Skip to main content
Top
Published in: Acta Mechanica Sinica 1/2017

11-11-2016 | Research Paper

An energy-consistent fracture model for ferroelectrics

Authors: Hongchen Miao, Faxin Li

Published in: Acta Mechanica Sinica | Issue 1/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The fracture behavior of ferroelectrics has been intensively studied in recent decades, though currently a widely accepted fracture mechanism is still lacking. In this work, enlightened by previous experimental observations that crack propagation in ferroelectrics is always accompanied by domain switching, we propose a micromechanical model in which both crack propagation and domain switching are controlled by energy-based criteria. Both electric energy and mechanical energy can induce domain switching, while only mechanical energy can drive crack propagation. Furthermore, constrained domain switching is considered in this model, leading to the gradient domain switching zone near the crack tip. Analysis results show that stress-induced ferroelastic switching always has a toughening effect as the mechanical energy release rate serves as the driving force for both fracture and domain switching. In comparison, the electric-field-induced switching may have either a toughening or detoughening effect. The proposed model can qualitatively agree with the existing experimental results.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Xu, Y.: Ferroelectric Materials and Their Applications. Amsterdam Press, North-Holland (1991) Xu, Y.: Ferroelectric Materials and Their Applications. Amsterdam Press, North-Holland (1991)
2.
go back to reference Parton, V.Z.: Fracture mechanics of piezoelectric materials. Acta Astronaut. 3, 671–683 (1976)CrossRefMATH Parton, V.Z.: Fracture mechanics of piezoelectric materials. Acta Astronaut. 3, 671–683 (1976)CrossRefMATH
3.
go back to reference Schneider, G.A.: Influence of electric field and mechanical stresses on the fracture of ferroelectrics. Ann. Rev. Mater. Res. 37, 491–538 (2007)CrossRef Schneider, G.A.: Influence of electric field and mechanical stresses on the fracture of ferroelectrics. Ann. Rev. Mater. Res. 37, 491–538 (2007)CrossRef
4.
go back to reference Yamamoto, T., Igarashi, H., Okazaki, K.: Internal-stress anisotropies induced by electric-field in lanthanum modified Pb TiO\(_3\) Ceramics. Ferroelectrics 50, 599–604 (1983) Yamamoto, T., Igarashi, H., Okazaki, K.: Internal-stress anisotropies induced by electric-field in lanthanum modified Pb TiO\(_3\) Ceramics. Ferroelectrics 50, 599–604 (1983)
5.
go back to reference Pisarenko, G.G., Chushko, V.M., Kovalev, S.P.: Anisotropy of fracture-toughness of piezoelectric ceramics. J. Am. Ceram. Soc. 68, 259–265 (1985)CrossRef Pisarenko, G.G., Chushko, V.M., Kovalev, S.P.: Anisotropy of fracture-toughness of piezoelectric ceramics. J. Am. Ceram. Soc. 68, 259–265 (1985)CrossRef
6.
go back to reference Mehta, K., Virkar, A.V.: Fracture mechanisms in ferroelectric-ferroelastic lead zirconate titanate [Zr–Ti = 0.54–0.46] Ceramics. J. Am. Ceram. Soc. 73, 567–574 (1990)CrossRef Mehta, K., Virkar, A.V.: Fracture mechanisms in ferroelectric-ferroelastic lead zirconate titanate [Zr–Ti = 0.54–0.46] Ceramics. J. Am. Ceram. Soc. 73, 567–574 (1990)CrossRef
7.
go back to reference Guiu, F., Hahn, B.S., Lee, H.L., et al.: Growth of indentation cracks in poled and unpoled PZT. J. Eur. Ceram. Soc. 17, 505–512 (1997)CrossRef Guiu, F., Hahn, B.S., Lee, H.L., et al.: Growth of indentation cracks in poled and unpoled PZT. J. Eur. Ceram. Soc. 17, 505–512 (1997)CrossRef
8.
