Skip to main content
Top
Published in: Neural Computing and Applications 9/2020

02-11-2018 | Original Article

An adaptive twin support vector regression machine based on rough and fuzzy set theories

Authors: Zhenxia Xue, Roxin Zhang, Chuandong Qin, Xiaoqing Zeng

Published in: Neural Computing and Applications | Issue 9/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

It is known that the existing \(\nu\)-twin support vector regression (\(\nu\)-TWSVR) has the ability to optimize \(\varepsilon _1\) and \(\varepsilon _2\) automatically through the proper selections of the parameters \(\nu _1\) and \(\nu _2\). However, since only the points near the lower-bound and upper-bound regressors are considered, it often results in overfitting problems. Furthermore, the equal penalties are applied to all samples that normally have different effects on the regressor function. In this paper, we propose an adaptive twin support vector regression (ATWSVR) machine to reduce the negative impacts of the possible outliers in \(\nu\)-twin support vector regression (\(\nu\)-TWSVR) by incorporating the fuzzy and rough set theories. First, two optimization models are constructed to obtain the lower and upper-bound regressors involving the use of the tools in rough and fuzzy set theories. Consequently, Theorems 1 and 2 are derived, through the application of KKT conditions and duality theory, to provide the connections between the dual optimal values and the location regions of the data points. Then, the definitions of different types of support vectors and their fuzzy proportions are given and Theorems 3 and 4 are proved to provide the bounds for the fuzzy proportions of these support vectors. Finally, the training data points located in different regions are assigned different fuzzy membership values by using iterative methods. Moreover, this approach can achieve the structural risk minimization and automatically control the fuzzy proportions of support vectors. The proposed ATWSVR is more robust for the data sets with outliers, as evidenced by the experimental results on both simulated examples as well as the benchmark real-world data sets. These results also confirm the claims made in the theorems mentioned above.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Cortes C, Vapnik V (1995) Support vector machine. Mach Learn 20(3):273–297MATH Cortes C, Vapnik V (1995) Support vector machine. Mach Learn 20(3):273–297MATH
2.
go back to reference Li S, Kwok JT, Zhu H (2003) Texture classification using the support vector machines. Pattern Recognit 36(12):2883–2893MATHCrossRef Li S, Kwok JT, Zhu H (2003) Texture classification using the support vector machines. Pattern Recognit 36(12):2883–2893MATHCrossRef
3.
go back to reference Kim K (2003) Financial time series forecasting using support vector machines. Neurocomputing 55(1):307–319CrossRef Kim K (2003) Financial time series forecasting using support vector machines. Neurocomputing 55(1):307–319CrossRef
4.
go back to reference Shi Y, Zhang X, Wan J (2007) Predicting the distance between antibody interface residue and antigen to recognize antigen types by support vector machine. Neural Comput Appl 16(4–5):481–490CrossRef Shi Y, Zhang X, Wan J (2007) Predicting the distance between antibody interface residue and antigen to recognize antigen types by support vector machine. Neural Comput Appl 16(4–5):481–490CrossRef
5.
go back to reference Du XF, Leung SCH, Zhang JL (2013) Demand forecasting of perishable farm products using support vector machine. Int J Syst Sci 44(3):556–567MATHCrossRef Du XF, Leung SCH, Zhang JL (2013) Demand forecasting of perishable farm products using support vector machine. Int J Syst Sci 44(3):556–567MATHCrossRef
7.
go back to reference Schölkopf B, Bartlett P, Smola A et al (1998) Support vector regression with automatic accuracy control. In: ICANN 98. Springer, London Schölkopf B, Bartlett P, Smola A et al (1998) Support vector regression with automatic accuracy control. In: ICANN 98. Springer, London
8.
go back to reference Peng X (2010) TSVR: an efficient twin support vector machine for regression. Neural Netw 23(3):365–372MATHCrossRef Peng X (2010) TSVR: an efficient twin support vector machine for regression. Neural Netw 23(3):365–372MATHCrossRef
9.
go back to reference Tanveer M, Shubham K, Aldhaifallah M (2016) An efficient implicit regularized Lagrangian twin support vector regression. Appl Intell 44:831–848CrossRef Tanveer M, Shubham K, Aldhaifallah M (2016) An efficient implicit regularized Lagrangian twin support vector regression. Appl Intell 44:831–848CrossRef
10.
go back to reference Singh M, Chadha J, Ahuja P (2011) Reduced twin support vector regression. Neurocomputing 74(9):1474–1477CrossRef Singh M, Chadha J, Ahuja P (2011) Reduced twin support vector regression. Neurocomputing 74(9):1474–1477CrossRef
11.
go back to reference Zhang Z, Lv T, Wang H et al (2018) A novel least square twin support vector regression. Neural Process Lett 48(2):1187–1200CrossRef Zhang Z, Lv T, Wang H et al (2018) A novel least square twin support vector regression. Neural Process Lett 48(2):1187–1200CrossRef
12.
