Skip to main content
Top
Published in: Journal of Scientific Computing 2/2019

01-08-2018

An Alternative Formulation of Discontinous Galerkin Schemes for Solving Hamilton–Jacobi Equations

Authors: Guoyi Ke, Wei Guo

Published in: Journal of Scientific Computing | Issue 2/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The aim of this paper is to develop an alternative formulation of discontinuous Galerkin (DG) schemes for approximating the viscosity solutions to nonlinear Hamilton–Jacobi (HJ) equations. The main difficulty in designing DG schemes lies in the inherent non-divergence form of HJ equations. One effective approach is to explore the elegant relationship between HJ equations and hyperbolic conservation laws: the standard DG scheme is applied to solve a conservation law system satisfied by the derivatives of the solution of the HJ equation. In this paper, we consider an alternative approach to directly solving the HJ equations, motivated by a class of successful direct DG schemes by Cheng and Shu (J Comput Phys 223(1):398–415, 2007), Cheng and Wang (J Comput Phys 268:134–153, 2014). The proposed scheme is derived based on the idea from the central-upwind scheme by Kurganov et al. (SIAM J Sci Comput 23(3):707–740, 2001). In particular, we make use of precise information of the local speeds of propagation at discontinuous element interface with the goal of adding adequate numerical viscosity and hence naturally capturing the viscosity solutions. A collection of numerical experiments is presented to demonstrate the performance of the method for solving general HJ equations with linear, nonlinear, smooth, non-smooth, convex, or non-convex Hamiltonians.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Abgrall, R.: Numerical discretization of the first-order Hamilton–Jacobi equation on triangular meshes. Commun. Pure Appl. Math. 49(12), 1339–1373 (1996)MathSciNetMATHCrossRef Abgrall, R.: Numerical discretization of the first-order Hamilton–Jacobi equation on triangular meshes. Commun. Pure Appl. Math. 49(12), 1339–1373 (1996)MathSciNetMATHCrossRef
2.
go back to reference Cheng, Y., Shu, C.-W.: A discontinuous Galerkin finite element method for directly solving the Hamilton–Jacobi equations. J. Comput. Phys. 223(1), 398–415 (2007)MathSciNetMATHCrossRef Cheng, Y., Shu, C.-W.: A discontinuous Galerkin finite element method for directly solving the Hamilton–Jacobi equations. J. Comput. Phys. 223(1), 398–415 (2007)MathSciNetMATHCrossRef
3.
go back to reference Cheng, Y., Wang, Z.: A new discontinuous Galerkin finite element method for directly solving the Hamilton–Jacobi equations. J. Comput. Phys. 268, 134–153 (2014)MathSciNetMATHCrossRef Cheng, Y., Wang, Z.: A new discontinuous Galerkin finite element method for directly solving the Hamilton–Jacobi equations. J. Comput. Phys. 268, 134–153 (2014)MathSciNetMATHCrossRef
4.
go back to reference Cockburn, B., Shu, C.-W.: Runge–Kutta discontinuous Galerkin methods for convection-dominated problems. J. Sci. Comput. 16(3), 173–261 (2001)MathSciNetMATHCrossRef Cockburn, B., Shu, C.-W.: Runge–Kutta discontinuous Galerkin methods for convection-dominated problems. J. Sci. Comput. 16(3), 173–261 (2001)MathSciNetMATHCrossRef
5.
go back to reference Crandall, M.G., Evans, L.C., Lions, P.-L.: Some properties of viscosity solutions of Hamilton–Jacobi equations. Trans. Am. Math. Soc. 282(2), 487–502 (1984)MathSciNetMATHCrossRef Crandall, M.G., Evans, L.C., Lions, P.-L.: Some properties of viscosity solutions of Hamilton–Jacobi equations. Trans. Am. Math. Soc. 282(2), 487–502 (1984)MathSciNetMATHCrossRef
6.
7.
8.
go back to reference Evans, L.: Partial Differential Equations, 2nd edn. American Mathematical Society, Providence (2010)MATH Evans, L.: Partial Differential Equations, 2nd edn. American Mathematical Society, Providence (2010)MATH