go back to reference Meschke, F., Kolleck, A., Schneider, G.A.: R-curve behaviour of BaTiO\(_3\) due to stress-induced ferroelastic domain switching. J. Eur. Ceram. Soc. 17, 1143–1149 (1997)CrossRef Meschke, F., Kolleck, A., Schneider, G.A.: R-curve behaviour of BaTiO\(_3\) due to stress-induced ferroelastic domain switching. J. Eur. Ceram. Soc. 17, 1143–1149 (1997)CrossRef
9.
go back to reference Kolleck, A., Schneider, G.A., Meschke, F.A.: R-curve behavior of BaTiO3- and PZT ceramics under the influence of an electric field applied parallel to the crack front. Acta Mater. 48, 4099–4113 (2000)CrossRef Kolleck, A., Schneider, G.A., Meschke, F.A.: R-curve behavior of BaTiO3- and PZT ceramics under the influence of an electric field applied parallel to the crack front. Acta Mater. 48, 4099–4113 (2000)CrossRef
10.
go back to reference Fang, F., Yang, W.: Poling-enhanced fracture resistance of lead zirconate titanate ferroelectric ceramics. Mater. Lett. 46, 131–135 (2000)CrossRef Fang, F., Yang, W.: Poling-enhanced fracture resistance of lead zirconate titanate ferroelectric ceramics. Mater. Lett. 46, 131–135 (2000)CrossRef
11.
go back to reference Calderon-Moreno, J.M., Popa, M.: Fracture toughness anisotropy by indentation and SEVNB on tetragonal PZT polycrystals. Mater. Sci. Eng. Struct. Mater. Prop. Microstruct. Process. 319, 692–696 (2001)CrossRef Calderon-Moreno, J.M., Popa, M.: Fracture toughness anisotropy by indentation and SEVNB on tetragonal PZT polycrystals. Mater. Sci. Eng. Struct. Mater. Prop. Microstruct. Process. 319, 692–696 (2001)CrossRef
12.
go back to reference Meschke, F., Raddatz, O., Kolleck, A., et al.: R-curve behavior and crack-closure stresses in barium titanate and (Mg, Y)-PSZ ceramics. J. Am. Ceram. Soc. 83, 353–361 (2000)CrossRef Meschke, F., Raddatz, O., Kolleck, A., et al.: R-curve behavior and crack-closure stresses in barium titanate and (Mg, Y)-PSZ ceramics. J. Am. Ceram. Soc. 83, 353–361 (2000)CrossRef
13.
go back to reference Winzer, S.R., Shankar, N., Ritter, A.P.: Designing cofired multilayer electrostrictive actuators for reliability. J. Am. Ceram. Soc. 72, 2246–2257 (1989)CrossRef Winzer, S.R., Shankar, N., Ritter, A.P.: Designing cofired multilayer electrostrictive actuators for reliability. J. Am. Ceram. Soc. 72, 2246–2257 (1989)CrossRef
14.
go back to reference Cao, H.C., Evans, A.G.: Electric-field-induced fatigue-crack growth in piezoelectrics. J. Am. Ceram. Soc. 77, 1783–1786 (1994)CrossRef Cao, H.C., Evans, A.G.: Electric-field-induced fatigue-crack growth in piezoelectrics. J. Am. Ceram. Soc. 77, 1783–1786 (1994)CrossRef
15.
go back to reference Lynch, C.S., Yang, W., Collier, L., et al.: Electric field induced cracking in ferroelectric ceramics. Ferroelectrics 166, 11–30 (1995)CrossRef Lynch, C.S., Yang, W., Collier, L., et al.: Electric field induced cracking in ferroelectric ceramics. Ferroelectrics 166, 11–30 (1995)CrossRef
16.
go back to reference Ting, Z., Fei, F., Wei, Y.: Fatigue crack growth in ferroelectric ceramics below the coercive field. J. Mater. Sci. Lett. 18, 1025–1027 (1999)CrossRef Ting, Z., Fei, F., Wei, Y.: Fatigue crack growth in ferroelectric ceramics below the coercive field. J. Mater. Sci. Lett. 18, 1025–1027 (1999)CrossRef
17.
