Skip to main content
Erschienen in: Journal of Materials Science 20/2018

09.07.2018 | Computation

Amorphous germanium as a promising anode material for sodium ion batteries: a first principle study

verfasst von: Vidushi Sharma, Kamalika Ghatak, Dibakar Datta

Erschienen in: Journal of Materials Science | Ausgabe 20/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The abundance of sodium (Na), its low-cost, and low reduction potential provide a lucrative inexpensive, safe, and environmentally benign alternative to lithium ion batteries (LIBs). The significant challenges in advancing sodium ion battery (NIB) technologies lie in finding the better electrode materials. Experimental investigations revealed the real potency of germanium (Ge) as suitable anode materials for NIBs. However, a systematic atomistic study is necessary to understand the fundamental aspects of capacity–voltage correlation, microstructural changes of Ge, as well as diffusion kinetics. We, therefore, performed the Density Functional Theory (DFT) and Ab Initio Molecular Dynamics (AIMD) simulation to investigate the sodiation–desodiation kinetics in germanium–sodium system (Na64Ge64). We analyzed the intercalation potential and capacity correlation for intermediate equilibrium structures and compared our data with the experimental results. Effect of sodiation on inter-atomic distances within Na–Ge system is analyzed by means of Pair Correlation Function (PCF). This provides insight into possible microstructural changes taking place during sodiation of amorphous Ge (a-Ge). We further investigated the diffusivity of sodium in a-Ge electrode material and analyzed the volume expansion trend for Na64Ge64 electrode system. Our computational results provide the fundamental insight into the atomic scale and help experimentalists design Ge-based NIBs for real-life applications.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Whittingham MS (1976) Electrical energy storage and intercalation chemistry. Science 192(4244):1126–1127CrossRef Whittingham MS (1976) Electrical energy storage and intercalation chemistry. Science 192(4244):1126–1127CrossRef
2.
Zurück zum Zitat Whittingham MS, Thompson AH (1975) Intercalation and lattice expansion in titanium disulfide. J Chem Phys 62(4):1588CrossRef Whittingham MS, Thompson AH (1975) Intercalation and lattice expansion in titanium disulfide. J Chem Phys 62(4):1588CrossRef
3.
Zurück zum Zitat Tarascon J-M, Armand M (2011) Issues and challenges facing rechargeable lithium batteries. In: Materials for sustainable energy: a collection of peer-reviewed research and review articles from Nature Publishing Group, World Scientific, pp 171–179 Tarascon J-M, Armand M (2011) Issues and challenges facing rechargeable lithium batteries. In: Materials for sustainable energy: a collection of peer-reviewed research and review articles from Nature Publishing Group, World Scientific, pp 171–179
4.
Zurück zum Zitat de la Llave E, Borgel V, Park K-J, Hwang J-Y, Sun Y-K, Hartmann P, Chesneau F-F, Aurbach D (2016) Comparison between Na-ion and Li-ion cells: understanding the critical role of the cathodes stability and the anodes pretreatment on the cells behavior. ACS Appl Mater Interfaces 8(3):1867–1875CrossRef de la Llave E, Borgel V, Park K-J, Hwang J-Y, Sun Y-K, Hartmann P, Chesneau F-F, Aurbach D (2016) Comparison between Na-ion and Li-ion cells: understanding the critical role of the cathodes stability and the anodes pretreatment on the cells behavior. ACS Appl Mater Interfaces 8(3):1867–1875CrossRef
5.
Zurück zum Zitat Böhm H, Beyermann G (1999) ZEBRA batteries, enhanced power by doping. J Power Sources 84(2):270–274CrossRef Böhm H, Beyermann G (1999) ZEBRA batteries, enhanced power by doping. J Power Sources 84(2):270–274CrossRef
6.