9.
go back to reference Gottlieb, S., Shu, C.-W., Tadmor, E.: Strong stability-preserving high-order time discretization methods. SIAM Rev. 43(1), 89–112 (2001)MathSciNetMATHCrossRef Gottlieb, S., Shu, C.-W., Tadmor, E.: Strong stability-preserving high-order time discretization methods. SIAM Rev. 43(1), 89–112 (2001)MathSciNetMATHCrossRef
10.
go back to reference Guo, W., Li, F., Qiu, J.: Local-structure-preserving discontinuous Galerkin methods with Lax–Wendroff type time discretizations for Hamilton–Jacobi equations. J. Sci. Comput. 47(2), 239–257 (2011)MathSciNetMATHCrossRef Guo, W., Li, F., Qiu, J.: Local-structure-preserving discontinuous Galerkin methods with Lax–Wendroff type time discretizations for Hamilton–Jacobi equations. J. Sci. Comput. 47(2), 239–257 (2011)MathSciNetMATHCrossRef
11.
go back to reference Ha, Y., Kim, C., Yang, H., Yoon, J.: A sixth-order weighted essentially non-oscillatory schemes based on exponential polynomials for Hamilton-Jacobi equations. J. Sci. Comput. 75(3), 1675–1700 (2018)MathSciNetMATHCrossRef Ha, Y., Kim, C., Yang, H., Yoon, J.: A sixth-order weighted essentially non-oscillatory schemes based on exponential polynomials for Hamilton-Jacobi equations. J. Sci. Comput. 75(3), 1675–1700 (2018)MathSciNetMATHCrossRef
12.
go back to reference Harten, A., Lax, P., van Leer, B.: On upstream differencing and Godunov-type schemes for hyperbolic conservation laws. SIAM Rev. 25(1), 35–61 (1983)MathSciNetMATHCrossRef Harten, A., Lax, P., van Leer, B.: On upstream differencing and Godunov-type schemes for hyperbolic conservation laws. SIAM Rev. 25(1), 35–61 (1983)MathSciNetMATHCrossRef
13.
go back to reference Hu, C., Shu, C.-W.: A discontinuous Galerkin finite element method for Hamilton–Jacobi equations. SIAM J. Sci. Comput. 21(2), 666–690 (1999)MathSciNetMATHCrossRef Hu, C., Shu, C.-W.: A discontinuous Galerkin finite element method for Hamilton–Jacobi equations. SIAM J. Sci. Comput. 21(2), 666–690 (1999)MathSciNetMATHCrossRef
14.
15.
go back to reference Jin, S., Xin, Z.: Numerical passage from systems of conservation laws to Hamilton–Jacobi equations, and relaxation schemes. SIAM J. Numer. Anal. 35(6), 2385–2404 (1998)MathSciNetMATHCrossRef Jin, S., Xin, Z.: Numerical passage from systems of conservation laws to Hamilton–Jacobi equations, and relaxation schemes. SIAM J. Numer. Anal. 35(6), 2385–2404 (1998)MathSciNetMATHCrossRef
16.
go back to reference Kurganov, A., Lin, C.-T.: On the reduction of numerical dissipation in central-upwind schemes. Commun. Comput. Phys. 2(1), 141–163 (2007)MathSciNetMATH Kurganov, A., Lin, C.-T.: On the reduction of numerical dissipation in central-upwind schemes. Commun. Comput. Phys. 2(1), 141–163 (2007)MathSciNetMATH
17.
go back to reference Kurganov, A., Noelle, S., Petrova, G.: Semidiscrete central-upwind schemes for hyperbolic conservation laws and Hamilton–Jacobi equations. SIAM J. Sci. Comput. 23(3), 707–740 (2001)MathSciNetMATHCrossRef Kurganov, A., Noelle, S., Petrova, G.: Semidiscrete central-upwind schemes for hyperbolic conservation laws and Hamilton–Jacobi equations. SIAM J. Sci. Comput. 23(3), 707–740 (2001)MathSciNetMATHCrossRef
18.
go back to reference Kurganov, A., Petrova, G.: Adaptive central-upwind schemes for Hamilton–Jacobi equations with nonconvex Hamiltonians. J. Sci. Comput. 27(1), 323–333 (2006)MathSciNetMATHCrossRef Kurganov, A., Petrova, G.: Adaptive central-upwind schemes for Hamilton–Jacobi equations with nonconvex Hamiltonians. J. Sci. Comput. 27(1), 323–333 (2006)MathSciNetMATHCrossRef
19.