go back to reference Fang, D.N., Liu, B., Sun, C.T.: Fatigue crack growth in ferroelectric ceramics driven by alternating electric fields. J. Am. Ceram. Soc. 87, 840–846 (2004)CrossRef Fang, D.N., Liu, B., Sun, C.T.: Fatigue crack growth in ferroelectric ceramics driven by alternating electric fields. J. Am. Ceram. Soc. 87, 840–846 (2004)CrossRef
18.
go back to reference Fang, D.N., Zhang, Y.H., Mao, G.Z.: A COD fracture model of ferroelectric ceramics with applications in electric field induced fatigue crack growth. Int. J. Fract. 167, 211–220 (2011)CrossRefMATH Fang, D.N., Zhang, Y.H., Mao, G.Z.: A COD fracture model of ferroelectric ceramics with applications in electric field induced fatigue crack growth. Int. J. Fract. 167, 211–220 (2011)CrossRefMATH
19.
go back to reference Westrain, I., Oates, W.S., Lupascu, D.C., et al.: Mechanism of electric fatigue crack growth in lead zirconate titanate. Acta Mater. 55, 301–312 (2007)CrossRef Westrain, I., Oates, W.S., Lupascu, D.C., et al.: Mechanism of electric fatigue crack growth in lead zirconate titanate. Acta Mater. 55, 301–312 (2007)CrossRef
20.
go back to reference Westram, I., Kungl, H., Hoffmann, M.J., et al.: Influence of crystal structure on crack propagation under cyclic electric loading in lead-zirconate-titanate. J. Eur. Ceram. Soc. 29, 425–430 (2009)CrossRef Westram, I., Kungl, H., Hoffmann, M.J., et al.: Influence of crystal structure on crack propagation under cyclic electric loading in lead-zirconate-titanate. J. Eur. Ceram. Soc. 29, 425–430 (2009)CrossRef
21.
go back to reference Fang, F., Yang, W., Zhang, F.C., et al.: Fatigue crack growth for BaTiO\(_3\) ferroelectric single crystals under cyclic electric loading. J. Am. Ceram. Soc. 88, 2491–2497 (2005)CrossRef Fang, F., Yang, W., Zhang, F.C., et al.: Fatigue crack growth for BaTiO\(_3\) ferroelectric single crystals under cyclic electric loading. J. Am. Ceram. Soc. 88, 2491–2497 (2005)CrossRef
22.
go back to reference Jiang, Y.J., Fang, D.N.: Crack tip domain switching in a ferroelectric single crystal under alternating electric fields. Scr. Mater. 57, 735–738 (2007)CrossRef Jiang, Y.J., Fang, D.N.: Crack tip domain switching in a ferroelectric single crystal under alternating electric fields. Scr. Mater. 57, 735–738 (2007)CrossRef
23.
go back to reference Jiang, Y.J., Fang, D.N., Li, F.X.: In situ observation of electric-field-induced domain switching near a crack tip in poled 0.62PbMg\(_{1/3}\)Nb\(_{2/3}\)O\(_{3}\)-0.38PbTiO\(_{3}\) single crystal. Appl. Phys. Lett. 90, 222907 (2007) Jiang, Y.J., Fang, D.N., Li, F.X.: In situ observation of electric-field-induced domain switching near a crack tip in poled 0.62PbMg\(_{1/3}\)Nb\(_{2/3}\)O\(_{3}\)-0.38PbTiO\(_{3}\) single crystal. Appl. Phys. Lett. 90, 222907 (2007)
24.
go back to reference Furuta, A., Uchino, K.: Dynamic observation of crack-propagation in piezoelectric multilayer actuators. J. Am. Ceram. Soc. 76, 1615–1617 (1993)CrossRef Furuta, A., Uchino, K.: Dynamic observation of crack-propagation in piezoelectric multilayer actuators. J. Am. Ceram. Soc. 76, 1615–1617 (1993)CrossRef
25.