go back to reference Xu Y, Li X, Pan X et al (2017) Asymmetric \(\nu\)-twin support vector regression. Neural Comput Appl (2):1–16 Xu Y, Li X, Pan X et al (2017) Asymmetric \(\nu\)-twin support vector regression. Neural Comput Appl (2):1–16
13.
go back to reference Balasundaram S, Tanveer M (2013) On Lagrangian twin support vector regression. Neural Comput Appl 22(1):257–267CrossRef Balasundaram S, Tanveer M (2013) On Lagrangian twin support vector regression. Neural Comput Appl 22(1):257–267CrossRef
14.
go back to reference Parastalooi N, Amiri A, Aliheidari P (2016) Modified twin support vector regression. Neurocomputing 211:84–97CrossRef Parastalooi N, Amiri A, Aliheidari P (2016) Modified twin support vector regression. Neurocomputing 211:84–97CrossRef
15.
go back to reference Shao YH, Zhang CH, Yang ZM, Jing L, Deng NY (2013) An \(\varepsilon\)-twin support vector machine for regression. Neural Comput Appl 23(1):175–185CrossRef Shao YH, Zhang CH, Yang ZM, Jing L, Deng NY (2013) An \(\varepsilon\)-twin support vector machine for regression. Neural Comput Appl 23(1):175–185CrossRef
16.
go back to reference Rastogi R, Anand P, Chandra S (2017) A \(\nu\)-twin support vector machine based regression with automatic accuracy control. Appl Intell 46(3):670–683CrossRef Rastogi R, Anand P, Chandra S (2017) A \(\nu\)-twin support vector machine based regression with automatic accuracy control. Appl Intell 46(3):670–683CrossRef
19.
go back to reference Klir GJ (1994) Multivalued logics versus modal logics: alternative frameworks for uncertainty modelling. Adv Fuzzy Theory Technol 2:3–47MathSciNet Klir GJ (1994) Multivalued logics versus modal logics: alternative frameworks for uncertainty modelling. Adv Fuzzy Theory Technol 2:3–47MathSciNet
20.
go back to reference Yeh CC, Chi DJ, Hsu MF (2010) A hybrid approach of DEA, rough set and support vector machines for business failure prediction. Expert Syst Appl 37(2):1535–1541CrossRef Yeh CC, Chi DJ, Hsu MF (2010) A hybrid approach of DEA, rough set and support vector machines for business failure prediction. Expert Syst Appl 37(2):1535–1541CrossRef
21.
go back to reference Zhao Y, Sun J (2009) Rough \(\nu\)-support vector regression. Expert Syst Appl 36(6):9793–9798CrossRef Zhao Y, Sun J (2009) Rough \(\nu\)-support vector regression. Expert Syst Appl 36(6):9793–9798CrossRef
22.
go back to reference Xu Y, Wang L, Zhong P (2012) A rough margin-based \(\nu\)-twin support vector machine. Neural Comput Appl 21(6):1307–1317CrossRef Xu Y, Wang L, Zhong P (2012) A rough margin-based \(\nu\)-twin support vector machine. Neural Comput Appl 21(6):1307–1317CrossRef
24.
go back to reference Yang CY, Chou JJ, Lian FL (2013) Robust classifier learning with fuzzy class labels for large-margin support vector machines. Neurocomputing 99:1–14CrossRef Yang CY, Chou JJ, Lian FL (2013) Robust classifier learning with fuzzy class labels for large-margin support vector machines. Neurocomputing 99:1–14CrossRef
25.
go back to reference Lingras P (2001) Fuzzy-rough and rough-fuzzy serial combinations in neurocomputing. Neurocomputing 36(1):29–44MATHCrossRef Lingras P (2001) Fuzzy-rough and rough-fuzzy serial combinations in neurocomputing. Neurocomputing 36(1):29–44MATHCrossRef
26.
go back to reference Chen D, He Q, Wang X (2010) FRSVMs: fuzzy rough set based support vector machines. Fuzzy Sets Syst 161(4):596–607MathSciNetCrossRef Chen D, He Q, Wang X (2010) FRSVMs: fuzzy rough set based support vector machines. Fuzzy Sets Syst 161(4):596–607MathSciNetCrossRef
27.
go back to reference He Q, Wu C (2011) Membership evaluation and feature selection for fuzzy support vector machine based on fuzzy rough sets. Soft Comput 15(6):1105–1114CrossRef He Q, Wu C (2011) Membership evaluation and feature selection for fuzzy support vector machine based on fuzzy rough sets. Soft Comput 15(6):1105–1114CrossRef
28.
go back to reference Karush W (2014) Minima of functions of several variables with inequalities as side conditions. Traces and Emergence of Nonlinear Programming. Springer, Basel, pp 217–245CrossRef Karush W (2014) Minima of functions of several variables with inequalities as side conditions. Traces and Emergence of Nonlinear Programming. Springer, Basel, pp 217–245CrossRef
31.
go back to reference Staudte RG, Sheather SJ (2011) Robust estimation and testing. Wiley, New YorkMATH Staudte RG, Sheather SJ (2011) Robust estimation and testing. Wiley, New YorkMATH
32.
go back to reference Rodríguez-Fdez I, Canosa A, Mucientes M, Bugarín A (2015) STAC: a web platform for the comparison of algorithms using statistical tests. In: Proceedings of the 2015 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE) Rodríguez-Fdez I, Canosa A, Mucientes M, Bugarín A (2015) STAC: a web platform for the comparison of algorithms using statistical tests. In: Proceedings of the 2015 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)
Metadata
Title
An adaptive twin support vector regression machine based on rough and fuzzy set theories
Authors
Zhenxia Xue
Roxin Zhang
Chuandong Qin
Xiaoqing Zeng
Publication date
02-11-2018
Publisher
Springer London
Published in
Neural Computing and Applications / Issue 9/2020
Print ISSN: 0941-0643
Electronic ISSN: 1433-3058
DOI
https://doi.org/10.1007/s00521-018-3823-4

Other articles of this Issue 9/2020

Neural Computing and Applications 9/2020 Go to the issue

Premium Partner