Skip to main content
Top
Published in: Neural Computing and Applications 14/2022

08-03-2022 | Original Article

An efficient combination of quadruple biomarkers in binary classification using ensemble machine learning technique for early onset of Alzheimer disease

Authors: Rashmi Kumari, Akriti Nigam, Shashank Pushkar

Published in: Neural Computing and Applications | Issue 14/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

BackgroundAlzheimer’s disease (AD) is a degenerated condition of the brain where memory loss is fully depleted for elderly individual. Efficient machine learning methods are accessible, producing low classification accuracy since single modality features are being evaluated. In this paper, the multimodal approach is developed and execution of comprehensive validation for structural atrophy through Magnetic Resonance Imaging decreases metabolism through Fluorodeoxyglucose Positron Emission Tomography (FDG-PET), and accumulation of amyloid plaques through Pittsburgh compound B (PiB-PET), as well as cognitive assessment for identifying the early onset of AD. It has been stated that additional information from multiple image modalities would ameliorate the classification accuracy while diagnosing early AD. The novel classifier, Adaptive Hyperparameter Tuning Random Forest Ensemble Classifier (HPT-RFE), is proposed for three binary classifications. In this classifier, the tunning of hyperparameters is automated for computing the best features while constructing the optimum size of Random Forest. The advantage of using the classifier is computationally much faster when compared with Support Vector Machine, Naïve Bayes, K-Nearest Neighbour and Artificial Neural Network. Simulation results show that the performance of the Adaptive HPT-RFE classifier has been regarded as best among all binary classifications in the ADNI dataset. For AD versus Normal Control (NC) binary classification, 100% accuracy, sensitivity, and specificity have been achieved, whereas the accuracy of 91% and 100% specificity for NC versus Mild Cognitive Impairment (MCI) classification and 95% accuracy, 100% specificity, 80% sensitivity for AD versus MCI classification are compared with four state-of-the-art techniques.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Thies W, Bleiler L (2013) 2013 Alzheimer’s disease facts and figures. Alzheimers Dement 9(2):208–245 Thies W, Bleiler L (2013) 2013 Alzheimer’s disease facts and figures. Alzheimers Dement 9(2):208–245
2.
go back to reference 2016 Alzheimer's disease facts and figures. (2016). Alzheimer's Dementia, 12(4), 459–509 2016 Alzheimer's disease facts and figures. (2016). Alzheimer's Dementia, 12(4), 459–509
3.
go back to reference Alzheimer's Disease. (2010). New England J Med 362(19), 1844–1845 Alzheimer's Disease. (2010). New England J Med 362(19), 1844–1845
4.
go back to reference Jack C, Knopman D, Jagust W, Shaw L, Aisen P, Weiner M et al (2010) Hypothetical model of dynamic biomarkers of the Alzheimer’s pathological cascade. Lancet Neurol 9(1):119–128 Jack C, Knopman D, Jagust W, Shaw L, Aisen P, Weiner M et al (2010) Hypothetical model of dynamic biomarkers of the Alzheimer’s pathological cascade. Lancet Neurol 9(1):119–128
5.
go back to reference Li X, Li T, Andreasen N, Wiberg M, Westman E, Wahlund L (2013) The association between biomarkers in cerebrospinal fluid and structural changes in the brain in patients with Alzheimer’s Disease. J Intern Med 275(4):418–427 Li X, Li T, Andreasen N, Wiberg M, Westman E, Wahlund L (2013) The association between biomarkers in cerebrospinal fluid and structural changes in the brain in patients with Alzheimer’s Disease. J Intern Med 275(4):418–427
6.
go back to reference Perez-Nievas B, Stein T, Tai H, Dols-Icardo O, Scotton T, Barroeta-Espar I et al (2013) Dissecting phenotypic traits linked to human resilience to Alzheimer’s pathology. Brain 136(8):2510–2526 Perez-Nievas B, Stein T, Tai H, Dols-Icardo O, Scotton T, Barroeta-Espar I et al (2013) Dissecting phenotypic traits linked to human resilience to Alzheimer’s pathology. Brain 136(8):2510–2526
8.
go back to reference Karch C, Goate A (2015) Alzheimer’s disease risk genes and mechanisms of disease pathogenesis. Biol Psychiat 77(1):43–51 Karch C, Goate A (2015) Alzheimer’s disease risk genes and mechanisms of disease pathogenesis. Biol Psychiat 77(1):43–51
9.