go back to reference Tobin, A.G., Pak, Y.E.: Effect of electric fields on fracture behavior of PZT ceramics. Proc. SPIE Int. Soc. Opt. Eng. 1916, 78–86 (1993) Tobin, A.G., Pak, Y.E.: Effect of electric fields on fracture behavior of PZT ceramics. Proc. SPIE Int. Soc. Opt. Eng. 1916, 78–86 (1993)
26.
go back to reference Lynch, C.S.: Fracture of ferroelectric and relaxor electro-ceramics: influence of electric field. Acta Mater. 46, 599–608 (1998)CrossRef Lynch, C.S.: Fracture of ferroelectric and relaxor electro-ceramics: influence of electric field. Acta Mater. 46, 599–608 (1998)CrossRef
27.
go back to reference Sun, C.T., Park, S.B.: Determination of fracture toughness of piezoceramics under the influence of electric field using Vickers indentation. Proc. SPIE Int. Soc. Opt. Eng. 2441, 213–222 (1995) Sun, C.T., Park, S.B.: Determination of fracture toughness of piezoceramics under the influence of electric field using Vickers indentation. Proc. SPIE Int. Soc. Opt. Eng. 2441, 213–222 (1995)
28.
go back to reference Schneider, G.A., Heyer, V.: Influence of the electric field on Vickers indentation crack growth in BaTiO3. J. Eur. Ceram. Soc. 19, 1299–1306 (1999)CrossRef Schneider, G.A., Heyer, V.: Influence of the electric field on Vickers indentation crack growth in BaTiO3. J. Eur. Ceram. Soc. 19, 1299–1306 (1999)CrossRef
29.
go back to reference Wang, H.Y., Singh, R.N.: Crack propagation in piezoelectric ceramics: effects of applied electric fields. J. Appl. Phys. 81, 7471–7479 (1997)CrossRef Wang, H.Y., Singh, R.N.: Crack propagation in piezoelectric ceramics: effects of applied electric fields. J. Appl. Phys. 81, 7471–7479 (1997)CrossRef
30.
go back to reference Fu, R., Zhang, T.Y.: Effects of an electric field on the fracture toughness of poled lead zirconate titanate ceramics. J. Am. Ceram. Soc. 83, 1215–1218 (2000)CrossRef Fu, R., Zhang, T.Y.: Effects of an electric field on the fracture toughness of poled lead zirconate titanate ceramics. J. Am. Ceram. Soc. 83, 1215–1218 (2000)CrossRef
31.
go back to reference Deeg, W.F.: Analysis of dislocation, cracks, and inclusion problems in piezoelectric solids [Ph.D. Thesis], Stanford University, America (1980) Deeg, W.F.: Analysis of dislocation, cracks, and inclusion problems in piezoelectric solids [Ph.D. Thesis], Stanford University, America (1980)
32.
go back to reference Sosa, H.A., Pak, Y.E.: 3-Dimensional eigenfunction analysis of a crack in a piezoelectric material. Int. J. Solids. Struct. 26, 1–15 (1990)CrossRefMATH Sosa, H.A., Pak, Y.E.: 3-Dimensional eigenfunction analysis of a crack in a piezoelectric material. Int. J. Solids. Struct. 26, 1–15 (1990)CrossRefMATH
33.
go back to reference Suo, Z., Kuo, C.M., Barnett, D.M., et al.: Fracture-mechanics for piezoelectric ceramics. J. Mech. Phys. Solids 40, 739–765 (1992)MathSciNetCrossRefMATH Suo, Z., Kuo, C.M., Barnett, D.M., et al.: Fracture-mechanics for piezoelectric ceramics. J. Mech. Phys. Solids 40, 739–765 (1992)MathSciNetCrossRefMATH
34.
go back to reference Park, S.B., Sun, C.T.: Effect of electric-field on fracture of piezoelectric ceramics. Int. J. Fract. 70, 203–216 (1995)CrossRef Park, S.B., Sun, C.T.: Effect of electric-field on fracture of piezoelectric ceramics. Int. J. Fract. 70, 203–216 (1995)CrossRef
35.
