Skip to main content
Top
Published in: Journal of Materials Science 20/2018

09-07-2018 | Computation

Amorphous germanium as a promising anode material for sodium ion batteries: a first principle study

Authors: Vidushi Sharma, Kamalika Ghatak, Dibakar Datta

Published in: Journal of Materials Science | Issue 20/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The abundance of sodium (Na), its low-cost, and low reduction potential provide a lucrative inexpensive, safe, and environmentally benign alternative to lithium ion batteries (LIBs). The significant challenges in advancing sodium ion battery (NIB) technologies lie in finding the better electrode materials. Experimental investigations revealed the real potency of germanium (Ge) as suitable anode materials for NIBs. However, a systematic atomistic study is necessary to understand the fundamental aspects of capacity–voltage correlation, microstructural changes of Ge, as well as diffusion kinetics. We, therefore, performed the Density Functional Theory (DFT) and Ab Initio Molecular Dynamics (AIMD) simulation to investigate the sodiation–desodiation kinetics in germanium–sodium system (Na64Ge64). We analyzed the intercalation potential and capacity correlation for intermediate equilibrium structures and compared our data with the experimental results. Effect of sodiation on inter-atomic distances within Na–Ge system is analyzed by means of Pair Correlation Function (PCF). This provides insight into possible microstructural changes taking place during sodiation of amorphous Ge (a-Ge). We further investigated the diffusivity of sodium in a-Ge electrode material and analyzed the volume expansion trend for Na64Ge64 electrode system. Our computational results provide the fundamental insight into the atomic scale and help experimentalists design Ge-based NIBs for real-life applications.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Whittingham MS (1976) Electrical energy storage and intercalation chemistry. Science 192(4244):1126–1127CrossRef Whittingham MS (1976) Electrical energy storage and intercalation chemistry. Science 192(4244):1126–1127CrossRef
2.
go back to reference Whittingham MS, Thompson AH (1975) Intercalation and lattice expansion in titanium disulfide. J Chem Phys 62(4):1588CrossRef Whittingham MS, Thompson AH (1975) Intercalation and lattice expansion in titanium disulfide. J Chem Phys 62(4):1588CrossRef
3.
go back to reference Tarascon J-M, Armand M (2011) Issues and challenges facing rechargeable lithium batteries. In: Materials for sustainable energy: a collection of peer-reviewed research and review articles from Nature Publishing Group, World Scientific, pp 171–179 Tarascon J-M, Armand M (2011) Issues and challenges facing rechargeable lithium batteries. In: Materials for sustainable energy: a collection of peer-reviewed research and review articles from Nature Publishing Group, World Scientific, pp 171–179
4.
go back to reference de la Llave E, Borgel V, Park K-J, Hwang J-Y, Sun Y-K, Hartmann P, Chesneau F-F, Aurbach D (2016) Comparison between Na-ion and Li-ion cells: understanding the critical role of the cathodes stability and the anodes pretreatment on the cells behavior. ACS Appl Mater Interfaces 8(3):1867–1875CrossRef de la Llave E, Borgel V, Park K-J, Hwang J-Y, Sun Y-K, Hartmann P, Chesneau F-F, Aurbach D (2016) Comparison between Na-ion and Li-ion cells: understanding the critical role of the cathodes stability and the anodes pretreatment on the cells behavior. ACS Appl Mater Interfaces 8(3):1867–1875CrossRef
5.
go back to reference Böhm H, Beyermann G (1999) ZEBRA batteries, enhanced power by doping. J Power Sources 84(2):270–274CrossRef Böhm H, Beyermann G (1999) ZEBRA batteries, enhanced power by doping. J Power Sources 84(2):270–274CrossRef
6.
go back to reference Nithya C, Gopukumar S (2015) Sodium ion batteries: a newer electrochemical storage. Wiley Interdiscip Rev Energy Environ 4(3):253–278CrossRef Nithya C, Gopukumar S (2015) Sodium ion batteries: a newer electrochemical storage. Wiley Interdiscip Rev Energy Environ 4(3):253–278CrossRef
7.
go back to reference Yabuuchi N, Kubota K, Dahbi M, Komaba S (2014) Research development on sodium-ion batteries. Chem Rev 114(23):11636–11682CrossRef Yabuuchi N, Kubota K, Dahbi M, Komaba S (2014) Research development on sodium-ion batteries. Chem Rev 114(23):11636–11682CrossRef
8.