go back to reference Brayne C (2014) A population perspective on the IWG-2 research diagnostic criteria for Alzheimer’s disease. Lancet Neurol 13(6):532–534 Brayne C (2014) A population perspective on the IWG-2 research diagnostic criteria for Alzheimer’s disease. Lancet Neurol 13(6):532–534
10.
go back to reference Park S, Kim J, Kim H, Kim T, Kim Y, Lee D et al (2013) Preliminary study for a multicenter study of Alzheimer’s disease cerebrospinal fluid biomarkers. Dementia Neurocognit Disorder 12(1):1 Park S, Kim J, Kim H, Kim T, Kim Y, Lee D et al (2013) Preliminary study for a multicenter study of Alzheimer’s disease cerebrospinal fluid biomarkers. Dementia Neurocognit Disorder 12(1):1
12.
go back to reference Barthel H, Schroeter M, Hoffmann K, Sabri O (2015) PET/MR in dementia and other neurodegenerative diseases. Semin Nucl Med 45(3):224–233 Barthel H, Schroeter M, Hoffmann K, Sabri O (2015) PET/MR in dementia and other neurodegenerative diseases. Semin Nucl Med 45(3):224–233
13.
go back to reference Kumari R, Pushkar S (2020) Analysis of biomedical image for Alzheimers disease detection. In: Examining Fractal Image Processing and Analysis Advances in Computational Intelligence and Robotics, 224–251 Kumari R, Pushkar S (2020) Analysis of biomedical image for Alzheimers disease detection. In: Examining Fractal Image Processing and Analysis Advances in Computational Intelligence and Robotics, 224–251
14.
go back to reference Jadvar H, Colletti P (2014) Competitive advantage of PET/MRI. Eur J Radiol 83(1):84–94 Jadvar H, Colletti P (2014) Competitive advantage of PET/MRI. Eur J Radiol 83(1):84–94
15.
go back to reference Klunk WE, Engler H, Nordberg A, Wang Y, Blomqvist G, Holt DP, Långström B (2004) Imaging brain amyloid in Alzheimers disease with Pittsburgh compound-B. Ann Neurol 55(3):306–319 Klunk WE, Engler H, Nordberg A, Wang Y, Blomqvist G, Holt DP, Långström B (2004) Imaging brain amyloid in Alzheimers disease with Pittsburgh compound-B. Ann Neurol 55(3):306–319
16.
go back to reference Thal DR, Rüb U, Orantes M, Braak H (2002) Phases of Aβ-deposition in the human brain and its relevance for the development of AD. Neurology 58(12):1791–1800 Thal DR, Rüb U, Orantes M, Braak H (2002) Phases of Aβ-deposition in the human brain and its relevance for the development of AD. Neurology 58(12):1791–1800
17.
go back to reference Braak H, Braak E (1990) Alzheimerʼs disease. J Neuropathol Exp Neurol 49(3):215–224 Braak H, Braak E (1990) Alzheimerʼs disease. J Neuropathol Exp Neurol 49(3):215–224
18.
go back to reference Edison P, Archer HA, Hinz R, Hammers A, Pavese N, Tai YF, Brooks DJ (2006) Amyloid, hypometabolism, and cognition in Alzheimer disease: An [11C] PIB and [18F] FDG PET study. Neurology 68(7):501–508 Edison P, Archer HA, Hinz R, Hammers A, Pavese N, Tai YF, Brooks DJ (2006) Amyloid, hypometabolism, and cognition in Alzheimer disease: An [11C] PIB and [18F] FDG PET study. Neurology 68(7):501–508
19.
go back to reference Bråne G, Gottfries CG (1986) The GBS scale: a new rating scale for dementia syndromes. Nord Psykiatr Tidsskr 40(2):125–134 Bråne G, Gottfries CG (1986) The GBS scale: a new rating scale for dementia syndromes. Nord Psykiatr Tidsskr 40(2):125–134
20.
go back to reference Morris JC, Ernesto C, Schafer K, Coats M, Leon S, Sano M, Woodbury P (1997) Clinical dementia rating training and reliability in multicenter studies. Neurology 48(6):1508–1510 Morris JC, Ernesto C, Schafer K, Coats M, Leon S, Sano M, Woodbury P (1997) Clinical dementia rating training and reliability in multicenter studies. Neurology 48(6):1508–1510
21.
go back to reference Mckhann GM, Knopman DS, Chertkow H, Hyman BT, Jack CR, Kawas CH, Phelps CH (2011) The diagnosis of dementia due to Alzheimers disease: recommendations from the National Institute on Aging-Alzheimers Association workgroups on diagnostic guidelines for Alzheimers disease. Alzheimers Dementia 7(3):263–269 Mckhann GM, Knopman DS, Chertkow H, Hyman BT, Jack CR, Kawas CH, Phelps CH (2011) The diagnosis of dementia due to Alzheimers disease: recommendations from the National Institute on Aging-Alzheimers Association workgroups on diagnostic guidelines for Alzheimers disease. Alzheimers Dementia 7(3):263–269
22.