Zurück zum Zitat Nithya C, Gopukumar S (2015) Sodium ion batteries: a newer electrochemical storage. Wiley Interdiscip Rev Energy Environ 4(3):253–278CrossRef Nithya C, Gopukumar S (2015) Sodium ion batteries: a newer electrochemical storage. Wiley Interdiscip Rev Energy Environ 4(3):253–278CrossRef
7.
Zurück zum Zitat Yabuuchi N, Kubota K, Dahbi M, Komaba S (2014) Research development on sodium-ion batteries. Chem Rev 114(23):11636–11682CrossRef Yabuuchi N, Kubota K, Dahbi M, Komaba S (2014) Research development on sodium-ion batteries. Chem Rev 114(23):11636–11682CrossRef
8.
Zurück zum Zitat Kundu D, Talaie E, Duffort V, Nazar LF (2015) The emerging chemistry of sodium ion batteries for electrochemical energy storage. Angew Chem Int Ed 54(11):3431–3448CrossRef Kundu D, Talaie E, Duffort V, Nazar LF (2015) The emerging chemistry of sodium ion batteries for electrochemical energy storage. Angew Chem Int Ed 54(11):3431–3448CrossRef
9.
Zurück zum Zitat Adelhelm P, Hartmann P, Bender CL, Busche M, Eufinger C, Janek J (2015) From lithium to sodium: cell chemistry of room temperature sodium–air and sodium–sulfur batteries. Beilstein J Nanotechnol 2015(6):1016–1055CrossRef Adelhelm P, Hartmann P, Bender CL, Busche M, Eufinger C, Janek J (2015) From lithium to sodium: cell chemistry of room temperature sodium–air and sodium–sulfur batteries. Beilstein J Nanotechnol 2015(6):1016–1055CrossRef
10.
Zurück zum Zitat Stojić M, Kostić D, Stošić B (1986) The behaviour of sodium in Ge, Si and GaAs. Physica B + C 138(1–2):125–128CrossRef Stojić M, Kostić D, Stošić B (1986) The behaviour of sodium in Ge, Si and GaAs. Physica B + C 138(1–2):125–128CrossRef
11.
Zurück zum Zitat Delmas C, Fouassier C, Hagenmuller P (1980) Structural classification and properties of the layered oxides. Physica B + C 99(1–4):81–85CrossRef Delmas C, Fouassier C, Hagenmuller P (1980) Structural classification and properties of the layered oxides. Physica B + C 99(1–4):81–85CrossRef
12.
Zurück zum Zitat Berthelot R, Carlier D, Delmas C (2011) Electrochemical investigation of the P2–NaxCoO2 phase diagram. Nat Mater 10(1):74–80CrossRef Berthelot R, Carlier D, Delmas C (2011) Electrochemical investigation of the P2–NaxCoO2 phase diagram. Nat Mater 10(1):74–80CrossRef
13.
Zurück zum Zitat Shiva K, Singh P, Zhou W, Goodenough JB (2016) NaFe2PO4(SO4)2: a potential cathode for a Na-ion battery. Energy Environ Sci 9(10):3103–3106CrossRef Shiva K, Singh P, Zhou W, Goodenough JB (2016) NaFe2PO4(SO4)2: a potential cathode for a Na-ion battery. Energy Environ Sci 9(10):3103–3106CrossRef
14.
Zurück zum Zitat Xu J, Lee DH, Meng YS (2013) Recent advances in sodium intercalation positive electrode materials for sodium ion batteries. Funct Mater Lett 6(01):1330001–1330007CrossRef Xu J, Lee DH, Meng YS (2013) Recent advances in sodium intercalation positive electrode materials for sodium ion batteries. Funct Mater Lett 6(01):1330001–1330007CrossRef
15.
Zurück zum Zitat Okamoto Y (2013) Density functional theory calculations of alkali metal (Li, Na, and K) graphite intercalation compounds. J Phys Chem C 118(1):16–19CrossRef Okamoto Y (2013) Density functional theory calculations of alkali metal (Li, Na, and K) graphite intercalation compounds. J Phys Chem C 118(1):16–19CrossRef
16.