go back to reference Kundu D, Talaie E, Duffort V, Nazar LF (2015) The emerging chemistry of sodium ion batteries for electrochemical energy storage. Angew Chem Int Ed 54(11):3431–3448CrossRef Kundu D, Talaie E, Duffort V, Nazar LF (2015) The emerging chemistry of sodium ion batteries for electrochemical energy storage. Angew Chem Int Ed 54(11):3431–3448CrossRef
9.
go back to reference Adelhelm P, Hartmann P, Bender CL, Busche M, Eufinger C, Janek J (2015) From lithium to sodium: cell chemistry of room temperature sodium–air and sodium–sulfur batteries. Beilstein J Nanotechnol 2015(6):1016–1055CrossRef Adelhelm P, Hartmann P, Bender CL, Busche M, Eufinger C, Janek J (2015) From lithium to sodium: cell chemistry of room temperature sodium–air and sodium–sulfur batteries. Beilstein J Nanotechnol 2015(6):1016–1055CrossRef
10.
go back to reference Stojić M, Kostić D, Stošić B (1986) The behaviour of sodium in Ge, Si and GaAs. Physica B + C 138(1–2):125–128CrossRef Stojić M, Kostić D, Stošić B (1986) The behaviour of sodium in Ge, Si and GaAs. Physica B + C 138(1–2):125–128CrossRef
11.
go back to reference Delmas C, Fouassier C, Hagenmuller P (1980) Structural classification and properties of the layered oxides. Physica B + C 99(1–4):81–85CrossRef Delmas C, Fouassier C, Hagenmuller P (1980) Structural classification and properties of the layered oxides. Physica B + C 99(1–4):81–85CrossRef
12.
go back to reference Berthelot R, Carlier D, Delmas C (2011) Electrochemical investigation of the P2–NaxCoO2 phase diagram. Nat Mater 10(1):74–80CrossRef Berthelot R, Carlier D, Delmas C (2011) Electrochemical investigation of the P2–NaxCoO2 phase diagram. Nat Mater 10(1):74–80CrossRef
13.
go back to reference Shiva K, Singh P, Zhou W, Goodenough JB (2016) NaFe2PO4(SO4)2: a potential cathode for a Na-ion battery. Energy Environ Sci 9(10):3103–3106CrossRef Shiva K, Singh P, Zhou W, Goodenough JB (2016) NaFe2PO4(SO4)2: a potential cathode for a Na-ion battery. Energy Environ Sci 9(10):3103–3106CrossRef
14.
go back to reference Xu J, Lee DH, Meng YS (2013) Recent advances in sodium intercalation positive electrode materials for sodium ion batteries. Funct Mater Lett 6(01):1330001–1330007CrossRef Xu J, Lee DH, Meng YS (2013) Recent advances in sodium intercalation positive electrode materials for sodium ion batteries. Funct Mater Lett 6(01):1330001–1330007CrossRef
15.
go back to reference Okamoto Y (2013) Density functional theory calculations of alkali metal (Li, Na, and K) graphite intercalation compounds. J Phys Chem C 118(1):16–19CrossRef Okamoto Y (2013) Density functional theory calculations of alkali metal (Li, Na, and K) graphite intercalation compounds. J Phys Chem C 118(1):16–19CrossRef
16.
go back to reference Balogun M-S, Luo Y, Qiu W, Liu P, Tong Y (2016) A review of carbon materials and their composites with alloy metals for sodium ion battery anodes. Carbon 98:162–178CrossRef Balogun M-S, Luo Y, Qiu W, Liu P, Tong Y (2016) A review of carbon materials and their composites with alloy metals for sodium ion battery anodes. Carbon 98:162–178CrossRef
17.
go back to reference Chevrier V, Ceder G (2011) Challenges for Na-ion negative electrodes. J Electrochem Soc 158(9):A1011–A1014CrossRef Chevrier V, Ceder G (2011) Challenges for Na-ion negative electrodes. J Electrochem Soc 158(9):A1011–A1014CrossRef
18.
go back to reference Jache B, Adelhelm P (2014) Use of graphite as a highly reversible electrode with superior cycle life for sodium-ion batteries by making use of co-intercalation phenomena. Angew Chem Int Ed 53(38):10169–10173CrossRef Jache B, Adelhelm P (2014) Use of graphite as a highly reversible electrode with superior cycle life for sodium-ion batteries by making use of co-intercalation phenomena. Angew Chem Int Ed 53(38):10169–10173CrossRef
19.
go back to reference Wen Y, He K, Zhu Y, Han F, Xu Y, Matsuda I, Ishii Y, Cumings J, Wang C (2014) Expanded graphite as superior anode for sodium-ion batteries. Nat Commun 5:4033-1–4033-10 Wen Y, He K, Zhu Y, Han F, Xu Y, Matsuda I, Ishii Y, Cumings J, Wang C (2014) Expanded graphite as superior anode for sodium-ion batteries. Nat Commun 5:4033-1–4033-10
20.