23.
go back to reference Stern Y (2012) Cognitive reserve in ageing and Alzheimers disease. Lancet Neurol 11(11):1006–1012 Stern Y (2012) Cognitive reserve in ageing and Alzheimers disease. Lancet Neurol 11(11):1006–1012
24.
go back to reference Morris JC, Selkoe DJ (2011) Recommendations for the incorporation of biomarkers into Alzheimer clinical trials: an overview. Neurobiol Aging 32:S1 Morris JC, Selkoe DJ (2011) Recommendations for the incorporation of biomarkers into Alzheimer clinical trials: an overview. Neurobiol Aging 32:S1
25.
go back to reference Grimmer T, Riemenschneider M, Förstl H, Henriksen G, Klunk WE, Mathis CA, Drzezga A (2009) Beta amyloid in Alzheimers disease: increased deposition in brain is reflected in reduced concentration in cerebrospinal fluid. Biol Psychiat 65(11):927–934 Grimmer T, Riemenschneider M, Förstl H, Henriksen G, Klunk WE, Mathis CA, Drzezga A (2009) Beta amyloid in Alzheimers disease: increased deposition in brain is reflected in reduced concentration in cerebrospinal fluid. Biol Psychiat 65(11):927–934
33.
go back to reference Fischl B (2012) FreeSurfer. Neuroimage 62(2):774–781 Fischl B (2012) FreeSurfer. Neuroimage 62(2):774–781
35.
go back to reference Ashburner J, Friston KJ (2001) Why voxel-based morphometry should be used. Neuroimage 14(6):1238–1243 Ashburner J, Friston KJ (2001) Why voxel-based morphometry should be used. Neuroimage 14(6):1238–1243
36.
go back to reference Whitwell JL (2009) Voxel-based morphometry: an automated technique for assessing structural changes in the brain. J Neurosci 29(31):9661–9664 Whitwell JL (2009) Voxel-based morphometry: an automated technique for assessing structural changes in the brain. J Neurosci 29(31):9661–9664
37.
go back to reference Schmitter D, Roche A, Maréchal B, Ribes D, Abdulkadir A, Bach-Cuadra M, Krueger G (2015) An evaluation of volume-based morphometry for prediction of mild cognitive impairment and Alzheimers disease. NeuroImage Clin 7:7–17 Schmitter D, Roche A, Maréchal B, Ribes D, Abdulkadir A, Bach-Cuadra M, Krueger G (2015) An evaluation of volume-based morphometry for prediction of mild cognitive impairment and Alzheimers disease. NeuroImage Clin 7:7–17
39.
go back to reference Fischl B, Salat DH, Kouwe AJ, Makris N, Ségonne F, Quinn BT, Dale AM (2004) Sequence-independent segmentation of magnetic resonance images. NeuroImage 23:S69 Fischl B, Salat DH, Kouwe AJ, Makris N, Ségonne F, Quinn BT, Dale AM (2004) Sequence-independent segmentation of magnetic resonance images. NeuroImage 23:S69
40.
go back to reference Lancaster J, Kochunov P, Nickerson D, Fox P (2000) Stand-alone Java-based version of the Talairach daemon database system. NeuroImage 11(5):S923 Lancaster J, Kochunov P, Nickerson D, Fox P (2000) Stand-alone Java-based version of the Talairach daemon database system. NeuroImage 11(5):S923
41.
go back to reference Minoshima S, Frey KA, Foster NL, Kuhl DE (1995) Preserved pontine glucose metabolism in Alzheimer disease. J Comput Assist Tomogr 19(4):541–547 Minoshima S, Frey KA, Foster NL, Kuhl DE (1995) Preserved pontine glucose metabolism in Alzheimer disease. J Comput Assist Tomogr 19(4):541–547
43.
go back to reference Thomas BA, Cuplov V, Bousse A, Mendes A, Thielemans K, Hutton BF, Erlandsson K (2016) PETPVC: a toolbox for performing partial volume correction techniques in positron emission tomography. Phys Med Biol 61(22):7975–7993 Thomas BA, Cuplov V, Bousse A, Mendes A, Thielemans K, Hutton BF, Erlandsson K (2016) PETPVC: a toolbox for performing partial volume correction techniques in positron emission tomography. Phys Med Biol 61(22):7975–7993
44.