Zurück zum Zitat Balogun M-S, Luo Y, Qiu W, Liu P, Tong Y (2016) A review of carbon materials and their composites with alloy metals for sodium ion battery anodes. Carbon 98:162–178CrossRef Balogun M-S, Luo Y, Qiu W, Liu P, Tong Y (2016) A review of carbon materials and their composites with alloy metals for sodium ion battery anodes. Carbon 98:162–178CrossRef
17.
Zurück zum Zitat Chevrier V, Ceder G (2011) Challenges for Na-ion negative electrodes. J Electrochem Soc 158(9):A1011–A1014CrossRef Chevrier V, Ceder G (2011) Challenges for Na-ion negative electrodes. J Electrochem Soc 158(9):A1011–A1014CrossRef
18.
Zurück zum Zitat Jache B, Adelhelm P (2014) Use of graphite as a highly reversible electrode with superior cycle life for sodium-ion batteries by making use of co-intercalation phenomena. Angew Chem Int Ed 53(38):10169–10173CrossRef Jache B, Adelhelm P (2014) Use of graphite as a highly reversible electrode with superior cycle life for sodium-ion batteries by making use of co-intercalation phenomena. Angew Chem Int Ed 53(38):10169–10173CrossRef
19.
Zurück zum Zitat Wen Y, He K, Zhu Y, Han F, Xu Y, Matsuda I, Ishii Y, Cumings J, Wang C (2014) Expanded graphite as superior anode for sodium-ion batteries. Nat Commun 5:4033-1–4033-10 Wen Y, He K, Zhu Y, Han F, Xu Y, Matsuda I, Ishii Y, Cumings J, Wang C (2014) Expanded graphite as superior anode for sodium-ion batteries. Nat Commun 5:4033-1–4033-10
20.
Zurück zum Zitat Mei Y, Huang Y, Hu X (2016) Nanostructured Ti-based anode materials for Na-ion batteries. J Mater Chem A 4(31):12001–12013CrossRef Mei Y, Huang Y, Hu X (2016) Nanostructured Ti-based anode materials for Na-ion batteries. J Mater Chem A 4(31):12001–12013CrossRef
21.
Zurück zum Zitat Legrain F, Malyi O, Manzhos S (2015) Insertion energetics of lithium, sodium, and magnesium in crystalline and amorphous titanium dioxide: a comparative first-principles study. J Power Sources 278:197–202CrossRef Legrain F, Malyi O, Manzhos S (2015) Insertion energetics of lithium, sodium, and magnesium in crystalline and amorphous titanium dioxide: a comparative first-principles study. J Power Sources 278:197–202CrossRef
22.
Zurück zum Zitat Li W, Zhou M, Li H, Wang K, Cheng S, Jiang K (2015) A high performance sulfur-doped disordered carbon anode for sodium ion batteries. Energy Environ Sci 8(10):2916–2921CrossRef Li W, Zhou M, Li H, Wang K, Cheng S, Jiang K (2015) A high performance sulfur-doped disordered carbon anode for sodium ion batteries. Energy Environ Sci 8(10):2916–2921CrossRef
23.
Zurück zum Zitat Klein F, Jache B, Bhide A, Adelhelm P (2013) Conversion reactions for sodium-ion batteries. Phys Chem Chem Phys 15(38):15876–15887CrossRef Klein F, Jache B, Bhide A, Adelhelm P (2013) Conversion reactions for sodium-ion batteries. Phys Chem Chem Phys 15(38):15876–15887CrossRef
24.
Zurück zum Zitat Mortazavi M, Ye Q, Birbilis N, Medhekar NV (2015) High capacity group-15 alloy anodes for Na-ion batteries: electrochemical and mechanical insights. J Power Sources 285:29–36CrossRef Mortazavi M, Ye Q, Birbilis N, Medhekar NV (2015) High capacity group-15 alloy anodes for Na-ion batteries: electrochemical and mechanical insights. J Power Sources 285:29–36CrossRef
25.