go back to reference Park, S.B., Sun, C.T.: Fracture criteria for piezoelectric ceramics. J. Am. Ceram. Soc. 78, 1475–1480 (1995)CrossRef Park, S.B., Sun, C.T.: Fracture criteria for piezoelectric ceramics. J. Am. Ceram. Soc. 78, 1475–1480 (1995)CrossRef
36.
go back to reference Xu, X.L., Rajapakse, R.K.N.D.: Analytical solution for an arbitrarily oriented void crack and fracture of piezoceramics. Acta Mater. 47, 1735–1747 (1999)CrossRef Xu, X.L., Rajapakse, R.K.N.D.: Analytical solution for an arbitrarily oriented void crack and fracture of piezoceramics. Acta Mater. 47, 1735–1747 (1999)CrossRef
37.
go back to reference Kuna, M.: Fracture mechanics of piezoelectric materials—where are we right now? Eng. Fract. Mech. 77, 309–326 (2010)CrossRef Kuna, M.: Fracture mechanics of piezoelectric materials—where are we right now? Eng. Fract. Mech. 77, 309–326 (2010)CrossRef
38.
go back to reference McMeeking, R.M.: The energy release rate for a Griffith crack in a piezoelectric material. Eng. Fract. Mech. 71, 1149–1163 (2004)CrossRef McMeeking, R.M.: The energy release rate for a Griffith crack in a piezoelectric material. Eng. Fract. Mech. 71, 1149–1163 (2004)CrossRef
39.
go back to reference McMeeking, R.M.: Towards a fracture mechanics for brittle piezoelectric and dielectric materials. Int. J. Fract. 108, 25–41 (2001)CrossRef McMeeking, R.M.: Towards a fracture mechanics for brittle piezoelectric and dielectric materials. Int. J. Fract. 108, 25–41 (2001)CrossRef
40.
go back to reference Zhang, T.Y., Gao, C.F.: Fracture behaviors of piezoelectric materials. Theor. Appl. Fract. Mec 41, 339–379 (2004)CrossRef Zhang, T.Y., Gao, C.F.: Fracture behaviors of piezoelectric materials. Theor. Appl. Fract. Mec 41, 339–379 (2004)CrossRef
41.
go back to reference Dunn, M.L.: The effects of crack face boundary-conditions on the fracture-mechanics of piezoelectric solids. Eng. Fract. Mech. 48, 25–39 (1994)CrossRef Dunn, M.L.: The effects of crack face boundary-conditions on the fracture-mechanics of piezoelectric solids. Eng. Fract. Mech. 48, 25–39 (1994)CrossRef
42.
go back to reference Landis, C.M.: Energetically consistent boundary conditions for electromechanical fracture. Int. J. Solids. Struct. 41, 6291–6315 (2004)CrossRefMATH Landis, C.M.: Energetically consistent boundary conditions for electromechanical fracture. Int. J. Solids. Struct. 41, 6291–6315 (2004)CrossRefMATH
43.
go back to reference Gao, H.J., Zhang, T.Y., Tong, P.: Local and global energy release rates for an electrically yielded crack in a piezoelectric ceramic. J. Mech. Phys. Solids 45, 491–510 (1997)CrossRef Gao, H.J., Zhang, T.Y., Tong, P.: Local and global energy release rates for an electrically yielded crack in a piezoelectric ceramic. J. Mech. Phys. Solids 45, 491–510 (1997)CrossRef
44.
go back to reference Mcmeeking, R.M., Evans, A.G.: Mechanics of transformation-toughening in Brittle materials. J. Am. Ceram. Soc. 65, 242–246 (1982)CrossRef Mcmeeking, R.M., Evans, A.G.: Mechanics of transformation-toughening in Brittle materials. J. Am. Ceram. Soc. 65, 242–246 (1982)CrossRef
45.
go back to reference Lambropoulos, J.C.: Shear, shape and orientation effects in transformation toughening. Int. J. Solids Struct. 22, 1083–1106 (1986)CrossRef Lambropoulos, J.C.: Shear, shape and orientation effects in transformation toughening. Int. J. Solids Struct. 22, 1083–1106 (1986)CrossRef
46.