go back to reference Fischl B, Sereno MI, Tootell RB, Dale AM (1999) High-resolution intersubject averaging and a coordinate system for the cortical surface. Hum Brain Mapp 8(4):272–284 Fischl B, Sereno MI, Tootell RB, Dale AM (1999) High-resolution intersubject averaging and a coordinate system for the cortical surface. Hum Brain Mapp 8(4):272–284
45.
go back to reference Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M et al (2011) Scikit-learn: machine learning in python. J Mach Learn Res 12:2825–2830MathSciNetMATH Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M et al (2011) Scikit-learn: machine learning in python. J Mach Learn Res 12:2825–2830MathSciNetMATH
46.
go back to reference Geurts P, Ernst D, Wehenkel L (2006) Extremely randomized trees. Mach Learn 63(1):3–42MATH Geurts P, Ernst D, Wehenkel L (2006) Extremely randomized trees. Mach Learn 63(1):3–42MATH
47.
go back to reference Lebedev A, Westman E, Westen GV, Kramberger M, Lundervold A, Aarsland D, Simmons A (2014) Random forest ensembles for detection and prediction of Alzheimers disease with a good between-cohort robustness. NeuroImage Clin 6:115–125 Lebedev A, Westman E, Westen GV, Kramberger M, Lundervold A, Aarsland D, Simmons A (2014) Random forest ensembles for detection and prediction of Alzheimers disease with a good between-cohort robustness. NeuroImage Clin 6:115–125
48.
go back to reference Cuingnet R, Gerardin E, Tessieras J, Auzias G, Lehéricy S, Habert M, Colliot O (2011) Automatic classification of patients with Alzheimers disease from structural MRI: a comparison of ten methods using the ADNI database. Neuroimage 56(2):766–781 Cuingnet R, Gerardin E, Tessieras J, Auzias G, Lehéricy S, Habert M, Colliot O (2011) Automatic classification of patients with Alzheimers disease from structural MRI: a comparison of ten methods using the ADNI database. Neuroimage 56(2):766–781
49.
go back to reference Seref B, Bostanci E (2019) Performance comparison of naïve bayes and complement naïve bayes algorithms. In: 2019 6th international conference on electrical and electronics engineering (ICEEE) Seref B, Bostanci E (2019) Performance comparison of naïve bayes and complement naïve bayes algorithms. In: 2019 6th international conference on electrical and electronics engineering (ICEEE)
50.
go back to reference Dinu A.J (2019) Early detection of alzheimers disease using predictive K-NN instance based approach and T-Test method. Int J Adv Trends Comput Sci Eng 8:29–37 Dinu A.J (2019) Early detection of alzheimers disease using predictive K-NN instance based approach and T-Test method. Int J Adv Trends Comput Sci Eng 8:29–37
51.
go back to reference Bersimis FG, Varlamis I (2019) Use of health-related indices and classification methods in medical data. Classif Tech Med Image Anal Comput Aided Diagnos 2019:31–66 Bersimis FG, Varlamis I (2019) Use of health-related indices and classification methods in medical data. Classif Tech Med Image Anal Comput Aided Diagnos 2019:31–66
52.
go back to reference Gupta Y, Lee KH, Choi KY, Lee JJ, Kim BC, Kwon GR (2019) Early diagnosis of Alzheimer’s disease using combined features from Voxel-based morphometry and cortical, subcortical, and hippocampus regions of MRI T1 brain images. Plos One 14(10):e0222446 Gupta Y, Lee KH, Choi KY, Lee JJ, Kim BC, Kwon GR (2019) Early diagnosis of Alzheimer’s disease using combined features from Voxel-based morphometry and cortical, subcortical, and hippocampus regions of MRI T1 brain images. Plos One 14(10):e0222446
53.
go back to reference Beheshti I, Demirel H (2016) Feature-ranking-based Alzheimer’s disease classification from structural MRI. Magn Reson Imaging 34(3):252–263 Beheshti I, Demirel H (2016) Feature-ranking-based Alzheimer’s disease classification from structural MRI. Magn Reson Imaging 34(3):252–263
54.
go back to reference Jha D, Alam S, Pyun J, Lee KH, Kwon G (2018) Alzheimers disease detection using extreme learning machine, complex dual tree wavelet principal coefficients and linear discriminant analysis. J Med Imaging Health Inf 8(5):881–890 Jha D, Alam S, Pyun J, Lee KH, Kwon G (2018) Alzheimers disease detection using extreme learning machine, complex dual tree wavelet principal coefficients and linear discriminant analysis. J Med Imaging Health Inf 8(5):881–890
55.