Zurück zum Zitat Mortazavi M, Deng J, Shenoy VB, Medhekar NV (2013) Elastic softening of alloy negative electrodes for Na-ion batteries. J Power Sources 225:207–214CrossRef Mortazavi M, Deng J, Shenoy VB, Medhekar NV (2013) Elastic softening of alloy negative electrodes for Na-ion batteries. J Power Sources 225:207–214CrossRef
26.
Zurück zum Zitat Stevens D, Dahn J (2000) An in situ small-angle X-ray scattering study of sodium insertion into a nanoporous carbon anode material within an operating electrochemical cell. J Electrochem Soc 147(12):4428–4431CrossRef Stevens D, Dahn J (2000) An in situ small-angle X-ray scattering study of sodium insertion into a nanoporous carbon anode material within an operating electrochemical cell. J Electrochem Soc 147(12):4428–4431CrossRef
27.
Zurück zum Zitat Wang Y-X, Chou S-L, Liu H-K, Dou S-X (2013) Reduced graphene oxide with superior cycling stability and rate capability for sodium storage. Carbon 57:202–208CrossRef Wang Y-X, Chou S-L, Liu H-K, Dou S-X (2013) Reduced graphene oxide with superior cycling stability and rate capability for sodium storage. Carbon 57:202–208CrossRef
28.
Zurück zum Zitat Li D, Zhang L, Chen H, Wang J, Ding L-X, Wang S, Ashman PJ, Wang H (2016) Graphene-based nitrogen-doped carbon sandwich nanosheets: a new capacitive process controlled anode material for high-performance sodium-ion batteries. J Mater Chem A 4(22):8630–8635CrossRef Li D, Zhang L, Chen H, Wang J, Ding L-X, Wang S, Ashman PJ, Wang H (2016) Graphene-based nitrogen-doped carbon sandwich nanosheets: a new capacitive process controlled anode material for high-performance sodium-ion batteries. J Mater Chem A 4(22):8630–8635CrossRef
29.
Zurück zum Zitat Usui H, Yoshioka S, Wasada K, Shimizu M, Sakaguchi H (2015) Nb-doped rutile TiO2: a potential anode material for Na-ion battery. ACS Appl Mater Interfaces 7(12):6567–6573CrossRef Usui H, Yoshioka S, Wasada K, Shimizu M, Sakaguchi H (2015) Nb-doped rutile TiO2: a potential anode material for Na-ion battery. ACS Appl Mater Interfaces 7(12):6567–6573CrossRef
30.
Zurück zum Zitat Umebayashi T, Yamaki T, Itoh H, Asai K (2002) Band gap narrowing of titanium dioxide by sulfur doping. Appl Phys Lett 81(3):454–456CrossRef Umebayashi T, Yamaki T, Itoh H, Asai K (2002) Band gap narrowing of titanium dioxide by sulfur doping. Appl Phys Lett 81(3):454–456CrossRef
31.
Zurück zum Zitat Fu S, Ni J, Xu Y, Zhang Q, Li L (2016) Hydrogenation driven conductive Na2Ti3O7 nanoarrays as robust binder-free anodes for Sodium-ion batteries. Nano Lett 16(7):4544–4551CrossRef Fu S, Ni J, Xu Y, Zhang Q, Li L (2016) Hydrogenation driven conductive Na2Ti3O7 nanoarrays as robust binder-free anodes for Sodium-ion batteries. Nano Lett 16(7):4544–4551CrossRef
32.
Zurück zum Zitat Li H, Fei H, Liu X, Yang J, Wei M (2015) In situ synthesis of Na2 Ti7 O15 nanotubes on a Ti net substrate as a high performance anode for Na-ion batteries. Chem Commun 51(45):9298–9300CrossRef Li H, Fei H, Liu X, Yang J, Wei M (2015) In situ synthesis of Na2 Ti7 O15 nanotubes on a Ti net substrate as a high performance anode for Na-ion batteries. Chem Commun 51(45):9298–9300CrossRef
33.
