Skip to main content
Top
Published in: Experimental Mechanics 8/2010

01-10-2010

An Experimental and Numerical Study of Calliphora Wing Structure

Authors: R. Ganguli, S. Gorb, F.-O. Lehmann, S. Mukherjee, S. Mukherjee

Published in: Experimental Mechanics | Issue 8/2010

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Experiments are performed to determine the mass and stiffness variations along the wing of the blowfly Calliphora. The results are obtained for a pairs of wings of 10 male flies and fresh wings are used. The wing is divided into nine locations along the span and seven locations along the chord based on venation patterns. The length and mass of the sections is measured and the mass per unit length is calculated. The bending stiffness measurements are taken at three locations, basal (near root), medial and distal (near tip) of the fly wing. Torsional stiffness measurements are also made and the elastic axis of the wing is approximately located. The experimental data is then used for structural modeling of the wing as a stepped cantilever beam with nine spanwise sections of varying mass per unit lengths, flexural rigidity (EI) and torsional rigidity (GJ) values. Inertial values of nine sections are found to approximately vary according to an exponentially decreasing law over the nine sections from root to tip and it is used to calculate an approximate value of Young’s modulus of the wing biomaterial. Shear modulus is obtained assuming the wing biomaterial to be isotropic. Natural frequencies, both in bending and torsion, are obtained by solving the homogeneous part of the respective governing differential equations using the finite element method. The results provide a complete analysis of Calliphora wing structure and also provide guidelines for the biomimetic structural design of insect-scale flapping wings.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Templin RJ (2000) The spectrum of animal flight: insects to pterosaurs. Prog Aerosp Sci 36:393–436CrossRef Templin RJ (2000) The spectrum of animal flight: insects to pterosaurs. Prog Aerosp Sci 36:393–436CrossRef
2.
go back to reference Shyy W, Berg M, Ljungqvist D (1999) Flapping and flexible wings for biological and micro air vehicles. Prog Aerosp Sci 35:455–505CrossRef Shyy W, Berg M, Ljungqvist D (1999) Flapping and flexible wings for biological and micro air vehicles. Prog Aerosp Sci 35:455–505CrossRef
3.
go back to reference Dickinson MH, Lehmann FO, Sane SP (1999) Wing rotation and the aerodynamic basis of insect flight. Science 284:1954–1960CrossRef Dickinson MH, Lehmann FO, Sane SP (1999) Wing rotation and the aerodynamic basis of insect flight. Science 284:1954–1960CrossRef
4.
go back to reference Maybury WJ, Lehmann FO (2004) The fluid dynamics of flight control by kinematic phase lag variation between two robotic insect wings. J Exp Biol 207:4707–4726CrossRef Maybury WJ, Lehmann FO (2004) The fluid dynamics of flight control by kinematic phase lag variation between two robotic insect wings. J Exp Biol 207:4707–4726CrossRef
5.
go back to reference Ellington CP (1999) The novel aerodynamics of insect flight: applications to micro-air vehicles. J Exp Biol 202:3439–3448 Ellington CP (1999) The novel aerodynamics of insect flight: applications to micro-air vehicles. J Exp Biol 202:3439–3448
6.
go back to reference Ansari SA, Zbikowski R, Knowles K (2006) Aerodynamic modelling of insect-like flapping flight for micro air vehicles. Prog Aerosp Sci 42:129–172CrossRef Ansari SA, Zbikowski R, Knowles K (2006) Aerodynamic modelling of insect-like flapping flight for micro air vehicles. Prog Aerosp Sci 42:129–172CrossRef
7.
go back to reference Szmelter J, Zbikowski R (2002) A study of flow arising from insect wing flapping motion. Int J Numer Methods Fluids 40:497–505MATHCrossRef Szmelter J, Zbikowski R (2002) A study of flow arising from insect wing flapping motion. Int J Numer Methods Fluids 40:497–505MATHCrossRef
8.
go back to reference Delauriar JD, Harris JM (1982) Experimental-study of oscillating-wing propulsion. J Aircr 19:368–373CrossRef Delauriar JD, Harris JM (1982) Experimental-study of oscillating-wing propulsion. J Aircr 19:368–373CrossRef
9.
go back to reference Wang ZJ (2000) Vortex shedding and frequency selection in flapping wing flight. J Fluid Mech 410:323–341MATHCrossRef Wang ZJ (2000) Vortex shedding and frequency selection in flapping wing flight. J Fluid Mech 410:323–341MATHCrossRef
