE International Conference on Mechatronics and Automation. (IEEE, Beijing, 2011)
5.
go back to reference H.-Y. Shin et al., Use of freshness indicator for determination of freshness and quality change of beef and pork during storage. Korean J. Food Sci. Technol. 38(3), 325–330 (2006) H.-Y. Shin et al., Use of freshness indicator for determination of freshness and quality change of beef and pork during storage. Korean J. Food Sci. Technol. 38(3), 325–330 (2006)
6.
go back to reference E. Danesh, Novel polyaniline-based ammonia sensors on plastic substrates. (The University of Manchester, Manchester 2014) E. Danesh, Novel polyaniline-based ammonia sensors on plastic substrates. (The University of Manchester, Manchester 2014)
7.
go back to reference S. Matindoust et al., Food quality and safety monitoring using gas sensor array in intelligent packaging. Sens. Rev. 36(2), 169–183 (2016)CrossRef S. Matindoust et al., Food quality and safety monitoring using gas sensor array in intelligent packaging. Sens. Rev. 36(2), 169–183 (2016)CrossRef
8.
go back to reference B. Kuswandi et al., A novel colorimetric food package label for fish spoilage based on polyaniline film. Food Control 25(1), 184–189 (2012)CrossRef B. Kuswandi et al., A novel colorimetric food package label for fish spoilage based on polyaniline film. Food Control 25(1), 184–189 (2012)CrossRef
9.
go back to reference H. Liu et al., Structure, conductivity, and thermopower of crystalline polyaniline synthesized by the ultrasonic irradiation polymerization method. Macromolecules 35(25), 9414–9419 (2002)CrossRef H. Liu et al., Structure, conductivity, and thermopower of crystalline polyaniline synthesized by the ultrasonic irradiation polymerization method. Macromolecules 35(25), 9414–9419 (2002)CrossRef
10.
go back to reference A. Bozkurt, Anhydrous proton conductive polystyrene sulfonic acid membranes. TUrk. J. Chem. 29(2), 117–123 (2005) A. Bozkurt, Anhydrous proton conductive polystyrene sulfonic acid membranes. TUrk. J. Chem. 29(2), 117–123 (2005)
11.
go back to reference E. Segal et al., Chemical sensing materials based on electrically-conductive immiscible polymer blends. Polym. Int. 54(7), 1065–1075 (2005)CrossRef E. Segal et al., Chemical sensing materials based on electrically-conductive immiscible polymer blends. Polym. Int. 54(7), 1065–1075 (2005)CrossRef
12.
go back to reference D. Sivalingam et al., Ethanol and trimethyl amine sensing by Zno-based nanostructured thin films. Int. J. Nanosci. 10(04n05), p. 1161–1165 (2011)CrossRef D. Sivalingam et al., Ethanol and trimethyl amine sensing by Zno-based nanostructured thin films. Int. J. Nanosci. 10(04n05), p. 1161–1165 (2011)CrossRef
13.
go back to reference D. Sivalingam, J. Gopalakrishnan, J. Balaguru Rayappan, Influence of precursor concentration on structural, morphological and electrical properties of spray deposited ZnO thin films. Cryst. Res. Technol. 46(7), 685–690 (2011)CrossRef D. Sivalingam, J. Gopalakrishnan, J. Balaguru Rayappan, Influence of precursor concentration on structural, morphological and electrical properties of spray deposited ZnO thin films. Cryst. Res. Technol. 46(7), 685–690 (2011)CrossRef
14.
go back to reference D. Sivalingam, J.B. Gopalakrishnan, J.B.B. Rayappan, Structural, morphological, electrical and vapour sensing properties of Mn doped nanostructured ZnO thin films. Sens. Actuators B 166, 624–631 (2012)CrossRef D. Sivalingam, J.B. Gopalakrishnan, J.B.B. Rayappan, Structural, morphological, electrical and vapour sensing properties of Mn doped nanostructured ZnO thin films. Sens. Actuators B 166, 624–631 (2012)CrossRef
15.
go back to reference B. Timmer, W. Olthuis, A. Van Den Berg, Ammonia sensors and their applications—a review. Sens. Actuators B 107(2), 666–677 (2005)CrossRef B. Timmer, W. Olthuis, A. Van Den Berg, Ammonia sensors and their applications—a review. Sens. Actuators B 107(2), 666–677 (2005)CrossRef
16.
go back to reference C. Xu et al., Selective detection of NH 3 over NO in combustion exhausts by using Au and MoO 3 doubly promoted WO 3 element. Sens. Actuators B 65(1), 163–165 (2000)CrossRef C. Xu et al., Selective detection of NH 3 over NO in combustion exhausts by using Au and MoO 3 doubly promoted WO 3 element. Sens. Actuators B 65(1), 163–165 (2000)CrossRef
17.