go back to reference Budiansky, B., Hutchinson, J.W., Lambropoulos, J.C.: Continuum theory of dilatant transformation toughening in ceramics. Int. J. Solids Struct. 19, 337–355 (1983)CrossRefMATH Budiansky, B., Hutchinson, J.W., Lambropoulos, J.C.: Continuum theory of dilatant transformation toughening in ceramics. Int. J. Solids Struct. 19, 337–355 (1983)CrossRefMATH
47.
go back to reference Zhu, T., Yang, W.: Fatigue crack growth in ferroelectrics driven by cyclic electric loading. J. Mech. Phys. Solids 47, 81–97 (1999) Zhu, T., Yang, W.: Fatigue crack growth in ferroelectrics driven by cyclic electric loading. J. Mech. Phys. Solids 47, 81–97 (1999)
48.
go back to reference Yang, W., Zhu, T.: Switch-toughening of ferroelectrics subjected to electric fields. J. Mech. Phys. Solids 46, 291–311 (1998)CrossRefMATH Yang, W., Zhu, T.: Switch-toughening of ferroelectrics subjected to electric fields. J. Mech. Phys. Solids 46, 291–311 (1998)CrossRefMATH
49.
go back to reference Rajapakse, R.K.N.D., Zeng, X.: Toughening of conducting cracks due to domain switching. Acta Mater. 49, 877–885 (2001) Rajapakse, R.K.N.D., Zeng, X.: Toughening of conducting cracks due to domain switching. Acta Mater. 49, 877–885 (2001)
50.
go back to reference Cui, Y.Q., Yang, W.: Toughening under non-uniform ferro-elastic domain switching. Int. J. Solids Struct. 43, 4452–4464 (2006) Cui, Y.Q., Yang, W.: Toughening under non-uniform ferro-elastic domain switching. Int. J. Solids Struct. 43, 4452–4464 (2006)
51.
go back to reference Sheng, J.S., Landis, C.M.: Toughening due to domain switching in single crystal ferroelectric materials. Int. J. Fract. 143, 161–175 (2007)CrossRefMATH Sheng, J.S., Landis, C.M.: Toughening due to domain switching in single crystal ferroelectric materials. Int. J. Fract. 143, 161–175 (2007)CrossRefMATH
52.
go back to reference Kreher, W.S.: Influence of domain switching zones on the fracture toughness of ferroelectrics. J. Mech. Phys. Solids 50, 1029–1050 (2002)CrossRefMATH Kreher, W.S.: Influence of domain switching zones on the fracture toughness of ferroelectrics. J. Mech. Phys. Solids 50, 1029–1050 (2002)CrossRefMATH
53.
go back to reference Fang, F., Yang, W., Zhu, T.: Crack tip 90 degrees domain switching in tetragonal lanthanum-modified lead zirconate titanate under an electric field. J. Mater. Res. 14, 2940–2944 (1999)CrossRef Fang, F., Yang, W., Zhu, T.: Crack tip 90 degrees domain switching in tetragonal lanthanum-modified lead zirconate titanate under an electric field. J. Mater. Res. 14, 2940–2944 (1999)CrossRef
54.
go back to reference Miserez, A., Rossoll, A., Mortensen, A.: Investigation of crack-tip plasticity in high volume fraction particulate metal matrix composites. Eng. Fract. Mech. 71, 2385–2406 (2004)CrossRef Miserez, A., Rossoll, A., Mortensen, A.: Investigation of crack-tip plasticity in high volume fraction particulate metal matrix composites. Eng. Fract. Mech. 71, 2385–2406 (2004)CrossRef
55.
go back to reference Forderreuther, A., Thurn, G., Zimmermann, A., et al.: R-curve effect, influence of electric field and process zone in BaTiO\(_3\) ceramics. J. Eur. Ceram. Soc. 22, 2023–2031 (2002)CrossRef Forderreuther, A., Thurn, G., Zimmermann, A., et al.: R-curve effect, influence of electric field and process zone in BaTiO\(_3\) ceramics. J. Eur. Ceram. Soc. 22, 2023–2031 (2002)CrossRef
56.