go back to reference Mei Y, Huang Y, Hu X (2016) Nanostructured Ti-based anode materials for Na-ion batteries. J Mater Chem A 4(31):12001–12013CrossRef Mei Y, Huang Y, Hu X (2016) Nanostructured Ti-based anode materials for Na-ion batteries. J Mater Chem A 4(31):12001–12013CrossRef
21.
go back to reference Legrain F, Malyi O, Manzhos S (2015) Insertion energetics of lithium, sodium, and magnesium in crystalline and amorphous titanium dioxide: a comparative first-principles study. J Power Sources 278:197–202CrossRef Legrain F, Malyi O, Manzhos S (2015) Insertion energetics of lithium, sodium, and magnesium in crystalline and amorphous titanium dioxide: a comparative first-principles study. J Power Sources 278:197–202CrossRef
22.
go back to reference Li W, Zhou M, Li H, Wang K, Cheng S, Jiang K (2015) A high performance sulfur-doped disordered carbon anode for sodium ion batteries. Energy Environ Sci 8(10):2916–2921CrossRef Li W, Zhou M, Li H, Wang K, Cheng S, Jiang K (2015) A high performance sulfur-doped disordered carbon anode for sodium ion batteries. Energy Environ Sci 8(10):2916–2921CrossRef
23.
go back to reference Klein F, Jache B, Bhide A, Adelhelm P (2013) Conversion reactions for sodium-ion batteries. Phys Chem Chem Phys 15(38):15876–15887CrossRef Klein F, Jache B, Bhide A, Adelhelm P (2013) Conversion reactions for sodium-ion batteries. Phys Chem Chem Phys 15(38):15876–15887CrossRef
24.
go back to reference Mortazavi M, Ye Q, Birbilis N, Medhekar NV (2015) High capacity group-15 alloy anodes for Na-ion batteries: electrochemical and mechanical insights. J Power Sources 285:29–36CrossRef Mortazavi M, Ye Q, Birbilis N, Medhekar NV (2015) High capacity group-15 alloy anodes for Na-ion batteries: electrochemical and mechanical insights. J Power Sources 285:29–36CrossRef
25.
go back to reference Mortazavi M, Deng J, Shenoy VB, Medhekar NV (2013) Elastic softening of alloy negative electrodes for Na-ion batteries. J Power Sources 225:207–214CrossRef Mortazavi M, Deng J, Shenoy VB, Medhekar NV (2013) Elastic softening of alloy negative electrodes for Na-ion batteries. J Power Sources 225:207–214CrossRef
26.
go back to reference Stevens D, Dahn J (2000) An in situ small-angle X-ray scattering study of sodium insertion into a nanoporous carbon anode material within an operating electrochemical cell. J Electrochem Soc 147(12):4428–4431CrossRef Stevens D, Dahn J (2000) An in situ small-angle X-ray scattering study of sodium insertion into a nanoporous carbon anode material within an operating electrochemical cell. J Electrochem Soc 147(12):4428–4431CrossRef
27.
go back to reference Wang Y-X, Chou S-L, Liu H-K, Dou S-X (2013) Reduced graphene oxide with superior cycling stability and rate capability for sodium storage. Carbon 57:202–208CrossRef Wang Y-X, Chou S-L, Liu H-K, Dou S-X (2013) Reduced graphene oxide with superior cycling stability and rate capability for sodium storage. Carbon 57:202–208CrossRef
28.
go back to reference Li D, Zhang L, Chen H, Wang J, Ding L-X, Wang S, Ashman PJ, Wang H (2016) Graphene-based nitrogen-doped carbon sandwich nanosheets: a new capacitive process controlled anode material for high-performance sodium-ion batteries. J Mater Chem A 4(22):8630–8635CrossRef Li D, Zhang L, Chen H, Wang J, Ding L-X, Wang S, Ashman PJ, Wang H (2016) Graphene-based nitrogen-doped carbon sandwich nanosheets: a new capacitive process controlled anode material for high-performance sodium-ion batteries. J Mater Chem A 4(22):8630–8635CrossRef
29.
go back to reference Usui H, Yoshioka S, Wasada K, Shimizu M, Sakaguchi H (2015) Nb-doped rutile TiO2: a potential anode material for Na-ion battery. ACS Appl Mater Interfaces 7(12):6567–6573CrossRef Usui H, Yoshioka S, Wasada K, Shimizu M, Sakaguchi H (2015) Nb-doped rutile TiO2: a potential anode material for Na-ion battery. ACS Appl Mater Interfaces 7(12):6567–6573CrossRef
30.
