Skip to main content
Top
Published in: Journal of Computational Electronics 5/2021

23-09-2021

An FPGA-based hardware abstraction of quantum computing systems

Authors: Madiha Khalid, Umar Mujahid, Atif Jafri, Hongsik Choi, Najam ul Islam Muhammad

Published in: Journal of Computational Electronics | Issue 5/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The number of transistors per unit area is increasing each year according to Moore’s law. It is estimated that the current rate of evolution in the field of chip design will reduce the size of transistors to the atomic scale by 2024. At the atomic level, quantum-mechanical characteristics dominate, affecting the ability of transistors to store information in the form of bits. Quantum computers have been proposed as one way to deal effectively with this predicament. Quantum computing circuits utilize the spin characteristics of the electron to store information. This paper describes a proposal for a resource-efficient field-programmable gate array (FPGA)-based abstraction of quantum circuits. A nonprogrammable embedded system capable of storing, measuring, and introducing a phase shift in qubits is implemented. The main objective of the proposed abstraction is to provide an FPGA-based platform as the fundamental subblock for the design of quantum circuits. As a proof of concept, a primary quantum key distribution algorithm, i.e., BB84, is implemented using the proposed platform. The distinguishing feature of the proposed design is its flexibility to enhance the accuracy of quantum circuit emulation at the cost of computational resources. The proposed emulation exhibits two principal properties of quantum computing, i.e., parallelism and probabilistic measurement.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Williams, C.P.: Explorations in Quantum Computing. Springer, Berlin (2010)MATH Williams, C.P.: Explorations in Quantum Computing. Springer, Berlin (2010)MATH
2.
go back to reference Shalf, J.M., Leland, R.: Computing beyond Moore’s law. Computer 48(12), 14 (2015)CrossRef Shalf, J.M., Leland, R.: Computing beyond Moore’s law. Computer 48(12), 14 (2015)CrossRef
3.
go back to reference Colwell, R.: The chip design game at the end of Moore’s law. In: 2013 IEEE Hot Chips 25 Symposium (HCS) (IEEE Computer Society, 2013), pp. 1–16 Colwell, R.: The chip design game at the end of Moore’s law. In: 2013 IEEE Hot Chips 25 Symposium (HCS) (IEEE Computer Society, 2013), pp. 1–16
4.
go back to reference Yanofsky, N.S., Mannucci, M.A.: Quantum Computing for Computer Scientists. Cambridge University Press, Cambridge (2008)CrossRef Yanofsky, N.S., Mannucci, M.A.: Quantum Computing for Computer Scientists. Cambridge University Press, Cambridge (2008)CrossRef
5.
go back to reference Kanamori, Y., Yoo, S.M., Pan, W., Sheldon, F.T.: A short survey on quantum computers. Int. J. Comput. Appl. 28(3), 227 (2006) Kanamori, Y., Yoo, S.M., Pan, W., Sheldon, F.T.: A short survey on quantum computers. Int. J. Comput. Appl. 28(3), 227 (2006)
7.
go back to reference Pan, W., Sheldon, F., Kanamori, Y., Yoo, S.M.: A short survey on quantum computers. Int. J. Comput. Appl. 28(3), 169 (2006) Pan, W., Sheldon, F., Kanamori, Y., Yoo, S.M.: A short survey on quantum computers. Int. J. Comput. Appl. 28(3), 169 (2006)
8.
go back to reference Cirac, J.I., Zoller, P.: Quantum computations with cold trapped ions. Phys. Rev. Lett. 74(20), 4091 (1995)CrossRef Cirac, J.I., Zoller, P.: Quantum computations with cold trapped ions. Phys. Rev. Lett. 74(20), 4091 (1995)CrossRef
9.
go back to reference Turchette, Q.A., Hood, C.J., Lange, W., Mabuchi, H., Kimble, H.J.: Measurement of conditional phase shifts for quantum logic. Phys. Rev. Lett. 75(25), 4710 (1995)MathSciNetCrossRef Turchette, Q.A., Hood, C.J., Lange, W., Mabuchi, H., Kimble, H.J.: Measurement of conditional phase shifts for quantum logic. Phys. Rev. Lett. 75(25), 4710 (1995)MathSciNetCrossRef
10.
go back to reference Knill, E., Laflamme, R., Milburn, G.J.: A scheme for efficient quantum computation with linear optics. Nature 409(6816), 46 (2001)CrossRef Knill, E., Laflamme, R., Milburn, G.J.: A scheme for efficient quantum computation with linear optics. Nature 409(6816), 46 (2001)CrossRef
11.