go back to reference Gupta Y, Lee KH, Choi KY, Lee JJ, Kim BC, Kwon GR (2019) Early diagnosis of Alzheimer’s Disease using combined features from voxel-based morphometry and cortical, subcortical, and hippocampus regions of MRI T1 brain images. Plos One 14(10):e0222446 Gupta Y, Lee KH, Choi KY, Lee JJ, Kim BC, Kwon GR (2019) Early diagnosis of Alzheimer’s Disease using combined features from voxel-based morphometry and cortical, subcortical, and hippocampus regions of MRI T1 brain images. Plos One 14(10):e0222446
56.
go back to reference Mehmood A, Yang S, Feng Z, Wang M, Ahmad AS, Khan R, Yaqub M (2021) A transfer learning approach for early diagnosis of alzheimer’s disease on MRI images. Neuroscience 460:43–52 Mehmood A, Yang S, Feng Z, Wang M, Ahmad AS, Khan R, Yaqub M (2021) A transfer learning approach for early diagnosis of alzheimer’s disease on MRI images. Neuroscience 460:43–52
57.
go back to reference Furst AJ, Agarwal N, Mormino EC (2011) Amyloid vs FDG-PET in the differential diagnosis of AD and FTLD. Neurology 77(23):2034–2042 Furst AJ, Agarwal N, Mormino EC (2011) Amyloid vs FDG-PET in the differential diagnosis of AD and FTLD. Neurology 77(23):2034–2042
58.
go back to reference Martino-IST IT, Navarra ES (2018) Machine learning based analysis of FDG-PET image data for the diagnosis of neurodegenerative diseases. Appl Intell Syst Proc Int APPIS Conf 310:280 Martino-IST IT, Navarra ES (2018) Machine learning based analysis of FDG-PET image data for the diagnosis of neurodegenerative diseases. Appl Intell Syst Proc Int APPIS Conf 310:280
60.
go back to reference Lesman-Segev OH, La Joie R, Iaccarino L, Lobach I, Rosen HJ, Seo SW, Janabi M et al (2021) Diagnostic accuracy of amyloid versus 18f-fluorodeoxyglucose positron emission tomography in autopsy-confirmed dementia. Ann Neurol 89(2):389–401 Lesman-Segev OH, La Joie R, Iaccarino L, Lobach I, Rosen HJ, Seo SW, Janabi M et al (2021) Diagnostic accuracy of amyloid versus 18f-fluorodeoxyglucose positron emission tomography in autopsy-confirmed dementia. Ann Neurol 89(2):389–401
61.
go back to reference Li Y, Rinne JO, Mosconi L, Pirraglia E, Rusinek H, Desanti S, Leon MJ (2008) Regional analysis of FDG and PIB-PET images in normal aging, mild cognitive impairment, and Alzheimer’s disease. Eur J Nucl Med Mol Imaging 35(12):2169–2181 Li Y, Rinne JO, Mosconi L, Pirraglia E, Rusinek H, Desanti S, Leon MJ (2008) Regional analysis of FDG and PIB-PET images in normal aging, mild cognitive impairment, and Alzheimer’s disease. Eur J Nucl Med Mol Imaging 35(12):2169–2181
62.
go back to reference Giacomucci G, Mazzeo S, Bagnoli S, Casini M, Padiglioni S, Polito C, Bessi V (2021) Matching clinical diagnosis and amyloid biomarkers in Alzheimer’s disease and frontotemporal dementia. J Personal Med 11(1):47 Giacomucci G, Mazzeo S, Bagnoli S, Casini M, Padiglioni S, Polito C, Bessi V (2021) Matching clinical diagnosis and amyloid biomarkers in Alzheimer’s disease and frontotemporal dementia. J Personal Med 11(1):47
65.
go back to reference Zhu X, Suk H, Wang L, Lee S, Shen D (2017) A novel relational regularization feature selection method for joint regression and classification in AD diagnosis. Med Image Anal 38:205–214 Zhu X, Suk H, Wang L, Lee S, Shen D (2017) A novel relational regularization feature selection method for joint regression and classification in AD diagnosis. Med Image Anal 38:205–214
67.