10.
go back to reference Hall KC, Hall SR (1996) Minimum induced power requirements for flapping flight. J Fluid Mech 323:285–315MATHCrossRef Hall KC, Hall SR (1996) Minimum induced power requirements for flapping flight. J Fluid Mech 323:285–315MATHCrossRef
11.
go back to reference Okamoto M, Yasuda K, Azuma A (1996) Aerodynamics characteristics of the wings and body of a dragonfly. J Exp Biol 199:281–294 Okamoto M, Yasuda K, Azuma A (1996) Aerodynamics characteristics of the wings and body of a dragonfly. J Exp Biol 199:281–294
12.
13.
go back to reference Meyers MA, Chen PY, Lin AYM, Seki Y (2008) Biological materials: structure and mechanical properties. Prog Mater Sci 53:1–206CrossRef Meyers MA, Chen PY, Lin AYM, Seki Y (2008) Biological materials: structure and mechanical properties. Prog Mater Sci 53:1–206CrossRef
14.
go back to reference Wang XS, Li Y, Shi YF (2008) Effects of sandwich microstructures on mechanical behavior of dragonfly wing vein. Compos Sci Technol 68:186–192CrossRef Wang XS, Li Y, Shi YF (2008) Effects of sandwich microstructures on mechanical behavior of dragonfly wing vein. Compos Sci Technol 68:186–192CrossRef
15.
go back to reference Machida K, Oikawa T (2007) Structure analysis of the wings of anotogaster sieboldii and hybris subjacens. Key Eng Mater 345–346:1237–1240CrossRef Machida K, Oikawa T (2007) Structure analysis of the wings of anotogaster sieboldii and hybris subjacens. Key Eng Mater 345–346:1237–1240CrossRef
16.
go back to reference Smith MJC (1996) Simulating moth wing aerodynamics: towards the development of flapping wing technology. AIAA J 34:1348–1355MATHCrossRef Smith MJC (1996) Simulating moth wing aerodynamics: towards the development of flapping wing technology. AIAA J 34:1348–1355MATHCrossRef
17.
go back to reference Wootton RJ, Herbert RC, Young PG, Evans KE (2003) Approaches to the structural modelling of insect wings. Philos Trans R Soc Lond B Biol Sci 358:1577–1587CrossRef Wootton RJ, Herbert RC, Young PG, Evans KE (2003) Approaches to the structural modelling of insect wings. Philos Trans R Soc Lond B Biol Sci 358:1577–1587CrossRef
18.
go back to reference Combes SA, Daniel TL (2003a) Flexural stiffness in insect wings I. scaling and the influence of wing venation. J Exp Biol 206:2979–2987CrossRef Combes SA, Daniel TL (2003a) Flexural stiffness in insect wings I. scaling and the influence of wing venation. J Exp Biol 206:2979–2987CrossRef
19.
go back to reference Combes SA, Daniel TL (2003b) Flexural stiffness in insect wings II. spatial distribution and dynamic wing bending. J Exp Biol 206:2989–2997CrossRef Combes SA, Daniel TL (2003b) Flexural stiffness in insect wings II. spatial distribution and dynamic wing bending. J Exp Biol 206:2989–2997CrossRef
20.
go back to reference Ennos AR (1988) The importance of torsion in the design of insect wings. J Exp Biol 140:137–160 Ennos AR (1988) The importance of torsion in the design of insect wings. J Exp Biol 140:137–160
21.
go back to reference Ennos AR (1988) The inertial cause of wing rotation in diptera. J Exp Biol 140:161–169 Ennos AR (1988) The inertial cause of wing rotation in diptera. J Exp Biol 140:161–169
22.
go back to reference Ennos AR (1995) Mechanical behaviour in torsion of insect wings, blades of grass and other canbered structures. Proc R Soc Lond B Biol Sci 140:161–169 Ennos AR (1995) Mechanical behaviour in torsion of insect wings, blades of grass and other canbered structures. Proc R Soc Lond B Biol Sci 140:161–169
23.
go back to reference Sunada S, Zeng LJ, Kawachi K (1998) The relationship between dragonfly wing structure and torsional deformation. J Theor Biol 193:39–45CrossRef Sunada S, Zeng LJ, Kawachi K (1998) The relationship between dragonfly wing structure and torsional deformation. J Theor Biol 193:39–45CrossRef
24.
go back to reference Rosenfeld NC, Wereley NM (2009) Time-periodic stability of a flapping insect wing structure in hover. J Aircr 46:450–464CrossRef Rosenfeld NC, Wereley NM (2009) Time-periodic stability of a flapping insect wing structure in hover. J Aircr 46:450–464CrossRef
25.