go back to reference C. Wang et al., Metal oxide gas sensors: sensitivity and influencing factors. Sensors 10(3), 2088–2106 (2010)CrossRef C. Wang et al., Metal oxide gas sensors: sensitivity and influencing factors. Sensors 10(3), 2088–2106 (2010)CrossRef
18.
go back to reference J. Zhang et al., Nanostructured Materials for Room-Temperature Gas Sensors. Adv. Mater. 28(5), 795–831 (2016)CrossRef J. Zhang et al., Nanostructured Materials for Room-Temperature Gas Sensors. Adv. Mater. 28(5), 795–831 (2016)CrossRef
19.
go back to reference T. Patois et al., Ammonia gas sensors based on polypyrrole films: influence of electrodeposition parameters. Sens. Actuators, B 171, 431–439 (2012)CrossRef T. Patois et al., Ammonia gas sensors based on polypyrrole films: influence of electrodeposition parameters. Sens. Actuators, B 171, 431–439 (2012)CrossRef
20.
go back to reference C. Vaghela et al., Biopolymer-Polyaniline Composite for a Wide Range Ammonia Gas Sensor. IEEE Sens. J. 16(11), 4318–4325 (2016)CrossRef C. Vaghela et al., Biopolymer-Polyaniline Composite for a Wide Range Ammonia Gas Sensor. IEEE Sens. J. 16(11), 4318–4325 (2016)CrossRef
22.
go back to reference M. Rashid et al., Bimetallic core-shell Ag@ Pt nanoparticle-decorated MWNT electrodes for amperometric H 2 sensors and direct methanol fuel cells. Sens. Actuators, B 208, 7–13 (2015)CrossRef M. Rashid et al., Bimetallic core-shell Ag@ Pt nanoparticle-decorated MWNT electrodes for amperometric H 2 sensors and direct methanol fuel cells. Sens. Actuators, B 208, 7–13 (2015)CrossRef
23.
go back to reference H. Kebiche et al., Ammonia gas sensors based on in situ and drop-coated polyaniline nanostructures. in Advanced materials research. (Trans Tech Publications, Zurich, 2013) H. Kebiche et al., Ammonia gas sensors based on in situ and drop-coated polyaniline nanostructures. in Advanced materials research. (Trans Tech Publications, Zurich, 2013)
24.
go back to reference Q.Y. Cai, M.K. Jain, C.A. Grimes, A wireless, remote query ammonia sensor. Sens. Actuators B 77(3), 614–619 (2001)CrossRef Q.Y. Cai, M.K. Jain, C.A. Grimes, A wireless, remote query ammonia sensor. Sens. Actuators B 77(3), 614–619 (2001)CrossRef
25.
go back to reference S. Bhadra et al., Progress in preparation, processing and applications of polyaniline. Prog. Polym. Sci. 34(8), 783–810 (2009)CrossRef S. Bhadra et al., Progress in preparation, processing and applications of polyaniline. Prog. Polym. Sci. 34(8), 783–810 (2009)CrossRef
26.
go back to reference D. Sutar et al., Preparation of nanofibrous polyaniline films and their application as ammonia gas sensor. Sens. Actuators, B 128(1), 286–292 (2007)CrossRef D. Sutar et al., Preparation of nanofibrous polyaniline films and their application as ammonia gas sensor. Sens. Actuators, B 128(1), 286–292 (2007)CrossRef
27.
go back to reference V. Chabukswar, S. Pethkar, A.A. Athawale, Acrylic acid doped polyaniline as an ammonia sensor. Sens. Actuators B 77(3), 657–663 (2001)CrossRef V. Chabukswar, S. Pethkar, A.A. Athawale, Acrylic acid doped polyaniline as an ammonia sensor. Sens. Actuators B 77(3), 657–663 (2001)CrossRef
28.
go back to reference S. Abdulla, T.L. Mathew, B. Pullithadathil, Highly sensitive, room temperature gas sensor based on polyaniline-multiwalled carbon nanotubes (PANI/MWCNTs) nanocomposite for trace-level ammonia detection. Sens. Actuators B 221, 1523–1534 (2015)CrossRef S. Abdulla, T.L. Mathew, B. Pullithadathil, Highly sensitive, room temperature gas sensor based on polyaniline-multiwalled carbon nanotubes (PANI/MWCNTs) nanocomposite for trace-level ammonia detection. Sens. Actuators B 221, 1523–1534 (2015)CrossRef
29.