Zurück zum Zitat Jung SC, Jung DS, Choi JW, Han Y-K (2014) Atom-level understanding of the sodiation process in silicon anode material. J Phys Chem Lett 5(7):1283–1288CrossRef Jung SC, Jung DS, Choi JW, Han Y-K (2014) Atom-level understanding of the sodiation process in silicon anode material. J Phys Chem Lett 5(7):1283–1288CrossRef
34.
Zurück zum Zitat Abel PR, Lin Y-M, de Souza T, Chou C-Y, Gupta A, Goodenough JB, Hwang GS, Heller A, Mullins CB (2013) Nanocolumnar germanium thin films as a high-rate sodium-ion battery anode material. J Phys Chem C 117(37):18885–18890CrossRef Abel PR, Lin Y-M, de Souza T, Chou C-Y, Gupta A, Goodenough JB, Hwang GS, Heller A, Mullins CB (2013) Nanocolumnar germanium thin films as a high-rate sodium-ion battery anode material. J Phys Chem C 117(37):18885–18890CrossRef
35.
Zurück zum Zitat Komaba S, Matsuura Y, Ishikawa T, Yabuuchi N, Murata W, Kuze S (2012) Redox reaction of Sn-polyacrylate electrodes in aprotic Na cell. Electrochem Commun 21:65–68CrossRef Komaba S, Matsuura Y, Ishikawa T, Yabuuchi N, Murata W, Kuze S (2012) Redox reaction of Sn-polyacrylate electrodes in aprotic Na cell. Electrochem Commun 21:65–68CrossRef
36.
Zurück zum Zitat Li Z, Ding J, Mitlin D (2015) Tin and tin compounds for sodium ion battery anodes: phase transformations and performance. Acc Chem Res 48(6):1657–1665CrossRef Li Z, Ding J, Mitlin D (2015) Tin and tin compounds for sodium ion battery anodes: phase transformations and performance. Acc Chem Res 48(6):1657–1665CrossRef
37.
Zurück zum Zitat Baggetto L, Ganesh P, Meisner RP, Unocic RR, Jumas J-C, Bridges CA, Veith GM (2013) Characterization of sodium ion electrochemical reaction with tin anodes: experiment and theory. J Power Sources 234:48–59CrossRef Baggetto L, Ganesh P, Meisner RP, Unocic RR, Jumas J-C, Bridges CA, Veith GM (2013) Characterization of sodium ion electrochemical reaction with tin anodes: experiment and theory. J Power Sources 234:48–59CrossRef
38.
Zurück zum Zitat Malyi OI, Tan TL, Manzhos S (2013) A comparative computational study of structures, diffusion, and dopant interactions between Li and Na insertion into Si. Appl Phys Express 6(2):027301-1–027301-3CrossRef Malyi OI, Tan TL, Manzhos S (2013) A comparative computational study of structures, diffusion, and dopant interactions between Li and Na insertion into Si. Appl Phys Express 6(2):027301-1–027301-3CrossRef
39.
Zurück zum Zitat Kulish VV, Malyi OI, Ng M-F, Chen Z, Manzhos S, Wu P (2014) Controlling Na diffusion by rational design of Si-based layered architectures. Phys Chem Chem Phys 16(9):4260–4267CrossRef Kulish VV, Malyi OI, Ng M-F, Chen Z, Manzhos S, Wu P (2014) Controlling Na diffusion by rational design of Si-based layered architectures. Phys Chem Chem Phys 16(9):4260–4267CrossRef
40.
Zurück zum Zitat Baggetto L, Keum JK, Browning JF, Veith GM (2013) Germanium as negative electrode material for sodium-ion batteries. Electrochem Commun 34:41–44CrossRef Baggetto L, Keum JK, Browning JF, Veith GM (2013) Germanium as negative electrode material for sodium-ion batteries. Electrochem Commun 34:41–44CrossRef
41.