go back to reference Li W, Shen Y, Tian D, Bu X, Zeng F, Liu Y, Wang Y (2019) Brain Amyloid-β deposition and blood biomarkers in patients with clinically diagnosed Alzheimer’s disease. J Alzheimers Dis 69(1):169–178 Li W, Shen Y, Tian D, Bu X, Zeng F, Liu Y, Wang Y (2019) Brain Amyloid-β deposition and blood biomarkers in patients with clinically diagnosed Alzheimer’s disease. J Alzheimers Dis 69(1):169–178
68.
go back to reference Vandenberghe R, Adamczuk K, Dupont P, Laere KV, Chételat G (2013) Amyloid PET in clinical practice: its place in the multidimensional space of Alzheimers disease. NeuroImage Clin 2:497–511 Vandenberghe R, Adamczuk K, Dupont P, Laere KV, Chételat G (2013) Amyloid PET in clinical practice: its place in the multidimensional space of Alzheimers disease. NeuroImage Clin 2:497–511
69.
go back to reference Lowe VJ, Kemp BJ, Jack CR, Senjem M, Weigand S, Shiung M, Petersen RC (2009) Comparison of 18F-FDG and PiB PET in Cognitive Impairment. J Nucl Med 50(6):878–886 Lowe VJ, Kemp BJ, Jack CR, Senjem M, Weigand S, Shiung M, Petersen RC (2009) Comparison of 18F-FDG and PiB PET in Cognitive Impairment. J Nucl Med 50(6):878–886
70.
go back to reference Zhang D, Wang Y, Zhou L, Yuan H, Shen D, Initiative ADN (2011) Multimodal classification of Alzheimer’s Disease and mild cognitive impairment. Neuroimage 55(3):856–867 Zhang D, Wang Y, Zhou L, Yuan H, Shen D, Initiative ADN (2011) Multimodal classification of Alzheimer’s Disease and mild cognitive impairment. Neuroimage 55(3):856–867
71.
go back to reference Rallabandi VS, Tulpule K, Gattu M (2020) Automatic classification of cognitively normal, mild cognitive impairment and Alzheimers disease using structural MRI analysis. Inf Med Unlocked 18:100305 Rallabandi VS, Tulpule K, Gattu M (2020) Automatic classification of cognitively normal, mild cognitive impairment and Alzheimers disease using structural MRI analysis. Inf Med Unlocked 18:100305
72.
go back to reference Kitajima K, Abe K, Takeda M, Yoshikawa H, Ohigashi M, Osugi K, Yamakado K (2021) Clinical impact of 11C-Pittsburgh compound-B positron emission tomography in addition to magnetic resonance imaging and single-photon emission computed tomography on diagnosis of mild cognitive impairment to Alzheimers disease. Medicine 100(3):e23969 Kitajima K, Abe K, Takeda M, Yoshikawa H, Ohigashi M, Osugi K, Yamakado K (2021) Clinical impact of 11C-Pittsburgh compound-B positron emission tomography in addition to magnetic resonance imaging and single-photon emission computed tomography on diagnosis of mild cognitive impairment to Alzheimers disease. Medicine 100(3):e23969
74.
go back to reference Ding Y, Sohn JH, Kawczynski MG, Trivedi H, Harnish R, Jenkins NW, Franc BL (2019) A deep learning model to predict a diagnosis of alzheimer disease by using 18F-FDG PET of the brain. Radiology 290(2):456–464 Ding Y, Sohn JH, Kawczynski MG, Trivedi H, Harnish R, Jenkins NW, Franc BL (2019) A deep learning model to predict a diagnosis of alzheimer disease by using 18F-FDG PET of the brain. Radiology 290(2):456–464
75.
go back to reference Zhang S, Han D, Tan X, Feng J, Guo Y, Ding Y (2012) Diagnostic accuracy of 18F-FDG and 11C-PIB-PET for prediction of short-term conversion to Alzheimer’s disease in subjects with mild cognitive impairment. Int J Clin Pract 66(2):185–198 Zhang S, Han D, Tan X, Feng J, Guo Y, Ding Y (2012) Diagnostic accuracy of 18F-FDG and 11C-PIB-PET for prediction of short-term conversion to Alzheimer’s disease in subjects with mild cognitive impairment. Int J Clin Pract 66(2):185–198
76.
go back to reference Ma Y, Zhang S, Li J, Zheng D, Guo Y, Feng J, Ren W (2014) Predictive accuracy of amyloid imaging for progression from mild cognitive impairment to alzheimer disease with different lengths of follow-up. Medicine 93(27):e150 Ma Y, Zhang S, Li J, Zheng D, Guo Y, Feng J, Ren W (2014) Predictive accuracy of amyloid imaging for progression from mild cognitive impairment to alzheimer disease with different lengths of follow-up. Medicine 93(27):e150
77.