go back to reference Umebayashi T, Yamaki T, Itoh H, Asai K (2002) Band gap narrowing of titanium dioxide by sulfur doping. Appl Phys Lett 81(3):454–456CrossRef Umebayashi T, Yamaki T, Itoh H, Asai K (2002) Band gap narrowing of titanium dioxide by sulfur doping. Appl Phys Lett 81(3):454–456CrossRef
31.
go back to reference Fu S, Ni J, Xu Y, Zhang Q, Li L (2016) Hydrogenation driven conductive Na2Ti3O7 nanoarrays as robust binder-free anodes for Sodium-ion batteries. Nano Lett 16(7):4544–4551CrossRef Fu S, Ni J, Xu Y, Zhang Q, Li L (2016) Hydrogenation driven conductive Na2Ti3O7 nanoarrays as robust binder-free anodes for Sodium-ion batteries. Nano Lett 16(7):4544–4551CrossRef
32.
go back to reference Li H, Fei H, Liu X, Yang J, Wei M (2015) In situ synthesis of Na2 Ti7 O15 nanotubes on a Ti net substrate as a high performance anode for Na-ion batteries. Chem Commun 51(45):9298–9300CrossRef Li H, Fei H, Liu X, Yang J, Wei M (2015) In situ synthesis of Na2 Ti7 O15 nanotubes on a Ti net substrate as a high performance anode for Na-ion batteries. Chem Commun 51(45):9298–9300CrossRef
33.
go back to reference Jung SC, Jung DS, Choi JW, Han Y-K (2014) Atom-level understanding of the sodiation process in silicon anode material. J Phys Chem Lett 5(7):1283–1288CrossRef Jung SC, Jung DS, Choi JW, Han Y-K (2014) Atom-level understanding of the sodiation process in silicon anode material. J Phys Chem Lett 5(7):1283–1288CrossRef
34.
go back to reference Abel PR, Lin Y-M, de Souza T, Chou C-Y, Gupta A, Goodenough JB, Hwang GS, Heller A, Mullins CB (2013) Nanocolumnar germanium thin films as a high-rate sodium-ion battery anode material. J Phys Chem C 117(37):18885–18890CrossRef Abel PR, Lin Y-M, de Souza T, Chou C-Y, Gupta A, Goodenough JB, Hwang GS, Heller A, Mullins CB (2013) Nanocolumnar germanium thin films as a high-rate sodium-ion battery anode material. J Phys Chem C 117(37):18885–18890CrossRef
35.
go back to reference Komaba S, Matsuura Y, Ishikawa T, Yabuuchi N, Murata W, Kuze S (2012) Redox reaction of Sn-polyacrylate electrodes in aprotic Na cell. Electrochem Commun 21:65–68CrossRef Komaba S, Matsuura Y, Ishikawa T, Yabuuchi N, Murata W, Kuze S (2012) Redox reaction of Sn-polyacrylate electrodes in aprotic Na cell. Electrochem Commun 21:65–68CrossRef
36.
go back to reference Li Z, Ding J, Mitlin D (2015) Tin and tin compounds for sodium ion battery anodes: phase transformations and performance. Acc Chem Res 48(6):1657–1665CrossRef Li Z, Ding J, Mitlin D (2015) Tin and tin compounds for sodium ion battery anodes: phase transformations and performance. Acc Chem Res 48(6):1657–1665CrossRef
37.
go back to reference Baggetto L, Ganesh P, Meisner RP, Unocic RR, Jumas J-C, Bridges CA, Veith GM (2013) Characterization of sodium ion electrochemical reaction with tin anodes: experiment and theory. J Power Sources 234:48–59CrossRef Baggetto L, Ganesh P, Meisner RP, Unocic RR, Jumas J-C, Bridges CA, Veith GM (2013) Characterization of sodium ion electrochemical reaction with tin anodes: experiment and theory. J Power Sources 234:48–59CrossRef
38.
go back to reference Malyi OI, Tan TL, Manzhos S (2013) A comparative computational study of structures, diffusion, and dopant interactions between Li and Na insertion into Si. Appl Phys Express 6(2):027301-1–027301-3CrossRef Malyi OI, Tan TL, Manzhos S (2013) A comparative computational study of structures, diffusion, and dopant interactions between Li and Na insertion into Si. Appl Phys Express 6(2):027301-1–027301-3CrossRef
39.