go back to reference Loss, D., DiVincenzo, D.P.: Quantum computation with quantum dots. Phys. Rev. A 57(1), 120 (1998)CrossRef Loss, D., DiVincenzo, D.P.: Quantum computation with quantum dots. Phys. Rev. A 57(1), 120 (1998)CrossRef
12.
go back to reference Oskin, M., Chong, F.T., Chuang, I.L.: A practical architecture for reliable quantum computers. Computer 35(1), 79 (2002)CrossRef Oskin, M., Chong, F.T., Chuang, I.L.: A practical architecture for reliable quantum computers. Computer 35(1), 79 (2002)CrossRef
13.
go back to reference Cavallar, S., Dodson, B., Lenstra, A.K., Lioen, W., Montgomery, P.L., Murphy, B., Te Riele, H., Aardal, K.: J. Gilchrist, G. Guillerm, et al.,Factorization of a 512-bit RSA modulus. In: International Conference on the Theory and Applications of Cryptographic Techniques (Springer, 2000), pp. 1–18 Cavallar, S., Dodson, B., Lenstra, A.K., Lioen, W., Montgomery, P.L., Murphy, B., Te Riele, H., Aardal, K.: J. Gilchrist, G. Guillerm, et al.,Factorization of a 512-bit RSA modulus. In: International Conference on the Theory and Applications of Cryptographic Techniques (Springer, 2000), pp. 1–18
14.
go back to reference Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing, pp. 212–219 (1996) Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing, pp. 212–219 (1996)
15.
go back to reference Litvintseva, L., Ul’yanov, S.: Intelligent control systems. I. Quantum computing and self-organization algorithm. J. Comput. Syst. Sci. Int. 48(6), 946 (2009)CrossRef Litvintseva, L., Ul’yanov, S.: Intelligent control systems. I. Quantum computing and self-organization algorithm. J. Comput. Syst. Sci. Int. 48(6), 946 (2009)CrossRef
16.
go back to reference Fuchs, C.A., Van De Graaf, J.: Cryptographic distinguishability measures for quantum-mechanical states. IEEE Trans. Inf. Theory 45(4), 1216 (1999)MathSciNetCrossRef Fuchs, C.A., Van De Graaf, J.: Cryptographic distinguishability measures for quantum-mechanical states. IEEE Trans. Inf. Theory 45(4), 1216 (1999)MathSciNetCrossRef
17.
18.
go back to reference Le, P.Q., Dong, F., Hirota, K.: A flexible representation of quantum images for polynomial preparation, image compression, and processing operations. Quantum Inf. Process. 10(1), 63 (2011)MathSciNetCrossRef Le, P.Q., Dong, F., Hirota, K.: A flexible representation of quantum images for polynomial preparation, image compression, and processing operations. Quantum Inf. Process. 10(1), 63 (2011)MathSciNetCrossRef
19.
go back to reference Iliyasu, A.M., Le, P.Q., Dong, F., Hirota, K.: Watermarking and authentication of quantum images based on restricted geometric transformations. Inf. Sci. 186(1), 126 (2012)MathSciNetCrossRef Iliyasu, A.M., Le, P.Q., Dong, F., Hirota, K.: Watermarking and authentication of quantum images based on restricted geometric transformations. Inf. Sci. 186(1), 126 (2012)MathSciNetCrossRef
20.
go back to reference Yan, F., Iliyasu, A.M., Le, P.Q.: Quantum image processing: a review of advances in its security technologies. Int. J. Quantum Inf. 15(03), 1730001 (2017)MathSciNetCrossRef Yan, F., Iliyasu, A.M., Le, P.Q.: Quantum image processing: a review of advances in its security technologies. Int. J. Quantum Inf. 15(03), 1730001 (2017)MathSciNetCrossRef
21.
go back to reference Yan, F., Chen, K., Iliyasu, A.M., Hirota, K.: Circuit-based modular implementation of quantum ghost imaging. IEEE Access 8, 23054 (2020)CrossRef Yan, F., Chen, K., Iliyasu, A.M., Hirota, K.: Circuit-based modular implementation of quantum ghost imaging. IEEE Access 8, 23054 (2020)CrossRef
22.
