Skip to main content
Top
Published in: Cellulose 16/2020

11-09-2020 | Original Research

An eco-friendly approach to preparing cellulose nanocrystals by precisely controlling the dissolution of natural cellulose in TBAH/H2O solvent

Authors: Mengdie Wang, Tingting Yu, Ling Tan, Wei Li, Wei Wei, Man Jiang, Dongqi Liu, Zuowan Zhou

Published in: Cellulose | Issue 16/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Applications of cellulose nanocrystals (CNCs) in various fields of high value have been and are being widely studied. However, research about the fundamental preparation method has come to a standstill. This work aims to introduce a concept of progressive dissolution of cellulosic fibers and an eco-friendly way of preparing CNCs. By controlling TBAH concentration, the amphiphilicity and dissolving capability of TBAH/H2O can be regulated. Through a controlled partial dissolution of cellulose in the solvent, aqueous tetra-butylammonium hydroxide (TBAH), the fiber can be dissolved to make nanoscale particles (CNC suspensions). Polarized light microscopy provides a quantitative evaluation of the progress of dissolution, by which a processing window (43% TBAH/H2O, 30 min dissolution at room temperature) for preparing CNCs from cotton pulp has been determined. The multiscale cellulose products, including micron-scale, nanoscale, and well-dissolved products of cellulose, have been separated with the assistance of the derivatization process. There are interestingly homogeneous materials of cellulose I with a needle-like shape in the nanoscale products extracted. Furthermore, the cellulose raw materials can be extended from cotton pulp to wood pulp, bamboo pulp, straw pulp, and microcrystalline cellulose, indicating it to be a universal method. Analysis of XRD patterns of the raw and CNCs indicates that amorphous and less-crystalline cellulose can be precisely and controllably dissolved by the solvent, leaving CNCs.

Graphical abstract

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
go back to reference Abe M, Fukaya Y, Ohno H (2012) Fast and facile dissolution of cellulose with tetrabutylphosphonium hydroxide containing 40 wt% water. Chem Commun (Cambridge, UK) 48(12):1808–1810CrossRef Abe M, Fukaya Y, Ohno H (2012) Fast and facile dissolution of cellulose with tetrabutylphosphonium hydroxide containing 40 wt% water. Chem Commun (Cambridge, UK) 48(12):1808–1810CrossRef
go back to reference Abe M, Kuroda K, Ohno H (2015a) Maintenance-free cellulose solvents based on onium hydroxides. ACS Sustain Chem Eng 3(8):1771–1776CrossRef Abe M, Kuroda K, Ohno H (2015a) Maintenance-free cellulose solvents based on onium hydroxides. ACS Sustain Chem Eng 3(8):1771–1776CrossRef
go back to reference Abe M, Yamanaka S, Yamada H, Yamada T, Ohno H (2015b) Almost complete dissolution of woody biomass with tetra-n-butylphosphonium hydroxide aqueous solution at 60°C. Green Chem 17(8):4432–4438CrossRef Abe M, Yamanaka S, Yamada H, Yamada T, Ohno H (2015b) Almost complete dissolution of woody biomass with tetra-n-butylphosphonium hydroxide aqueous solution at 60°C. Green Chem 17(8):4432–4438CrossRef
go back to reference Chen L, Zhu JY, Baez C, Kitin P, Elder T (2016) Highly thermal-stable and functional cellulose nanocrystals and nanofibrils produced using fully recyclable organic acids. Green Chem 18(13):3835–3843CrossRef Chen L, Zhu JY, Baez C, Kitin P, Elder T (2016) Highly thermal-stable and functional cellulose nanocrystals and nanofibrils produced using fully recyclable organic acids. Green Chem 18(13):3835–3843CrossRef