go back to reference Kurganov, A., Petrova, G., Popov, B.: Adaptive semidiscrete central-upwind schemes for nonconvex hyperbolic conservation laws. SIAM J. Sci. Comput. 29(6), 2381–2401 (2007)MathSciNetMATHCrossRef Kurganov, A., Petrova, G., Popov, B.: Adaptive semidiscrete central-upwind schemes for nonconvex hyperbolic conservation laws. SIAM J. Sci. Comput. 29(6), 2381–2401 (2007)MathSciNetMATHCrossRef
20.
go back to reference Kurganov, A., Tadmor, E.: New high-resolution central schemes for nonlinear conservation laws and convection–diffusion equations. J. Comput. Phys. 160(1), 241–282 (2000)MathSciNetMATHCrossRef Kurganov, A., Tadmor, E.: New high-resolution central schemes for nonlinear conservation laws and convection–diffusion equations. J. Comput. Phys. 160(1), 241–282 (2000)MathSciNetMATHCrossRef
21.
go back to reference Kurganov, A., Tadmor, E.: Solution of two-dimensional riemann problems for gas dynamics without riemann problem solvers. Numer. Methods Partial Differ. Equ. 18(5), 584–608 (2002)MathSciNetMATHCrossRef Kurganov, A., Tadmor, E.: Solution of two-dimensional riemann problems for gas dynamics without riemann problem solvers. Numer. Methods Partial Differ. Equ. 18(5), 584–608 (2002)MathSciNetMATHCrossRef
22.
go back to reference Lafon, F., Osher, S.: High order two dimensional nonoscillatory methods for solving Hamilton–Jacobi scalar equations. J. Comput. Phys. 123(2), 235–253 (1996)MathSciNetMATHCrossRef Lafon, F., Osher, S.: High order two dimensional nonoscillatory methods for solving Hamilton–Jacobi scalar equations. J. Comput. Phys. 123(2), 235–253 (1996)MathSciNetMATHCrossRef
23.
go back to reference Lepsky, O., Hu, C., Shu, C.-W.: Analysis of the discontinuous Galerkin method for Hamilton–Jacobi equations. Appl. Numer. Math. 33(1–4), 423–434 (2000)MathSciNetMATHCrossRef Lepsky, O., Hu, C., Shu, C.-W.: Analysis of the discontinuous Galerkin method for Hamilton–Jacobi equations. Appl. Numer. Math. 33(1–4), 423–434 (2000)MathSciNetMATHCrossRef
24.
go back to reference Li, F., Shu, C.-W.: Reinterpretation and simplified implementation of a discontinuous Galerkin method for Hamilton–Jacobi equations. Appl. Math. Lett. 18(11), 1204–1209 (2005)MathSciNetMATHCrossRef Li, F., Shu, C.-W.: Reinterpretation and simplified implementation of a discontinuous Galerkin method for Hamilton–Jacobi equations. Appl. Math. Lett. 18(11), 1204–1209 (2005)MathSciNetMATHCrossRef
25.
go back to reference Li, F., Yakovlev, S.: A central discontinuous Galerkin method for Hamilton–Jacobi equations. J. Sci. Comput. 45(1–3), 404–428 (2010)MathSciNetMATHCrossRef Li, F., Yakovlev, S.: A central discontinuous Galerkin method for Hamilton–Jacobi equations. J. Sci. Comput. 45(1–3), 404–428 (2010)MathSciNetMATHCrossRef
26.
go back to reference Lions, P.-L.: Generalized Solutions of Hamilton–Jacobi Equations, vol. 69. Pitman, London (1982)MATH Lions, P.-L.: Generalized Solutions of Hamilton–Jacobi Equations, vol. 69. Pitman, London (1982)MATH
27.
go back to reference Osher, S., Sethian, J.: Fronts propagating with curvature-dependent speed: algorithms based on Hamilton–Jacobi formulations. J. Comput. Phys. 79(1), 12–49 (1988)MathSciNetMATHCrossRef Osher, S., Sethian, J.: Fronts propagating with curvature-dependent speed: algorithms based on Hamilton–Jacobi formulations. J. Comput. Phys. 79(1), 12–49 (1988)MathSciNetMATHCrossRef
28.
go back to reference Osher, S., Shu, C.-W.: High-order essentially nonoscillatory schemes for Hamilton–Jacobi equations. SIAM J. Numer. Anal. 28(4), 907–922 (1991)MathSciNetMATHCrossRef Osher, S., Shu, C.-W.: High-order essentially nonoscillatory schemes for Hamilton–Jacobi equations. SIAM J. Numer. Anal. 28(4), 907–922 (1991)MathSciNetMATHCrossRef
29.