go back to reference Kulish VV, Malyi OI, Ng M-F, Chen Z, Manzhos S, Wu P (2014) Controlling Na diffusion by rational design of Si-based layered architectures. Phys Chem Chem Phys 16(9):4260–4267CrossRef Kulish VV, Malyi OI, Ng M-F, Chen Z, Manzhos S, Wu P (2014) Controlling Na diffusion by rational design of Si-based layered architectures. Phys Chem Chem Phys 16(9):4260–4267CrossRef
40.
go back to reference Baggetto L, Keum JK, Browning JF, Veith GM (2013) Germanium as negative electrode material for sodium-ion batteries. Electrochem Commun 34:41–44CrossRef Baggetto L, Keum JK, Browning JF, Veith GM (2013) Germanium as negative electrode material for sodium-ion batteries. Electrochem Commun 34:41–44CrossRef
41.
go back to reference Kresse G, Furthmüller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54(16):11169–11186CrossRef Kresse G, Furthmüller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54(16):11169–11186CrossRef
42.
go back to reference Blöchl PE (1994) Projector augmented-wave method. Phys Rev B 50(24):17953–17979CrossRef Blöchl PE (1994) Projector augmented-wave method. Phys Rev B 50(24):17953–17979CrossRef
43.
go back to reference Kresse G, Joubert D (1999) From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B 59(3):1758–1775CrossRef Kresse G, Joubert D (1999) From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B 59(3):1758–1775CrossRef
44.
go back to reference Johari P, Qi Y, Shenoy VB (2011) The mixing mechanism during lithiation of Si negative electrode in Li-ion batteries: an ab initio molecular dynamics study. Nano Lett 11(12):5494–5500CrossRef Johari P, Qi Y, Shenoy VB (2011) The mixing mechanism during lithiation of Si negative electrode in Li-ion batteries: an ab initio molecular dynamics study. Nano Lett 11(12):5494–5500CrossRef
45.
go back to reference Farbod B, Cui K, Kalisvaart WP, Kupsta M, Zahiri B, Kohandehghan A, Lotfabad EM, Li Z, Luber EJ, Mitlin D (2014) Anodes for sodium ion batteries based on tin–germanium–antimony alloys. ACS Nano 8(5):4415–4429CrossRef Farbod B, Cui K, Kalisvaart WP, Kupsta M, Zahiri B, Kohandehghan A, Lotfabad EM, Li Z, Luber EJ, Mitlin D (2014) Anodes for sodium ion batteries based on tin–germanium–antimony alloys. ACS Nano 8(5):4415–4429CrossRef
46.
go back to reference Jung SC, Kim H-J, Kang Y-J, Han Y-K (2016) Advantages of Ge anode for Na-ion batteries: Ge versus Si and Sn. J Alloy Compd 688:158–163CrossRef Jung SC, Kim H-J, Kang Y-J, Han Y-K (2016) Advantages of Ge anode for Na-ion batteries: Ge versus Si and Sn. J Alloy Compd 688:158–163CrossRef
47.
go back to reference Hwang J-Y, Myung S-T, Sun Y-K (2017) Sodium-ion batteries: present and future. Chem Soc Rev 46(12):3529–3614CrossRef Hwang J-Y, Myung S-T, Sun Y-K (2017) Sodium-ion batteries: present and future. Chem Soc Rev 46(12):3529–3614CrossRef
48.
go back to reference Grigorovici R, Mǎnǎilǎ R (1969) Short-range order in amorphous germanium. J Non-Cryst Solids 1(5):371–387CrossRef Grigorovici R, Mǎnǎilǎ R (1969) Short-range order in amorphous germanium. J Non-Cryst Solids 1(5):371–387CrossRef
49.
go back to reference Panchmatia PM, Armstrong AR, Bruce PG, Islam MS (2014) Lithium-ion diffusion mechanisms in the battery anode material Li1+xV1−xO2. Phys Chem Chem Phys 16(39):21114–21118CrossRef Panchmatia PM, Armstrong AR, Bruce PG, Islam MS (2014) Lithium-ion diffusion mechanisms in the battery anode material Li1+xV1−xO2. Phys Chem Chem Phys 16(39):21114–21118CrossRef
Metadata
Title
Amorphous germanium as a promising anode material for sodium ion batteries: a first principle study
Authors
Vidushi Sharma
Kamalika Ghatak
Dibakar Datta
Publication date
09-07-2018
Publisher
Springer US
Published in
Journal of Materials Science / Issue 20/2018
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-018-2661-1

Other articles of this Issue 20/2018

Journal of Materials Science 20/2018 Go to the issue

Premium Partners