go back to reference Manju, A., Nigam, M.J.: Applications of quantum inspired computational intelligence: a survey. Artif. Intell. Rev. 42(1), 79 (2014)CrossRef Manju, A., Nigam, M.J.: Applications of quantum inspired computational intelligence: a survey. Artif. Intell. Rev. 42(1), 79 (2014)CrossRef
23.
go back to reference Sherwood, J., Stephenson, T., Bernstein, S.: Stern-Gerlach experiment on polarized neutrons. Phys. Rev. 96(6), 1546 (1954)CrossRef Sherwood, J., Stephenson, T., Bernstein, S.: Stern-Gerlach experiment on polarized neutrons. Phys. Rev. 96(6), 1546 (1954)CrossRef
24.
go back to reference Raychev, N.: Universal quantum operators. Int. J. Sci. Eng. Res. 6(6), 1369 (2015) Raychev, N.: Universal quantum operators. Int. J. Sci. Eng. Res. 6(6), 1369 (2015)
25.
go back to reference Sun, B.Z., Fei, S.M., Jing, N., Li-Jost, X.: Time optimal control based on classification of quantum gates. Quantum Inf. Process. 19(3), 103 (2020)MathSciNetCrossRef Sun, B.Z., Fei, S.M., Jing, N., Li-Jost, X.: Time optimal control based on classification of quantum gates. Quantum Inf. Process. 19(3), 103 (2020)MathSciNetCrossRef
26.
go back to reference Schuch, N., Siewert, J.: Natural two-qubit gate for quantum computation using the XY interaction. Phys. Rev. A 67(3), 032301 (2003)MathSciNetCrossRef Schuch, N., Siewert, J.: Natural two-qubit gate for quantum computation using the XY interaction. Phys. Rev. A 67(3), 032301 (2003)MathSciNetCrossRef
27.
go back to reference Fujishima, M., Saito, K., Onouchi, M., Hoh, H.: High-speed processor for quantum-computing emulation and its applications. In: Proceedings of the 2003 International Symposium on Circuits and Systems, 2003. ISCAS’03. (IEEE, 2003), vol. 4, pp. IV–IV Fujishima, M., Saito, K., Onouchi, M., Hoh, H.: High-speed processor for quantum-computing emulation and its applications. In: Proceedings of the 2003 International Symposium on Circuits and Systems, 2003. ISCAS’03. (IEEE, 2003), vol. 4, pp. IV–IV
28.
go back to reference Fujishima, M.: FPGA-based high-speed emulator of quantum computing. In: Proceedings. 2003 IEEE International Conference on Field-Programmable Technology (FPT)(IEEE Cat. No. 03EX798) (IEEE, 2003), pp. 21–26 Fujishima, M.: FPGA-based high-speed emulator of quantum computing. In: Proceedings. 2003 IEEE International Conference on Field-Programmable Technology (FPT)(IEEE Cat. No. 03EX798) (IEEE, 2003), pp. 21–26
29.
go back to reference Frank, M.P., Oniciuc, L., Meyer-Baese, U.H., Chiorescu, I.: A space-efficient quantum computer simulator suitable for high-speed FPGA implementation. In: Quantum Information and Computation VII (International Society for Optics and Photonics, 2009), vol. 7342, p. 734203 Frank, M.P., Oniciuc, L., Meyer-Baese, U.H., Chiorescu, I.: A space-efficient quantum computer simulator suitable for high-speed FPGA implementation. In: Quantum Information and Computation VII (International Society for Optics and Photonics, 2009), vol. 7342, p. 734203
30.
go back to reference Goto, Y., Fujishima, M.: Efficient quantum computing emulation system with unitary macro-operations. Jpn. J. Appl. Phys. 46(4S), 2278 (2007)CrossRef Goto, Y., Fujishima, M.: Efficient quantum computing emulation system with unitary macro-operations. Jpn. J. Appl. Phys. 46(4S), 2278 (2007)CrossRef
31.
go back to reference Lee, Y.H., Khalil-Hani, M., Marsono, M.N.: An FPGA-based quantum computing emulation framework based on serial-parallel architecture. Int. J. Reconfigurable Comput. 2016, 16987 (2016)CrossRef Lee, Y.H., Khalil-Hani, M., Marsono, M.N.: An FPGA-based quantum computing emulation framework based on serial-parallel architecture. Int. J. Reconfigurable Comput. 2016, 16987 (2016)CrossRef
32.