go back to reference Peng J, Zhu X, Wang Y, An L, Shen D (2019) Structured sparsity regularized multiple kernel learning for Alzheimer’s disease diagnosis. Pattern Recogn 88:370–382 Peng J, Zhu X, Wang Y, An L, Shen D (2019) Structured sparsity regularized multiple kernel learning for Alzheimer’s disease diagnosis. Pattern Recogn 88:370–382
78.
go back to reference Suk H-I, Lee S-W, Shen D (2015) Latent feature representation with stacked auto-encoder for AD/MCI diagnosis. Brain Struct Funct 220(2):841–859 Suk H-I, Lee S-W, Shen D (2015) Latent feature representation with stacked auto-encoder for AD/MCI diagnosis. Brain Struct Funct 220(2):841–859
79.
go back to reference Zheng N, Qiu H, Wang Z, Liu W, Zhang H, Li Y (2018) A new switching-delayed-PSO-based optimized SVM algorithm for diagnosis of Alzheimer’s Disease. Neurocomputing 320:195–202 Zheng N, Qiu H, Wang Z, Liu W, Zhang H, Li Y (2018) A new switching-delayed-PSO-based optimized SVM algorithm for diagnosis of Alzheimer’s Disease. Neurocomputing 320:195–202
80.
go back to reference Kim J, Lee B (2018) Identification of Alzheimers disease and mild cognitive impairment using multimodal sparse hierarchical extreme learning machine. Hum Brain Mapp 39(9):3728–3741 Kim J, Lee B (2018) Identification of Alzheimers disease and mild cognitive impairment using multimodal sparse hierarchical extreme learning machine. Hum Brain Mapp 39(9):3728–3741
81.
go back to reference Chételat G, Arbizu J, Barthel H, Garibotto V, Law I, Morbelli S, Drzezga A (2020) Amyloid-PET and 18F-FDG-PET in the diagnostic investigation of Alzheimers disease and other dementias. Lancet Neurol 19(11):951–962 Chételat G, Arbizu J, Barthel H, Garibotto V, Law I, Morbelli S, Drzezga A (2020) Amyloid-PET and 18F-FDG-PET in the diagnostic investigation of Alzheimers disease and other dementias. Lancet Neurol 19(11):951–962
82.
go back to reference Suppiah S, Ching SM, Mfammed AJ, Mrad SV (2018) The role of PET/CT amyloid imaging compared with Tc99m-HMPAO SPECT imaging for diagnosing Alzheimer’s. Med J Malaysia 73(3):147 Suppiah S, Ching SM, Mfammed AJ, Mrad SV (2018) The role of PET/CT amyloid imaging compared with Tc99m-HMPAO SPECT imaging for diagnosing Alzheimer’s. Med J Malaysia 73(3):147
83.
go back to reference Zhang D, Shen D (2012) Predicting future clinical changes of MCI patients using longitudinal and multimodal biomarkers. PLoS ONE 7(3):e33182 Zhang D, Shen D (2012) Predicting future clinical changes of MCI patients using longitudinal and multimodal biomarkers. PLoS ONE 7(3):e33182
84.
go back to reference Suk H, Lee S, Shen D (2014) Hierarchical feature representation and multimodal fusion with deep learning for AD/MCI diagnosis. Neuroimage 101:569–582 Suk H, Lee S, Shen D (2014) Hierarchical feature representation and multimodal fusion with deep learning for AD/MCI diagnosis. Neuroimage 101:569–582
85.
go back to reference Wang P, Chen K, Yao L, Hu B, Wu X, Zhang J, Guo X (2016) Multimodal classification of mild cognitive impairment based on partial least squares. J Alzheimers Dis 54(1):359–371 Wang P, Chen K, Yao L, Hu B, Wu X, Zhang J, Guo X (2016) Multimodal classification of mild cognitive impairment based on partial least squares. J Alzheimers Dis 54(1):359–371
86.
go back to reference Devanand D, Mikhno A, Pelton GH, Cuasay K, Pradhaban G, Kumar JD, Parsey RV (2010) Pittsburgh compound B (11C-PIB) and fluorodeoxyglucose (18 F-FDG) PET in patients with alzheimer disease, mild cognitive impairment, and healthy controls. J Geriatr Psychiatry Neurol 23(3):185–198 Devanand D, Mikhno A, Pelton GH, Cuasay K, Pradhaban G, Kumar JD, Parsey RV (2010) Pittsburgh compound B (11C-PIB) and fluorodeoxyglucose (18 F-FDG) PET in patients with alzheimer disease, mild cognitive impairment, and healthy controls. J Geriatr Psychiatry Neurol 23(3):185–198
87.