go back to reference Hackemann, S., Pfeiffer, W.: Domain switching in process zones of PZT: characterization by microdiffraction and fracture mechanical methods. J. Eur. Ceram. Soc. 23, 141–151 (2003)CrossRef Hackemann, S., Pfeiffer, W.: Domain switching in process zones of PZT: characterization by microdiffraction and fracture mechanical methods. J. Eur. Ceram. Soc. 23, 141–151 (2003)CrossRef
57.
go back to reference Cui, Y.Q., Zhong, Z.: A novel criterion for nonuniform domain switching of tetragonal ferroelectrics. Mech. Mater. 45, 61–71 (2012)CrossRef Cui, Y.Q., Zhong, Z.: A novel criterion for nonuniform domain switching of tetragonal ferroelectrics. Mech. Mater. 45, 61–71 (2012)CrossRef
58.
go back to reference Li, F.X., Rajapakse, R.K.N.D.: A constrained domain-switching model for polycrystalline ferroelectric ceramics. Part I: model formulation and application to tetragonal materials. Acta Mater. 55, 6472–6480 (2007)CrossRef Li, F.X., Rajapakse, R.K.N.D.: A constrained domain-switching model for polycrystalline ferroelectric ceramics. Part I: model formulation and application to tetragonal materials. Acta Mater. 55, 6472–6480 (2007)CrossRef
59.
go back to reference Mura, T.: Micromechanics of defects in solids, 2nd edn. Martinus Nijhoff Publishers, Dordrecht (1987)CrossRefMATH Mura, T.: Micromechanics of defects in solids, 2nd edn. Martinus Nijhoff Publishers, Dordrecht (1987)CrossRefMATH
60.
go back to reference Dong, S.X., Yan, L., Viehland, D., et al.: A piezoelectric single crystal traveling wave step motor for low-temperature application. Appl. Phys. Lett. 92, 1530 (2008) Dong, S.X., Yan, L., Viehland, D., et al.: A piezoelectric single crystal traveling wave step motor for low-temperature application. Appl. Phys. Lett. 92, 1530 (2008)
61.
go back to reference Jiang, Y., Zhang, Y., Liu, B., et al.: Study on crack propagation in ferroelectric single crystal under electric loading. Acta Mater. 57, 1630–1638 (2009)CrossRef Jiang, Y., Zhang, Y., Liu, B., et al.: Study on crack propagation in ferroelectric single crystal under electric loading. Acta Mater. 57, 1630–1638 (2009)CrossRef
62.
go back to reference Yang, W., Suo, Z.: Cracking in ceramic actuators caused by electrostriction. J. Mech. Phys. Solids. 42, 649–663 (1994)CrossRef Yang, W., Suo, Z.: Cracking in ceramic actuators caused by electrostriction. J. Mech. Phys. Solids. 42, 649–663 (1994)CrossRef
63.
go back to reference Zhu, T., Yang, W.: Toughness variation of ferroelectrics by polarization switch under non-uniform electric field. Acta Mater. 45, 4695–4702 (1997)CrossRef Zhu, T., Yang, W.: Toughness variation of ferroelectrics by polarization switch under non-uniform electric field. Acta Mater. 45, 4695–4702 (1997)CrossRef
Metadata
Title
An energy-consistent fracture model for ferroelectrics
Authors
Hongchen Miao
Faxin Li
Publication date
11-11-2016
Publisher
The Chinese Society of Theoretical and Applied Mechanics; Institute of Mechanics, Chinese Academy of Sciences
Published in
Acta Mechanica Sinica / Issue 1/2017
Print ISSN: 0567-7718
Electronic ISSN: 1614-3116
DOI
https://doi.org/10.1007/s10409-016-0610-2

Other articles of this Issue 1/2017

Acta Mechanica Sinica 1/2017 Go to the issue

Premium Partners