go back to reference H. Bai, G. Shi, Gas sensors based on conducting polymers. Sensors 7(3), 267–307 (2007)CrossRef H. Bai, G. Shi, Gas sensors based on conducting polymers. Sensors 7(3), 267–307 (2007)CrossRef
30.
go back to reference J. Janata, M. Josowicz, Conducting polymers in electronic chemical sensors. Nat Mater 2(1), 19–24 (2003)CrossRef J. Janata, M. Josowicz, Conducting polymers in electronic chemical sensors. Nat Mater 2(1), 19–24 (2003)CrossRef
31.
go back to reference T. Emadi et al., Polymer-based gas sensor on a thermally stable micro-cantilever. Procedia Eng. 5, 21–24 (2010)CrossRef T. Emadi et al., Polymer-based gas sensor on a thermally stable micro-cantilever. Procedia Eng. 5, 21–24 (2010)CrossRef
32.
go back to reference K. Santhanam, R. Sangoi, L. Fuller, A chemical sensor for chloromethanes using a nanocomposite of multiwalled carbon nanotubes with poly (3-methylthiophene). Sens. Actuators B 106(2), 766–771 (2005)CrossRef K. Santhanam, R. Sangoi, L. Fuller, A chemical sensor for chloromethanes using a nanocomposite of multiwalled carbon nanotubes with poly (3-methylthiophene). Sens. Actuators B 106(2), 766–771 (2005)CrossRef
33.
go back to reference M.K. Ram, O. Yavuz, M. Aldissi, NO 2 gas sensing based on ordered ultrathin films of conducting polymer and its nanocomposite. Synth. Met. 151(1), 77–84 (2005)CrossRef M.K. Ram, O. Yavuz, M. Aldissi, NO 2 gas sensing based on ordered ultrathin films of conducting polymer and its nanocomposite. Synth. Met. 151(1), 77–84 (2005)CrossRef
34.
go back to reference T. Kawai et al., Electrical property of poly (3-octyloxythiophene) and its gas sensor application. Jpn. J. Appl. Phys. 37(11R), 6237 (1998)CrossRef T. Kawai et al., Electrical property of poly (3-octyloxythiophene) and its gas sensor application. Jpn. J. Appl. Phys. 37(11R), 6237 (1998)CrossRef
35.
go back to reference M. Gallazzi et al., Poly (alkoxy-bithiophenes) sensors for organic vapours. Sens. Actuators B 88(2), 178–189 (2003)CrossRef M. Gallazzi et al., Poly (alkoxy-bithiophenes) sensors for organic vapours. Sens. Actuators B 88(2), 178–189 (2003)CrossRef
36.
go back to reference B. Li et al., Volatile organic compound detection using nanostructured copolymers. Nano Lett. 6(8), 1598–1602 (2006)CrossRef B. Li et al., Volatile organic compound detection using nanostructured copolymers. Nano Lett. 6(8), 1598–1602 (2006)CrossRef
37.
go back to reference L. Torsi et al., Conducting polymers doped with metallic inclusions: New materials for gas sensors. Sens. Actuators B 48(1), 362–367 (1998)CrossRef L. Torsi et al., Conducting polymers doped with metallic inclusions: New materials for gas sensors. Sens. Actuators B 48(1), 362–367 (1998)CrossRef
38.
go back to reference Y. Sakurai et al., Novel array-type gas sensors using conducting polymers, and their performance for gas identification. Sens. Actuators B 83(1), 270–275 (2002)CrossRef Y. Sakurai et al., Novel array-type gas sensors using conducting polymers, and their performance for gas identification. Sens. Actuators B 83(1), 270–275 (2002)CrossRef
40.
go back to reference A. Imani, G. Farzi, A. Ltaief, Facile synthesis and characterization of polypyrrole-multiwalled carbon nanotubes by in situ oxidative polymerization. Int. Nano Lett. 3(1), 1–8 (2013)CrossRef A. Imani, G. Farzi, A. Ltaief, Facile synthesis and characterization of polypyrrole-multiwalled carbon nanotubes by in situ oxidative polymerization. Int. Nano Lett. 3(1), 1–8 (2013)CrossRef
41.
go back to reference G. Heffner et al., The effect of molecular weight and crystallinity on the conductivity of a conducting polymer. Polymer 34(15), 3155–3159 (1993)CrossRef G. Heffner et al., The effect of molecular weight and crystallinity on the conductivity of a conducting polymer. Polymer 34(15), 3155–3159 (1993)CrossRef
42.