Zurück zum Zitat Kresse G, Furthmüller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54(16):11169–11186CrossRef Kresse G, Furthmüller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54(16):11169–11186CrossRef
42.
Zurück zum Zitat Blöchl PE (1994) Projector augmented-wave method. Phys Rev B 50(24):17953–17979CrossRef Blöchl PE (1994) Projector augmented-wave method. Phys Rev B 50(24):17953–17979CrossRef
43.
Zurück zum Zitat Kresse G, Joubert D (1999) From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B 59(3):1758–1775CrossRef Kresse G, Joubert D (1999) From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B 59(3):1758–1775CrossRef
44.
Zurück zum Zitat Johari P, Qi Y, Shenoy VB (2011) The mixing mechanism during lithiation of Si negative electrode in Li-ion batteries: an ab initio molecular dynamics study. Nano Lett 11(12):5494–5500CrossRef Johari P, Qi Y, Shenoy VB (2011) The mixing mechanism during lithiation of Si negative electrode in Li-ion batteries: an ab initio molecular dynamics study. Nano Lett 11(12):5494–5500CrossRef
45.
Zurück zum Zitat Farbod B, Cui K, Kalisvaart WP, Kupsta M, Zahiri B, Kohandehghan A, Lotfabad EM, Li Z, Luber EJ, Mitlin D (2014) Anodes for sodium ion batteries based on tin–germanium–antimony alloys. ACS Nano 8(5):4415–4429CrossRef Farbod B, Cui K, Kalisvaart WP, Kupsta M, Zahiri B, Kohandehghan A, Lotfabad EM, Li Z, Luber EJ, Mitlin D (2014) Anodes for sodium ion batteries based on tin–germanium–antimony alloys. ACS Nano 8(5):4415–4429CrossRef
46.
Zurück zum Zitat Jung SC, Kim H-J, Kang Y-J, Han Y-K (2016) Advantages of Ge anode for Na-ion batteries: Ge versus Si and Sn. J Alloy Compd 688:158–163CrossRef Jung SC, Kim H-J, Kang Y-J, Han Y-K (2016) Advantages of Ge anode for Na-ion batteries: Ge versus Si and Sn. J Alloy Compd 688:158–163CrossRef
47.
Zurück zum Zitat Hwang J-Y, Myung S-T, Sun Y-K (2017) Sodium-ion batteries: present and future. Chem Soc Rev 46(12):3529–3614CrossRef Hwang J-Y, Myung S-T, Sun Y-K (2017) Sodium-ion batteries: present and future. Chem Soc Rev 46(12):3529–3614CrossRef
48.
Zurück zum Zitat Grigorovici R, Mǎnǎilǎ R (1969) Short-range order in amorphous germanium. J Non-Cryst Solids 1(5):371–387CrossRef Grigorovici R, Mǎnǎilǎ R (1969) Short-range order in amorphous germanium. J Non-Cryst Solids 1(5):371–387CrossRef
49.
Zurück zum Zitat Panchmatia PM, Armstrong AR, Bruce PG, Islam MS (2014) Lithium-ion diffusion mechanisms in the battery anode material Li1+xV1−xO2. Phys Chem Chem Phys 16(39):21114–21118CrossRef Panchmatia PM, Armstrong AR, Bruce PG, Islam MS (2014) Lithium-ion diffusion mechanisms in the battery anode material Li1+xV1−xO2. Phys Chem Chem Phys 16(39):21114–21118CrossRef
Metadaten
Titel
Amorphous germanium as a promising anode material for sodium ion batteries: a first principle study
verfasst von
Vidushi Sharma
Kamalika Ghatak
Dibakar Datta
Publikationsdatum
09.07.2018
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 20/2018
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-018-2661-1

Weitere Artikel der Ausgabe 20/2018

Journal of Materials Science 20/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.