go back to reference Aminian, M., Saeedi, M., Zamani, M.S., Sedighi, M.: FPGA-based circuit model emulation of quantum algorithms. In: 2008 IEEE Computer Society Annual Symposium on VLSI (IEEE, 2008), pp. 399–404 Aminian, M., Saeedi, M., Zamani, M.S., Sedighi, M.: FPGA-based circuit model emulation of quantum algorithms. In: 2008 IEEE Computer Society Annual Symposium on VLSI (IEEE, 2008), pp. 399–404
33.
go back to reference Negovetic, G., Perkowski, M., Lukac, M., Buller, A.: Evolving quantum circuits and an FPGA-based quantum computing emulator (2002) Negovetic, G., Perkowski, M., Lukac, M., Buller, A.: Evolving quantum circuits and an FPGA-based quantum computing emulator (2002)
34.
go back to reference Khalid, A.U., Zilic, Z., Radecka, K.: FPGA emulation of quantum circuits. In: IEEE International Conference on Computer Design: VLSI in Computers and Processors, 2004. ICCD 2004. Proceedings. (IEEE, 2004), pp. 310–315 Khalid, A.U., Zilic, Z., Radecka, K.: FPGA emulation of quantum circuits. In: IEEE International Conference on Computer Design: VLSI in Computers and Processors, 2004. ICCD 2004. Proceedings. (IEEE, 2004), pp. 310–315
35.
go back to reference Pilch, J., Długopolski, J.: An FPGA-based real quantum computer emulator. J. Comput. Electron. 18(1), 329 (2019)CrossRef Pilch, J., Długopolski, J.: An FPGA-based real quantum computer emulator. J. Comput. Electron. 18(1), 329 (2019)CrossRef
36.
go back to reference Krishna, R.G., Sarath, G.: UltraLightweight MAC protocol for RFID security using Permutation with double rotation. In: 2017 International Conference on Technological Advancements in Power and Energy (TAP Energy) (IEEE, 2017), pp. 1–6 Krishna, R.G., Sarath, G.: UltraLightweight MAC protocol for RFID security using Permutation with double rotation. In: 2017 International Conference on Technological Advancements in Power and Energy (TAP Energy) (IEEE, 2017), pp. 1–6
37.
go back to reference Chakraborty, S., Garg, A., Suri, M.: True random number generation from commodity NVM chips. IEEE Trans. Electron Devices 67(3), 888 (2020)CrossRef Chakraborty, S., Garg, A., Suri, M.: True random number generation from commodity NVM chips. IEEE Trans. Electron Devices 67(3), 888 (2020)CrossRef
38.
go back to reference Rukhin, A., Soto, J., Nechvatal, J., Smid, M., Barker, E.: A statistical test suite for random and pseudorandom number generators for cryptographic applications. Technical report, Booz-allen and hamilton inc mclean va (2001) Rukhin, A., Soto, J., Nechvatal, J., Smid, M., Barker, E.: A statistical test suite for random and pseudorandom number generators for cryptographic applications. Technical report, Booz-allen and hamilton inc mclean va (2001)
39.
go back to reference Alagic, G., Alagic, G., Alperin-Sheriff, J., Apon, D., Cooper, D., Dang, Q., Liu, Y.K., Miller, C., Moody, D., Peralta, R., et al.: Status report on the first round of the NIST post-quantum cryptography standardization process. US Department of Commerce, National Institute of Standards and Technology (2019) Alagic, G., Alagic, G., Alperin-Sheriff, J., Apon, D., Cooper, D., Dang, Q., Liu, Y.K., Miller, C., Moody, D., Peralta, R., et al.: Status report on the first round of the NIST post-quantum cryptography standardization process. US Department of Commerce, National Institute of Standards and Technology (2019)
40.
go back to reference Renner, R.: Security of quantum key distribution. Int. J. Quantum Inf. 6(01), 1 (2008)CrossRef Renner, R.: Security of quantum key distribution. Int. J. Quantum Inf. 6(01), 1 (2008)CrossRef
Metadata
Title
An FPGA-based hardware abstraction of quantum computing systems
Authors
Madiha Khalid
Umar Mujahid
Atif Jafri
Hongsik Choi
Najam ul Islam Muhammad
Publication date
23-09-2021
Publisher
Springer US
Published in
Journal of Computational Electronics / Issue 5/2021
Print ISSN: 1569-8025
Electronic ISSN: 1572-8137
DOI
https://doi.org/10.1007/s10825-021-01765-w

Other articles of this Issue 5/2021

Journal of Computational Electronics 5/2021 Go to the issue