go back to reference Chen LM, Yu HY, Wang DC, Yang T, Yao JM, Tam KC (2019) Simple synthesis of flower-like manganese dioxide nanostructures on cellulose nanocrystals for high-performance supercapacitors and wearable electrodes. ACS Sustain Chem Eng 7(13):11823–11831CrossRef Chen LM, Yu HY, Wang DC, Yang T, Yao JM, Tam KC (2019) Simple synthesis of flower-like manganese dioxide nanostructures on cellulose nanocrystals for high-performance supercapacitors and wearable electrodes. ACS Sustain Chem Eng 7(13):11823–11831CrossRef
go back to reference Ding S, Himmel ME (2006) The maize primary cell wall microfibril: a new model derived from direct visualization. J Agric Food Chem 54:597–606CrossRef Ding S, Himmel ME (2006) The maize primary cell wall microfibril: a new model derived from direct visualization. J Agric Food Chem 54:597–606CrossRef
go back to reference Ding S, Liu Y, Zeng Y, Himmel ME, Baker JO, Bayer EA (2012) How does plant cell wall nanoscale architecture correlate with enzymatic digestibility? Science 338:1055–1059CrossRef Ding S, Liu Y, Zeng Y, Himmel ME, Baker JO, Bayer EA (2012) How does plant cell wall nanoscale architecture correlate with enzymatic digestibility? Science 338:1055–1059CrossRef
go back to reference Dong XM, Revol J-F, Gray DG (1998) Effect of microcrystallite preparation conditions on the formation of colloid crystals of cellulose. Cellulose 5:19–32CrossRef Dong XM, Revol J-F, Gray DG (1998) Effect of microcrystallite preparation conditions on the formation of colloid crystals of cellulose. Cellulose 5:19–32CrossRef
go back to reference Elazzouzi-Hafraoui S, Nishiyama Y, Putaux J-L, Heux L, Dubreuil F, Rochas C (2008) The shape and size distribution of crystalline nanoparticles prepared by acid hydrolysis of native cellulose. Biomacromol 9:57–65CrossRef Elazzouzi-Hafraoui S, Nishiyama Y, Putaux J-L, Heux L, Dubreuil F, Rochas C (2008) The shape and size distribution of crystalline nanoparticles prepared by acid hydrolysis of native cellulose. Biomacromol 9:57–65CrossRef
go back to reference Fan XM, Yu HY, Wang DC, Mao ZH, Yao J, Tam KC (2019) Facile and green synthesis of carboxylated cellulose nanocrystals as efficient adsorbents in wastewater treatments. ACS Sustain Chem Eng 7(21):18067–18075CrossRef Fan XM, Yu HY, Wang DC, Mao ZH, Yao J, Tam KC (2019) Facile and green synthesis of carboxylated cellulose nanocrystals as efficient adsorbents in wastewater treatments. ACS Sustain Chem Eng 7(21):18067–18075CrossRef
go back to reference French AD (2020) Increment in evolution of cellulose crystallinity analysis. Cellulose 27(10):5445–5448CrossRef French AD (2020) Increment in evolution of cellulose crystallinity analysis. Cellulose 27(10):5445–5448CrossRef
go back to reference Guo J, Guo X, Wang S, Yin Y (2016) Effects of ultrasonic treatment during acid hydrolysis on the yield, particle size and structure of cellulose nanocrystals. Carbohydrate Polym 135:248–255CrossRef Guo J, Guo X, Wang S, Yin Y (2016) Effects of ultrasonic treatment during acid hydrolysis on the yield, particle size and structure of cellulose nanocrystals. Carbohydrate Polym 135:248–255CrossRef
go back to reference Han S, Alvi NUH, Granlöf L, Granberg H (2019) A multiparameter pressure-temperature-humidity sensor based on mixed ionic-electronic cellulose aerogels. Adv Sci Han S, Alvi NUH, Granlöf L, Granberg H (2019) A multiparameter pressure-temperature-humidity sensor based on mixed ionic-electronic cellulose aerogels. Adv Sci