go back to reference G. Li et al., Effect of morphology on the response of polyaniline-based conductometric gas sensors: Nanofibers vs. thin films. Electrochem. Solid-state Lett. 7(10): p. H44–H47 (2004)CrossRef G. Li et al., Effect of morphology on the response of polyaniline-based conductometric gas sensors: Nanofibers vs. thin films. Electrochem. Solid-state Lett. 7(10): p. H44–H47 (2004)CrossRef
43.
go back to reference A. Imani, G. Farzi, Facile route for multi-walled carbon nanotube coating with polyaniline: Tubular morphology nanocomposites for supercapacitor applications. J. Mater. Sci. 26(10), 7438–7444 (2015) A. Imani, G. Farzi, Facile route for multi-walled carbon nanotube coating with polyaniline: Tubular morphology nanocomposites for supercapacitor applications. J. Mater. Sci. 26(10), 7438–7444 (2015)
44.
go back to reference T. Abdiryim et al., Solid-state synthesis of polyaniline/single-walled carbon nanotubes: A comparative study with polyaniline/multi-walled carbon nanotubes. Materials 5(7), 1219–1231 (2012)CrossRef T. Abdiryim et al., Solid-state synthesis of polyaniline/single-walled carbon nanotubes: A comparative study with polyaniline/multi-walled carbon nanotubes. Materials 5(7), 1219–1231 (2012)CrossRef
45.
go back to reference W. Olthuis, W. Streekstra, P. Bergveld, Theoretical and experimental determination of cell constants of planar-interdigitated electrolyte conductivity sensors. Sens. Actuators B 24(1), 252–256 (1995)CrossRef W. Olthuis, W. Streekstra, P. Bergveld, Theoretical and experimental determination of cell constants of planar-interdigitated electrolyte conductivity sensors. Sens. Actuators B 24(1), 252–256 (1995)CrossRef
46.
go back to reference Boggs, D.W., Method of fabricating a printed circuit board and the PCB produced, Google Patents (1990) Boggs, D.W., Method of fabricating a printed circuit board and the PCB produced, Google Patents (1990)
47.
go back to reference J. Li et al., Printed circuit board recycling: a state-of-the-art survey. IEEE Trans. Electron. Packag. Manuf. 27(1), 33–42 (2004)CrossRef J. Li et al., Printed circuit board recycling: a state-of-the-art survey. IEEE Trans. Electron. Packag. Manuf. 27(1), 33–42 (2004)CrossRef
48.
go back to reference A. Tripathi, K.P. Misra, R. Shukla, Enhancement in ammonia sensitivity with fast response by doping Al2O3 in polyaniline. J. Appl. Polym. Sci. 130(3), 1941–1948 (2013)CrossRef A. Tripathi, K.P. Misra, R. Shukla, Enhancement in ammonia sensitivity with fast response by doping Al2O3 in polyaniline. J. Appl. Polym. Sci. 130(3), 1941–1948 (2013)CrossRef
49.
go back to reference M.-C. Liu et al., Manufacture of a polyaniline nanofiber ammonia sensor integrated with a readout circuit using the CMOS-MEMS technique. Sensors 9(2), 869–880 (2009)CrossRef M.-C. Liu et al., Manufacture of a polyaniline nanofiber ammonia sensor integrated with a readout circuit using the CMOS-MEMS technique. Sensors 9(2), 869–880 (2009)CrossRef
50.
go back to reference X. Huang et al., Reduced graphene oxide–polyaniline hybrid: preparation, characterization and its applications for ammonia gas sensing. J. Mater. Chem. 22(42), 22488–22495 (2012)CrossRef X. Huang et al., Reduced graphene oxide–polyaniline hybrid: preparation, characterization and its applications for ammonia gas sensing. J. Mater. Chem. 22(42), 22488–22495 (2012)CrossRef
51.
go back to reference Y.-S. Lee et al., Fabrication of clinical gas sensor using MEMS process. Sens. Actuators B 108(1), 292–297 (2005)CrossRef Y.-S. Lee et al., Fabrication of clinical gas sensor using MEMS process. Sens. Actuators B 108(1), 292–297 (2005)CrossRef
52.
go back to reference T. Konduru, G.C. Rains, C. Li, Detecting sour skin infected onions using a customized gas sensor array. J. Food Eng. 160, 19–27 (2015)CrossRef T. Konduru, G.C. Rains, C. Li, Detecting sour skin infected onions using a customized gas sensor array. J. Food Eng. 160, 19–27 (2015)CrossRef
53.
go back to reference M.H.S. Abadi, et al., SnO2/Pt thin film laser ablated gas sensor array. Sensors 11(8), 7724–7735 (2011)CrossRef M.H.S. Abadi, et al., SnO2/Pt thin film laser ablated gas sensor array. Sensors 11(8), 7724–7735 (2011)CrossRef
54.