go back to reference Yang Z, Liu Z (2020) The risk prediction of Alzheimer’s Disease based on the deep learning model of brain 18F-FDG positron emission tomography. Saudi J Biol Sci 27(2):659–665 Yang Z, Liu Z (2020) The risk prediction of Alzheimer’s Disease based on the deep learning model of brain 18F-FDG positron emission tomography. Saudi J Biol Sci 27(2):659–665
88.
go back to reference Ortiz A, Munilla J, Górriz JM, Ramírez J (2016) Ensembles of deep learning architectures for the early diagnosis of the Alzheimer’s disease. Int J Neural Syst 26(07):1650025 Ortiz A, Munilla J, Górriz JM, Ramírez J (2016) Ensembles of deep learning architectures for the early diagnosis of the Alzheimer’s disease. Int J Neural Syst 26(07):1650025
89.
go back to reference Vandenberghe R, Nelissen N, Salmon E, Ivanoiu A, Hasselbalch S, Andersen A, Dupont P (2013) Binary classification of 18F-flutemetamol PET using machine learning: comparison with visual reads and structural MRI. Neuroimage 64:517–525 Vandenberghe R, Nelissen N, Salmon E, Ivanoiu A, Hasselbalch S, Andersen A, Dupont P (2013) Binary classification of 18F-flutemetamol PET using machine learning: comparison with visual reads and structural MRI. Neuroimage 64:517–525
90.
go back to reference Sivapriya TR, Kamal AR, Thangaiah PR (2015) Ensemble merit merge feature selection for enhanced multinomial classification in Alzheimer’s Dementia. Comput Math Methods Med 2015:1–11 Sivapriya TR, Kamal AR, Thangaiah PR (2015) Ensemble merit merge feature selection for enhanced multinomial classification in Alzheimer’s Dementia. Comput Math Methods Med 2015:1–11
91.
go back to reference Cheng Bo, Liu M, Zhang D, Munsell BC, Shen D (2015) Domain transfer learning for MCI conversion prediction. IEEE Trans Biomed Eng 62(7):1805–1817 Cheng Bo, Liu M, Zhang D, Munsell BC, Shen D (2015) Domain transfer learning for MCI conversion prediction. IEEE Trans Biomed Eng 62(7):1805–1817
92.
go back to reference Mosconi L, McHugh PF (2011) FDG-and amyloid-PET in Alzheimer’s Disease: Is the whole greater than the sum of the parts. Q J Nucl Med Mol Imaging 55(3):250 Mosconi L, McHugh PF (2011) FDG-and amyloid-PET in Alzheimer’s Disease: Is the whole greater than the sum of the parts. Q J Nucl Med Mol Imaging 55(3):250
93.
go back to reference Rabinovici GD, Rosen HJ, Alkalay A, Kornak J, Furst AJ, Agarwal N, Jagust WJ (2011) Amyloid vs FDG-PET in the differential diagnosis of AD and FTLD. Neurology 77(23):2034–2042 Rabinovici GD, Rosen HJ, Alkalay A, Kornak J, Furst AJ, Agarwal N, Jagust WJ (2011) Amyloid vs FDG-PET in the differential diagnosis of AD and FTLD. Neurology 77(23):2034–2042
96.
go back to reference Mora Moradi E, Pepe A, Gaser C, Huttunen H, Tohka J (2015) Machine learning framework for early MRI-based Alzheimers conversion prediction in MCI subjects. Neuroimage 104:398–412 Mora Moradi E, Pepe A, Gaser C, Huttunen H, Tohka J (2015) Machine learning framework for early MRI-based Alzheimers conversion prediction in MCI subjects. Neuroimage 104:398–412
Metadata
Title
An efficient combination of quadruple biomarkers in binary classification using ensemble machine learning technique for early onset of Alzheimer disease
Authors
Rashmi Kumari
Akriti Nigam
Shashank Pushkar
Publication date
08-03-2022
Publisher
Springer London
Published in
Neural Computing and Applications / Issue 14/2022
Print ISSN: 0941-0643
Electronic ISSN: 1433-3058
DOI
https://doi.org/10.1007/s00521-022-07076-w

Other articles of this Issue 14/2022

Neural Computing and Applications 14/2022 Go to the issue

Premium Partner