go back to reference Jin J, Lee D, Im H-G, Han YC, Jeong EG, Rolandi M, Choi KC, Bae BS (2016) Chitin nanofiber transparent paper for flexible green electronics. Adv Mater 28(26):5169–5175CrossRef Jin J, Lee D, Im H-G, Han YC, Jeong EG, Rolandi M, Choi KC, Bae BS (2016) Chitin nanofiber transparent paper for flexible green electronics. Adv Mater 28(26):5169–5175CrossRef
go back to reference Jonoobi M, Oladi R, Davoudpour Y, Oksman K, Dufresne A, Hamzeh Y, Davoodi R (2015) Different preparation methods and properties of nanostructured cellulose from various natural resources and residues: a review. Cellulose 22(2):935–969CrossRef Jonoobi M, Oladi R, Davoudpour Y, Oksman K, Dufresne A, Hamzeh Y, Davoodi R (2015) Different preparation methods and properties of nanostructured cellulose from various natural resources and residues: a review. Cellulose 22(2):935–969CrossRef
go back to reference Kubicki JD, Yang H, Sawada D et al (2018) The shape of native plant cellulose microfibrils. Sci Rep 8(1):13983CrossRef Kubicki JD, Yang H, Sawada D et al (2018) The shape of native plant cellulose microfibrils. Sci Rep 8(1):13983CrossRef
go back to reference Lau BBY, Luis ET, Hossain MM, Hart WES, Cencia-Lay B, Black JJ, Aldous L (2015) Facile, room-temperature pre-treatment of rice husks with tetrabutylphosphonium hydroxide: Enhanced enzymatic and acid hydrolysis yields. Bioresour Technol 197:252–259CrossRef Lau BBY, Luis ET, Hossain MM, Hart WES, Cencia-Lay B, Black JJ, Aldous L (2015) Facile, room-temperature pre-treatment of rice husks with tetrabutylphosphonium hydroxide: Enhanced enzymatic and acid hydrolysis yields. Bioresour Technol 197:252–259CrossRef
go back to reference Li B, Xu W, Kronlund D, Määttänen A, Liu J, Smått J-H, Xu C (2015a) Cellulose nanocrystals prepared via formic acid hydrolysis followed by TEMPO-mediated oxidation. Carbohyd Polym 133:605–612CrossRef Li B, Xu W, Kronlund D, Määttänen A, Liu J, Smått J-H, Xu C (2015a) Cellulose nanocrystals prepared via formic acid hydrolysis followed by TEMPO-mediated oxidation. Carbohyd Polym 133:605–612CrossRef
go back to reference Li G, Fu Y, Shao Z, Zhang F, Qin M (2015b) Preparing cationic cellulose derivative in NaOH/urea aqueous solution and its performance as filler modifier. BioResources 10(4):7782–7794 Li G, Fu Y, Shao Z, Zhang F, Qin M (2015b) Preparing cationic cellulose derivative in NaOH/urea aqueous solution and its performance as filler modifier. BioResources 10(4):7782–7794
go back to reference Liu Y, Wang H, Yu G, Yu Q, Li B, Mu X (2014) A novel approach for the preparation of nanocrystalline cellulose by using phosphotungstic acid. Carbohydr Polym 110:415–422CrossRef Liu Y, Wang H, Yu G, Yu Q, Li B, Mu X (2014) A novel approach for the preparation of nanocrystalline cellulose by using phosphotungstic acid. Carbohydr Polym 110:415–422CrossRef
go back to reference Lu Q, Cai Z, Wang S, Lin F, Lu B, Chen Y, Huang B (2017) Controlled construction of nanostructured organic-inorganic hybrid material induced by nanocellulose. ACS Sustain Chem Eng 5(9):8456–8463CrossRef Lu Q, Cai Z, Wang S, Lin F, Lu B, Chen Y, Huang B (2017) Controlled construction of nanostructured organic-inorganic hybrid material induced by nanocellulose. ACS Sustain Chem Eng 5(9):8456–8463CrossRef