go back to reference H. Chen Modulation Effects on Organic Electronics. 2005 H. Chen Modulation Effects on Organic Electronics. 2005
55.
go back to reference S. Bai et al., Room temperature triethylamine sensing properties of polyaniline–WO 3 nanocomposites with p–n heterojunctions. RSC Adv. 6(4), 2687–2694 (2016)CrossRef S. Bai et al., Room temperature triethylamine sensing properties of polyaniline–WO 3 nanocomposites with p–n heterojunctions. RSC Adv. 6(4), 2687–2694 (2016)CrossRef
56.
go back to reference C.-Y. Lin et al., Using a PEDOT: PSS modified electrode for detecting nitric oxide gas. Sens. Actuators B 140(2), 402–406 (2009)CrossRef C.-Y. Lin et al., Using a PEDOT: PSS modified electrode for detecting nitric oxide gas. Sens. Actuators B 140(2), 402–406 (2009)CrossRef
57.
go back to reference H. Yoon, Current trends in sensors based on conducting polymer nanomaterials. Nanomaterials 3(3), 524–549 (2013)CrossRef H. Yoon, Current trends in sensors based on conducting polymer nanomaterials. Nanomaterials 3(3), 524–549 (2013)CrossRef
58.
go back to reference K. Crowley et al., Fabrication of an ammonia gas sensor using inkjet-printed polyaniline nanoparticles. Talanta 77(2), 710–717 (2008)CrossRef K. Crowley et al., Fabrication of an ammonia gas sensor using inkjet-printed polyaniline nanoparticles. Talanta 77(2), 710–717 (2008)CrossRef
59.
go back to reference M.J. Myers, A.B. Burgess, INQUIRY-BASED LABORATORY COURSE IMPROVES STUDENTS’ABILITY TO DESIGN EXPERIMENTS AND INTERPRET DATA. Adv. Physiol. Educ. 27(1), 26–33 (2003)CrossRef M.J. Myers, A.B. Burgess, INQUIRY-BASED LABORATORY COURSE IMPROVES STUDENTS’ABILITY TO DESIGN EXPERIMENTS AND INTERPRET DATA. Adv. Physiol. Educ. 27(1), 26–33 (2003)CrossRef
60.
go back to reference G.E. Collins, L. Buckley, Conductive polymer-coated fabrics for chemical sensing. Synth. Met. 78(2), 93–101 (1996)CrossRef G.E. Collins, L. Buckley, Conductive polymer-coated fabrics for chemical sensing. Synth. Met. 78(2), 93–101 (1996)CrossRef
61.
go back to reference L. Grigore, M. Petty, Polyaniline films deposited by anodic polymerization: Properties and applications to chemical sensing. J. Mater. Sci. 14(5–7), 389–392 (2003) L. Grigore, M. Petty, Polyaniline films deposited by anodic polymerization: Properties and applications to chemical sensing. J. Mater. Sci. 14(5–7), 389–392 (2003)
62.
go back to reference A.V. Mamishev et al., Interdigital sensors and transducers. Proc. IEEE 92(5), 808–845 (2004)CrossRef A.V. Mamishev et al., Interdigital sensors and transducers. Proc. IEEE 92(5), 808–845 (2004)CrossRef
63.
go back to reference R. Monkhouse et al., The rapid monitoring of structures using interdigital Lamb wave transducers. Smart. Mater. Struct. 9(3), 304 (2000)CrossRef R. Monkhouse et al., The rapid monitoring of structures using interdigital Lamb wave transducers. Smart. Mater. Struct. 9(3), 304 (2000)CrossRef
64.
go back to reference L. Kumar et al., Flexible room temperature ammonia sensor based on polyaniline. Sens. Actuators B 240, 408–416 (2017)CrossRef L. Kumar et al., Flexible room temperature ammonia sensor based on polyaniline. Sens. Actuators B 240, 408–416 (2017)CrossRef
Metadata
Title
Ammonia gas sensor based on flexible polyaniline films for rapid detection of spoilage in protein-rich foods
Authors
Samaneh Matindoust
Ali Farzi
Majid Baghaei Nejad
Mohammad Hadi Shahrokh Abadi
Zhuo Zou
Li-Rong Zheng
Publication date
07-02-2017
Publisher
Springer US
Published in
Journal of Materials Science: Materials in Electronics / Issue 11/2017
Print ISSN: 0957-4522
Electronic ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-017-6471-z

Other articles of this Issue 11/2017

Journal of Materials Science: Materials in Electronics 11/2017 Go to the issue