go back to reference Qiu, J.: Hermite WENO schemes with Lax–Wendroff type time discretizations for Hamilton–Jacobi equations. J. Comput. Math. 25(2), 131–144 (2007)MathSciNetMATH Qiu, J.: Hermite WENO schemes with Lax–Wendroff type time discretizations for Hamilton–Jacobi equations. J. Comput. Math. 25(2), 131–144 (2007)MathSciNetMATH
31.
go back to reference Shu, C.-W.: High order numerical methods for time dependent Hamilton–Jacobi equations. In: Mathematics and Computation in Imaging Science and Information Processing. Lecture Notes Series, Institute for Mathematical Sciences, National University of Singapore, vol. 11, pp. 47–91 (2007) Shu, C.-W.: High order numerical methods for time dependent Hamilton–Jacobi equations. In: Mathematics and Computation in Imaging Science and Information Processing. Lecture Notes Series, Institute for Mathematical Sciences, National University of Singapore, vol. 11, pp. 47–91 (2007)
32.
go back to reference Shu, C.-W., Osher, S.: Efficient implementation of essentially non-oscillatory shock-capturing schemes. J. Comput. Phys. 77(2), 439–471 (1988)MathSciNetMATHCrossRef Shu, C.-W., Osher, S.: Efficient implementation of essentially non-oscillatory shock-capturing schemes. J. Comput. Phys. 77(2), 439–471 (1988)MathSciNetMATHCrossRef
33.
go back to reference Tao, Z., Qiu, J.: Dimension-by-dimension moment-based central Hermite WENO schemes for directly solving Hamilton–Jacobi equations. Adv. Comput. Math. 43(5), 1023–1058 (2017)MathSciNetMATHCrossRef Tao, Z., Qiu, J.: Dimension-by-dimension moment-based central Hermite WENO schemes for directly solving Hamilton–Jacobi equations. Adv. Comput. Math. 43(5), 1023–1058 (2017)MathSciNetMATHCrossRef
34.
go back to reference Yan, J., Osher, S.: A local discontinuous Galerkin method for directly solving Hamilton–Jacobi equations. J. Comput. Phys. 230(1), 232–244 (2011)MathSciNetMATHCrossRef Yan, J., Osher, S.: A local discontinuous Galerkin method for directly solving Hamilton–Jacobi equations. J. Comput. Phys. 230(1), 232–244 (2011)MathSciNetMATHCrossRef
35.
go back to reference Zhang, Y.-T., Shu, C.-W.: High-order WENO schemes for Hamilton–Jacobi equations on triangular meshes. SIAM J. Sci. Comput. 24(3), 1005–1030 (2003)MathSciNetMATHCrossRef Zhang, Y.-T., Shu, C.-W.: High-order WENO schemes for Hamilton–Jacobi equations on triangular meshes. SIAM J. Sci. Comput. 24(3), 1005–1030 (2003)MathSciNetMATHCrossRef
36.
go back to reference Zheng, F., Qiu, J.: Directly solving the Hamilton–Jacobi equations by Hermite WENO schemes. J. Comput. Phys. 307, 423–445 (2016)MathSciNetMATHCrossRef Zheng, F., Qiu, J.: Directly solving the Hamilton–Jacobi equations by Hermite WENO schemes. J. Comput. Phys. 307, 423–445 (2016)MathSciNetMATHCrossRef
37.
go back to reference Zheng, F., Shu, C.-W., Qiu, J.: Finite difference Hermite WENO schemes for the Hamilton–Jacobi equations. J. Comput. Phys. 337, 27–41 (2017)MathSciNetMATHCrossRef Zheng, F., Shu, C.-W., Qiu, J.: Finite difference Hermite WENO schemes for the Hamilton–Jacobi equations. J. Comput. Phys. 337, 27–41 (2017)MathSciNetMATHCrossRef
38.
go back to reference Zhu, J., Qiu, J.: Hermite WENO schemes for Hamilton–Jacobi equations on unstructured meshes. J. Comput. Phys. 254, 76–92 (2013)MathSciNetMATHCrossRef Zhu, J., Qiu, J.: Hermite WENO schemes for Hamilton–Jacobi equations on unstructured meshes. J. Comput. Phys. 254, 76–92 (2013)MathSciNetMATHCrossRef
Metadata
Title
An Alternative Formulation of Discontinous Galerkin Schemes for Solving Hamilton–Jacobi Equations
Authors
Guoyi Ke
Wei Guo
Publication date
01-08-2018
Publisher
Springer US
Published in
Journal of Scientific Computing / Issue 2/2019
Print ISSN: 0885-7474
Electronic ISSN: 1573-7691
DOI
https://doi.org/10.1007/s10915-018-0794-7

Other articles of this Issue 2/2019

Journal of Scientific Computing 2/2019 Go to the issue

Premium Partner