go back to reference Luo H, Cha R, Li J, Hao W, Zhang Y, Zhou F (2019) Advances in tissue engineering of nanocellulose-based scaffolds: a review. Carbohyd Polym 224:115144CrossRef Luo H, Cha R, Li J, Hao W, Zhang Y, Zhou F (2019) Advances in tissue engineering of nanocellulose-based scaffolds: a review. Carbohyd Polym 224:115144CrossRef
go back to reference Miao J, Yu Y, Jiang Z, Zhang L (2016) One-pot preparation of hydrophobic cellulose nanocrystals in an ionic liquid. Cellulose 23(2):1209–1219CrossRef Miao J, Yu Y, Jiang Z, Zhang L (2016) One-pot preparation of hydrophobic cellulose nanocrystals in an ionic liquid. Cellulose 23(2):1209–1219CrossRef
go back to reference Novo LP, Bras J, García A, Belgacem N, Curvelo AAS (2015) Subcritical water: a method for green production of cellulose nanocrystals. ACS Sustain Chem Eng 3(11):2839–2846CrossRef Novo LP, Bras J, García A, Belgacem N, Curvelo AAS (2015) Subcritical water: a method for green production of cellulose nanocrystals. ACS Sustain Chem Eng 3(11):2839–2846CrossRef
go back to reference O'sullivan AC (1997) Cellulose: the structure slowly unravels. Cellulose 4:173–207CrossRef O'sullivan AC (1997) Cellulose: the structure slowly unravels. Cellulose 4:173–207CrossRef
go back to reference Rovera C, Ghaani M, Santo N, Trabattoni S, Olsson RT, Romano D, Farris S (2018) Enzymatic hydrolysis in the green production of bacterial cellulose nanocrystals. ACS Sustain Chem Eng 6(6):7725–7734CrossRef Rovera C, Ghaani M, Santo N, Trabattoni S, Olsson RT, Romano D, Farris S (2018) Enzymatic hydrolysis in the green production of bacterial cellulose nanocrystals. ACS Sustain Chem Eng 6(6):7725–7734CrossRef
go back to reference Song J, Chen C, Zhu S, Zhu M, Hu L (2018) Processing bulk natural wood into a high-performance structural material. Nature 554(7691):224–228CrossRef Song J, Chen C, Zhu S, Zhu M, Hu L (2018) Processing bulk natural wood into a high-performance structural material. Nature 554(7691):224–228CrossRef
go back to reference Thomas S, Paul SA, Pothan LA, Deepa TD, Hussin MH, Haafiz MK (2011) Natural fibres: structure, properties and applications in cellulose fibers: bio- and nano-polymer composites–green chemistry and technology. In: Kalia S, Kaith BS, Kaur I (eds) Springer, Berlin, 7 Thomas S, Paul SA, Pothan LA, Deepa TD, Hussin MH, Haafiz MK (2011) Natural fibres: structure, properties and applications in cellulose fibers: bio- and nano-polymer composites–green chemistry and technology. In: Kalia S, Kaith BS, Kaur I (eds) Springer, Berlin, 7
go back to reference Trache D, Hussin MH, Haafiz MK, Thakur VK (2017) Recent progress in cellulose nanocrystals: sources and production. Nanoscale 9(5):1763–1786CrossRef Trache D, Hussin MH, Haafiz MK, Thakur VK (2017) Recent progress in cellulose nanocrystals: sources and production. Nanoscale 9(5):1763–1786CrossRef
go back to reference Wan W, Ouyang H, Long W, Yan W, He M, Huang H, Wei Y (2019) Direct surface functionalization of cellulose nanocrystals with hyperbranched polymers through the anionic polymerization for ph-responsive intracellular drug delivery. ACS Sustain Chem Eng 7(23):19202–19212CrossRef Wan W, Ouyang H, Long W, Yan W, He M, Huang H, Wei Y (2019) Direct surface functionalization of cellulose nanocrystals with hyperbranched polymers through the anionic polymerization for ph-responsive intracellular drug delivery. ACS Sustain Chem Eng 7(23):19202–19212CrossRef