go back to reference Barbakadze N, Enders S, Gorb S, Arzt E (2006) Local mechanical properties of the head articulation cuticle in the beetle Pachnoda marginata (Coleoptera, Scarabaeidae). J Exp Biol 209:722–730CrossRef Barbakadze N, Enders S, Gorb S, Arzt E (2006) Local mechanical properties of the head articulation cuticle in the beetle Pachnoda marginata (Coleoptera, Scarabaeidae). J Exp Biol 209:722–730CrossRef
26.
go back to reference Langer MG, Ruppersberg JP, Gorb S (2004) Adhesion forces measured at the level of a terminal plate of the fly’s seta. Proc R Soc Lond B Biol Sci 271:2209–2215CrossRef Langer MG, Ruppersberg JP, Gorb S (2004) Adhesion forces measured at the level of a terminal plate of the fly’s seta. Proc R Soc Lond B Biol Sci 271:2209–2215CrossRef
27.
go back to reference Deng XY, Schenato L, Wu WC, Sastry SS (2006a) Flapping flight for biomimetic robotic insects: part I—System modeling. IEEE Trans Robot 22:776–788CrossRef Deng XY, Schenato L, Wu WC, Sastry SS (2006a) Flapping flight for biomimetic robotic insects: part I—System modeling. IEEE Trans Robot 22:776–788CrossRef
28.
go back to reference Deng XY, Schenato L, Sastry SS (2006b) Flapping flight for biomimetic robotic insects: part II—Flight control design. IEEE Trans Robot 22:789–803CrossRef Deng XY, Schenato L, Sastry SS (2006b) Flapping flight for biomimetic robotic insects: part II—Flight control design. IEEE Trans Robot 22:789–803CrossRef
29.
go back to reference Gorb SN, Popov VL (2002) Probabilistic fasteners with parabolic elements: biological system, artificial model and theoretical considerations. Philos Trans R Soc Lond Ser A Math Phys Eng Sci 360:211–225CrossRef Gorb SN, Popov VL (2002) Probabilistic fasteners with parabolic elements: biological system, artificial model and theoretical considerations. Philos Trans R Soc Lond Ser A Math Phys Eng Sci 360:211–225CrossRef
30.
go back to reference Matushkina N, Gorb S (2007) Mechanical peoperties of the endophytic ovipositor in damselflies (Zygopetra, Odonata) and their oviposition substrates. Zoology 110:167–175CrossRef Matushkina N, Gorb S (2007) Mechanical peoperties of the endophytic ovipositor in damselflies (Zygopetra, Odonata) and their oviposition substrates. Zoology 110:167–175CrossRef
31.
go back to reference Rao SS (2004) Mechanical vibrations, 4th edn. Pearson Education (Singapore) Pte. Ltd., Indian Branch, Delhi Rao SS (2004) Mechanical vibrations, 4th edn. Pearson Education (Singapore) Pte. Ltd., Indian Branch, Delhi
32.
go back to reference Bao L, Hu JS, Yu YL, Cheng P, Xu BQ, Tong BG (2006) Viscoelastic constitutive model related to deformation of insect wing under loading in flapping motion. Appl Math Mech 27:741–748MATHCrossRef Bao L, Hu JS, Yu YL, Cheng P, Xu BQ, Tong BG (2006) Viscoelastic constitutive model related to deformation of insect wing under loading in flapping motion. Appl Math Mech 27:741–748MATHCrossRef
33.
go back to reference Vincent JFV, Wegst UGK (2004) Design and mechanical properties of insect cuticle. Arthropod Struct Develop 33:187–199CrossRef Vincent JFV, Wegst UGK (2004) Design and mechanical properties of insect cuticle. Arthropod Struct Develop 33:187–199CrossRef
34.
go back to reference Watson GS, Watson JA (2004) Natural nano-structures on insects—possible functions of ordered arrays characterized by atomic force microscopy. Appl Surf Sci 235:139–144CrossRef Watson GS, Watson JA (2004) Natural nano-structures on insects—possible functions of ordered arrays characterized by atomic force microscopy. Appl Surf Sci 235:139–144CrossRef
35.
go back to reference Cook RD, Malkus RD, Plesha ME, Witt RJ (2005) Concepts and applications of finite element analysis. Wiley, Singapore Cook RD, Malkus RD, Plesha ME, Witt RJ (2005) Concepts and applications of finite element analysis. Wiley, Singapore
36.
go back to reference Gere JM, Timoshenko SP (1999) Mechanics of materials. Stanley Thrones, Kingston upon Thames Gere JM, Timoshenko SP (1999) Mechanics of materials. Stanley Thrones, Kingston upon Thames
Metadata
Title
An Experimental and Numerical Study of Calliphora Wing Structure
Authors
R. Ganguli
S. Gorb
F.-O. Lehmann
S. Mukherjee
S. Mukherjee
Publication date
01-10-2010
Publisher
Springer US
Published in
Experimental Mechanics / Issue 8/2010
Print ISSN: 0014-4851
Electronic ISSN: 1741-2765
DOI
https://doi.org/10.1007/s11340-009-9316-8

Other articles of this Issue 8/2010

Experimental Mechanics 8/2010 Go to the issue

Premium Partners