go back to reference Wang Y, Liu L, Chen P, Zhang L, Lu A (2018) Cationic hydrophobicity promotes dissolution of cellulose in aqueous basic solution by freezing–thawing. Phys Chem Chem Phys 20:14223–14233CrossRef Wang Y, Liu L, Chen P, Zhang L, Lu A (2018) Cationic hydrophobicity promotes dissolution of cellulose in aqueous basic solution by freezing–thawing. Phys Chem Chem Phys 20:14223–14233CrossRef
go back to reference Wei W, Meng F, Cui Y, Jiang M, Zhou Z (2017) Room temperature dissolution of cellulose in tetra-butylammonium hydroxide aqueous solvent through adjustment of solvent amphiphilicity. Cellulose 24:49–59CrossRef Wei W, Meng F, Cui Y, Jiang M, Zhou Z (2017) Room temperature dissolution of cellulose in tetra-butylammonium hydroxide aqueous solvent through adjustment of solvent amphiphilicity. Cellulose 24:49–59CrossRef
go back to reference Wei W, Wei X, Gou G, Jiang M, Xu X, Wang Y, Zhou Z (2015) Improved dissolution of cellulose in quaternary ammonium hydroxide by adjusting temperature. RSC Adv 5:39080–39083CrossRef Wei W, Wei X, Gou G, Jiang M, Xu X, Wang Y, Zhou Z (2015) Improved dissolution of cellulose in quaternary ammonium hydroxide by adjusting temperature. RSC Adv 5:39080–39083CrossRef
go back to reference Yang X, Xie H, Du H, Zhang X, Zou Z, Zou Y (2019) Facile extraction of thermally stable and dispersible cellulose nanocrystals with high yield via a green and recyclable FeCl3-catalyzed deep eutectic solvent system. ACS Sustain Chem Eng 7(7):7200–7208CrossRef Yang X, Xie H, Du H, Zhang X, Zou Z, Zou Y (2019) Facile extraction of thermally stable and dispersible cellulose nanocrystals with high yield via a green and recyclable FeCl3-catalyzed deep eutectic solvent system. ACS Sustain Chem Eng 7(7):7200–7208CrossRef
go back to reference Zaman M, Xiao H, Chibante F, Ni Y (2012) Synthesis and characterization of cationically modified nanocrystalline cellulose. Carbohyd Polym 89(1):163–170CrossRef Zaman M, Xiao H, Chibante F, Ni Y (2012) Synthesis and characterization of cationically modified nanocrystalline cellulose. Carbohyd Polym 89(1):163–170CrossRef
go back to reference Zhang J, Luo N, Zhang X, Xu L, Wu J, He J, Zhang J (2016) All-cellulose nanocomposites reinforced with in situ retained cellulose nanocrystals during selective dissolution of cellulose in an ionic liquid. ACS Sustain Chem Eng 4(8):4417–4423CrossRef Zhang J, Luo N, Zhang X, Xu L, Wu J, He J, Zhang J (2016) All-cellulose nanocomposites reinforced with in situ retained cellulose nanocrystals during selective dissolution of cellulose in an ionic liquid. ACS Sustain Chem Eng 4(8):4417–4423CrossRef
go back to reference Zhu M, Song J, Li T, Gong A, Wang Y, Dai J, Yao Y, Luo W, Henderson D, Hu L (2016) Highly anisotropic, highly transparent wood composites. Adv Mater 28(26):5181–5187CrossRef Zhu M, Song J, Li T, Gong A, Wang Y, Dai J, Yao Y, Luo W, Henderson D, Hu L (2016) Highly anisotropic, highly transparent wood composites. Adv Mater 28(26):5181–5187CrossRef
Metadata
Title
An eco-friendly approach to preparing cellulose nanocrystals by precisely controlling the dissolution of natural cellulose in TBAH/H2O solvent
Authors
Mengdie Wang
Tingting Yu
Ling Tan
Wei Li
Wei Wei
Man Jiang
Dongqi Liu
Zuowan Zhou
Publication date
11-09-2020
Publisher
Springer Netherlands
Published in
Cellulose / Issue 16/2020
Print ISSN: 0969-0239
Electronic ISSN: 1572-882X
DOI
https://doi.org/10.1007/s10570-020-03418-w

Other articles of this Issue 16/2020

Cellulose 16/2020 Go to the issue